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Abstract—The problem of reliable communication over the result is shown to be a special case of Shannon’s model
memoryless state-dependent multiple-access channel (MAJs and the authors also prove that when CSIT is a deterministic
considered where the encoders and the decoder are providedw  f,n¢tion of CSIR, optimal codes can be constructed directly
various degrees of asymmetric noisy channel state informen the i t al h bet In 5] th th ine the dis-
(CSI). For the case where the encoders observe causal, asyetn ©N € INput alphabet. in [5], the au 10rS examine the dis
ric noisy CSI and the decoder observes Comp|ete CS|, inner an crete mOdUIO'add|t|Ve noise Channel W|th Causal CS'T Wh|Ch
outer bounds to the capacity region, which are tight for the sm-  governs the noise distribution, and they determine therati
rate capacity, are provided. Next, single-letter charactezations  strategies that achieve channel capacity. In [6], fadirenclels
for tthe Chft‘_““e' capac;tybl_reﬁmzjns( L)mtﬂer ggIChtct);\ the fol(ljowmg with perfect channel state information at the transmitter i
system settings are established: (a) the at the encodease . . s
asymmetric deterministic functions of the CSI at the decodeand considered and _'t is shown .that with instantaneous and gerfe
the encoders have non-causal noisy CS|’ (b) the encoders @boge CS', the transmitter can ad]ust the data rates for eaCh dhann
asymmetric noisy CSI with asymmetric delays and the decoder state to maximize the average transmission rate. In [7], a
observes complete CSI; (c) a degraded message set scenarithw single letter characterization of the capacity region fogke-
asymmetric noisy CS| at the encoders and complete and/or néy ;ser finjte-state Markovian channels with quantized state |

CSI at the decoder. The main component in these results is a]c fi ilable at the t it d full state infati
generalization of a recently introduced converse coding gwoach ormation available at the transmitier and 1ufl state imation

for the MAC with asymmetric quantized CSI at the encoders at the decoder is provided. In a closely related direction,
and herein considerably extended and adapted for the noisy &1  finite-state channels (with memory) with output feedback is

setup. investigated in [8]. In particular, [8] shows that it is pitde to
Index Terms—Asymmetric channel state information, capacity formulate the computation of feedback capacity as a stéichas
region, converse coding theorem, Shannon strategies, Sgat control problem. In [9], finite-state channels with feedhac

dependent multiple-access channel where feedback is a time-invariant deterministic functafn
the output samples, is considered.
|. INTRODUCTION The literature on state dependent multiple access channels

with different assumptions of CSIR and CSIT (such as causal

VS non-causal, perfect vs imperfect) is extensive and thie ma

hl\_/lc;]dellng cor‘;\]mu?catlolnbcrf]\an_nelsf. with ”af state proﬁesc?ontributions of the current paper have several interastio
which governs the channel behavior, fits well for many phySlgi, the available results in the literature, which we presse

Cr?l scenarios. _Fr(:r sir_lgle-léser chan?els, the lcharad_iefri_zaf in Subsection I-B. Hence, we believe that in order to sujtabl
the capacity W't various degrees of channe state in oqnat ighlight the contributions of this paper, it is worth to diss
at the transmitter (CSIT) and at the recelver.(CSIR) IS WeH\e relevant literature for the multi-user setting in moezail.
understood. Among them, Shannon [1] provides the capgg start, [10] provides a multi-letter characterizationthé

|ty.fo|rmuIaC1;)r a dr:scretﬁ memoryless chgnr}etlj with ;ause pacity region of time-varying MACs with general channel
NOISEIESS IT, where the state process is independent gpdiyics (with/without memory) under a general statecpss

identically dist_ributed (ii.d.), in terms of Shannon Mes_ (not necessarily stationary or ergodic) and with variougdes
(random functions from the state space to the channel iRt ~g1T and CSIR. In [10], it is also shown that when the

SPace)- In [2] Gel'fand. and Piqsker consider?he same pnmbl%hannel is memoryless, if the encoders use only the past
with non-causal side information and establish a sindiede asymmetric partial (but not noisy) CSI and the decoder has

capacity formula. In [3], noisy state observation avaabt .,y jete CS|, then it is possible to simplify the multi-ett
both the transmitter and the receiver is considered and aracterization to a single letter one [10, Theorem 4]. In

capacity under such a setting is derived. Later, in [4] th[il], a general framework for the capacity region of MACs
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letter formula for the capacity region is provided and whestateS; can be accommodated by their models. However, they
the CSITs are not degraded, inner and outer bounds ateo note that if the noises corrupting transmitters andivec
derived, see [12, Theorems 1, 2]. In [13] state-dependen€MACSI are different, then the encoder CSI will, in general, not
in which transmitters observe asymmetric partial quadtizde contained in the decoder CSI. Hence, motivated by similar
CSI causally, and the receiver has full CSI is consider@dbservations in the literature (e.g., [11]), we partiatlyat the
and a single letter characterization of the capacity reggon scenarios below and provide inner and outer bounds, which
obtained. In [14], memoryless state-dependent MACs witre tight for the sum-rate capacity, for scendfrig below and
two independent states (see also [15] for the common statg)pvide a single-letter characterization for the capation
each known causally and strictly causally to one encoder,dbthe latter scenarios:

considered and an achievable rate region, which is shown {g) The state-dependent MAC in which each of the transmit-
contain an achievable region where each user applies Shanno ters has an asymmetric causal noisy CSI and the receiver
strategies, is proposed. In [16], another achievable eg®n has complete CSI (Theorems 2.1, 2.2 and Corollary 2.1).
for the same problem is proposed and in [17] it is showqp) The state-dependent MAC in which each of the trans-
that this region can be strictly larger than the one proposed mitters has an asymmetric non-causal noisy CSIT which
in [14]. In [14], it is also shown that strictly causal CSI s a deterministic function of the CSIR at the receiver
does not increase the sum-rate capacity. In [18], the finite- (Theorem 2.3).

state Markovian MAC with asymmetric delayed CSITs ig3) The state-dependent MAC in which each of the transmit-
studied and its capacity region is determined. In [19], the ters has an asymmetrically delayed and asymmetric noisy
capacity region of some multiple-user channels with causal CS| and the receiver has complete CSI (Theorem 2.4).
CSl is established and inner and outer capacity bounds g®) The state-dependent MAC with degraded message set
provided for the MAC. Another active research direction on where both transmitters transmit a common message and
the state-dependent MAC regards the so-called cooperative one transmitter (informed transmitter) transmits a pevat
State-dependent MAC where there exists a degraded camditio message. The informed transmitter has causal noisy CSL
on the message sets. In particular, [20] and [21] character- the other encoder has a delayed noisy CSI and the
ize the capacity region of the cooperative state-dependent receiver has various degrees of CSI (Theorems 2.5 and
MAC with states non-causally and causally available at the 2 g).

transmitters. For more recent results on the cooperaite-st | o4 ;5 oy briefly position these contributions with respect
dependent MAC problem see references [22], [23], [24] ang e ayailable results in the literature. The sum-rateaciy

[25]. Finally, for a comprehensive survey on channel codingLiarmined in(1) can be thought as an extension of [11,
with side information see [26] and for other recent resufts Orpaqrem 4] to the case where the encoders have correlated
the multi-user channels with side information see [27],],[2805|' The causal setup d2) is solved in [13]. The solution
[29], [30] and [31]. that we provide to the non-causal case partially solvesdha]
extends [11, Theorem 5] to the case where the encoders have
B. Main Contributions and Connections with the Literature correlated CSI. Furthermore, since the causal and norataus

We consider several scenarios where the encoders and $fgacities are identical for scena(iy), the causal solution can
decoder observe various degrees of noisy CSI. The esserftfaconsidered as an extension of [4, Proposition 1] to a noisy
requirement we impose is that the noisy CSI available to tieulti-user case. Finally4) is an extension of [20, Theorem
decision makers is realized via the corruption of CSI byediff 4] t0 @ noisy setup.
ent noise processes, which give a realistic physical strecif
the communication setup. We herein note that the asymmeific The Converse Coding Approach

noisy CSI assumption is acceptable as typically the feddbac The most relevant paper to this work is [13] which provides
Iinks_, are imperfect a_md sufficiently far.from each other_sattha converse coding approach for the state-dependent MAC
the information carried through them is corrupted by déf&r \here asymmetric partial state information available a th
(independent) noise processes. It should also be noted il qers” in this work, we adopt and expand on the converse
asymmetr|c5|de |nf0rmat|0n has many apphcatlonsm_daﬁfm _technique of this paper and use it in a noisy setup. The
multi-user models. Finally, what makes (asymmetric) noigy,nerse coding approach of [13] is based on team decision
setups particularly interesting are the facts that theoretic methods [32] (see also [33], [34] and [35] for rece
(2) No transmitter CSI contains the CSI available to the Oth%am decision and control theoretic approaches) where the
one; authors usamemoryless stationary team policiadich play
(¢4) CSl available to the decoder does not contain any of tiekey role in showing that the past information is irrelevant
CSI available to the two encoders. As the authors mention in [13, Remark 2], for the validity
When existing results, which provide a single letter cayaciof their arguments, it would suffice that the state inforimati
formulation, are examined, it can be observed that most @failable at the decoder contains the one available at the tw
them do not satisfy(i) or (i¢) or both (e.g., [13], [10], transmitters. In this way, the decoder does not need to atim
[11], [12], [18]). Nonetheless, among these, [10] discadbe the coding policies used in decentralized time-sharing.
situation with noisy CSI and makes the observation that theFor the noisy setup, we need to modify this approach to
situation where the CSITs and CSIR are noisy versions of taecount for the fact that the decoder does not have access



to the state information at the encoders, and that the past S0
state information does not lead to a tractable recursiois Th
difficulty is overcome by showing that a product form on théV. | Encoder

Xi
team policies exists in the noisy setup as well. ¢§“)(Wa75ﬁ]) .

The rest of the paper is organized as follows. In Section II, Channel |-%| Decoder—2-
we formally state scenarios (1)-(4), and present the main P(vi|xg, X}, S1) [, [P S i,
results and several observations. In Section I, we pmvid’s] (EHCOde;f
two examples in one of which we apply the result of [5] and ¢ (Ws, Spy) Xt
get the full capacity region by only considering the tighlsse gb
of the sum-rate capacity. Finally, in Section IV, we present '
concluding remarks.

Throughout the paper, we will use the following notationg9- 1. The multiple-access channel with asymmetric cansily CSI.
A random variable will be denoted by an upper case letter
X and its particular realization by a lower case letterFor

ol ) T |
a vectorv, and a positive integei, v; will denote thei-th = H WWPSZI'S' (st]st)Psps, (s%]5¢)Ps, (s¢). (2)
entry of v, while v;;; = (vq,---,v;) will denote the vector t=1 [Wal Wl
of the firsti entries andvy; ;1 = (vi,---,v;), @ < j will

The channel inputs at timg i.e., X/ and X?, are functions

denote the vector of entries betwegn of v. For a finite set of the locally available informatiofiv,, Sﬁ]) and (W, ng),

A, P(A) will denote the simplex of probability distributions ) ¢
over A. Probability distributions are denoted j(.) and 'eSPectively. LetW .= (W, , W) and X, := (X{,X),
subscripted by the name of the random variables and Con_@_spectlvely. Then, the laws governimgsequences of state,
tioning, €.9.,Pyrv.s(u,t|v, s) is the conditional probability input and output letters are given by

of (U = u,T =t) given (V = v,5 = s). Finally, for a

a b
positive integern, we shall denote byA™ := |J,_,_,, A° Py W X1),8101,57,,88, Vil (W5 X S(an]> 5y 5[n))

[n]’
the set ofA-strings of length smaller than. We denote the B
indicator function of an event by 1;5,. All sets considered o H
hereafter are finite.

b
PY,\Xg,Xf,St (yelzy, 21, st), (3

t=1

where Py, xa xo g, (ye|x¢, 2%, s,), the channel's transition
1. MAIN RESULTS probability distribution, is given a priori.
ac Definition 2.1: An (n, 2"« 2nf) code with block length

Consider a two-user memoryless state-dependent MAC, - -
with two encodersg, b, and two independent message sourcds a1d rate pair(f,, i) for a state-dependent MAC with

W, and W, which are uniformly distributed in the finite C2USal noisy state information consists of

setsW, and W,, respectively. The channel inputs from the(1) A sequence of mappings for each encoder
encoders areX® € X, and X € X, respectively, and AV L SEXW, > Xy, t=1,2,.m
the channel output i¥” € ). The channel state process is O .St Wr s X t=1.2 ..n
modeled as a sequendes;}°, of ii.d. random variables PO 2TV b et
in some finite spaces. Let (S¢, S?) denote a pair of ran- 2) An associated decoding function

dom variables available at two encodetsh, respectively, at PSP X YT = Wy X W
time ¢. Throughout the paper, by symmetric side informationet P, ; := P (¢(Y},), Sin)) # (wa, ws)|W = w) .The sys-
we will refer to the case wherey = SP, vVt and by tems probability of errorP\"™, is given by

asymmetric side information to when this does not occur.

Furthermore, by noisy side information will refer to the eas 1 2" fa 2R
V\/_he_re(Sf,Sfﬂt) are correlated according to a given joint P = In(RatFy) Z Z Pe,s-
distribution Pga g 5(s%, s°, s). wa=1wy=1

A rate pair(R,, Ry) is achievable if for any > 0, there exists,
A. Asymmetric Causal Noisy CSIT for all n sufficiently large an(n, 2"« 2"%) code such that

Let the two encoders have access to a causal noisy versiplog [Wa| > Ra > 0, = log|W,| > R, > 0 and P < e
of the state informatiors; at each timet > 1, modeled by The capacity region of the state-dependent M&gs, is the
50 ¢ 8, SP € S, respectively, where the joint distributionclosure of the set of all achievable rate pdifs,, 1z;) and the
of (S;, 8¢, Sb) factorizes as sum-rate capacity is defined a%s = MaX(R,,r,)ecCrs (Rat

Ry).
Psg 1,5, (57,51 5t) = Psg|s, (7 150) Py, (515t Ps, (51)- (1) I;efore proceeding with the main result, we introdncem-
The system is depicted in Fig. 1. Lel, be available at oryless stationary team policig$3] and their associated rate
the receiver and lef(S;, 5S¢, S?)}>°, be a sequence of i.i.d. regions. Let the set of all possible functions frap to &,

triples, independent fromiV,, W,). Hence, for any» > 1,  andS to &, be denoted by/, := X5 and 7 = 151,
respectively. We shall refer th, -valued andf,-valued random

b .
Pg. .50 st w, .w, (S[nls S{n)> 8(n)> War W) vectors as Shannon strategies.

[n]"[n]”



Definition 2.2: [13] A memoryless stationary (in time) team T!(sp) = ¢(b) (Wb, S[t 1 sb) (10)

policy is a family )
We now show that the sum of any achievable rate pair can

M= {m = (npa(-), mps(-)) € P(Ta) x P(Tp)} (4) Dbe written as the convex combinations of mutual information
of probability distribution pairs ori7,, 7). tc(;eg]ns which are indexed by the realization of past complete

For every memoryless stationary team policytet R ps ()

. b
denote the region of all rate paifs = (R,, R;) satisfying Lemma 2.1:Let T# € 7. and Ty € 7, be the Shannon

strategies induced bny(“) and ¢§b), respectively, as shown in

R, < I(T%Y|T"S) (5) (10). Assume that a rate pait = (R,, Ry), with block length
Ry < I(T"Y|T%5) 6 "= 1 and a constant € (0,1/2), is achievable. Then,
R,+ Ry, < I(T*,T%Y|S) (M) Ra+ Ry < > ap (T8, TP Ya|S:, Spe—1) = 1) +n(e). (11)

. . (n)
where S, T¢, T* andY are random variables taking values Hes

in S, T, T, and Y, respectively, and whose joint probability ~ Proof: Let T, := (72, 7}). By Fano’s inequality, we get

distribution factorizes as
b H(W (Y, Si)) < H(e) + elog((WaWi)).  (12)
Pq a o t*.t
s.ra 1oy (5,117, y) o . , Observing that
= PS(S)PY\T'J,Tb,S(y“ ,t ,S)’]TTa (t )TFTb(t ) (8)
I(W;Y}n), Stn) = H(W) — H(W/|Yj), Spny)

Let C;n = @| U, Rrs(m) | denote the closure of the = log(|Wal[Ws|) — H(W|Y},), Spr)- (13)

associated to all possible memoryless stationary teancgmli

as defined in (4). (1 =€) log(Wa|We|) < I(W; Y]y, Spy) + H (e)
Theorem 2.1 (Inner Bound t©rs): Ciy C Crs. and

The achievability proof (which we omit) is based on a random 1

code construction with Shannon strategies and follows the R, + R, < —log(|Wa|[Wsl)

standard arguments involving joimttypical sequences (e.g., ”1 1

cf. [36, Section 15.2]). Let < T, — (I(W; Y}y, Spp) + H(e)) - (14)
— €
Cour = {(Ra,Rb) eRT" xRT: Furthermore,
, I(W; Y, Spny)
Ra+Rb < sup I(TavT 7Y|S) ) n
mre (#2)mro (1) = > [H SuSp-1, Yie-1)
whereR™ is the set of positive reals. t=1
Theorem 2.2 (Outer Bound ©rs): Crs C Cour- —H(Yy, Si/W, Spp—1), Yi—1))]
Proof of Theorem 2.2:We need to show that all achiev- ()
able rates satisfy = > [HMi|Sw, Yie-1)) — HYW, Spy, Yie—1)]
t=1
R,+Ry<  sup  I(T%T"%Y]S), G) &
mpa (89) b () < Z I:H(th|5[t]) - H(SQ'WaS[t]aYV[tfl]aTt)]
i.e., a converse for the sum-rate capacity. Following [18i, tzl
1<t <n, let WS [HYiISy) - HY: S, To)]
1 H(e t=1
o= 2Ps, () and n(e) == - log V10 (9 .
= Y I(T4;Yi|Sy) (15)
Observe thatim._,o 7(¢) = 0 and t=1
1 _ where (i) is implied by (2), in(ii) T, := (T2, T?) are Shan-
Z O = Z Z Psiey =1 non strategies whose realizations are mapptigsS; — X;
neSm) 1<t<n peSt-t

for i = {a, b} and thus(ii) holds since conditioning does not
whereS(™ is the set of allS-strings of length less than. increase entropy. Finallyzi:) follows since

a _ 4(a) a _ a) a
Reca” thatXt I (Waa S ) ¢t (Waa Sa [t—1] S ) PYt|w75t75[t71]-,Y[tfl]vava (yt|W7 Sty S[t—l] y y[t—l] y t?, t?)

b _ 4(b) b b
and Xt - (bt (Wb,s[t]) (bt Wb’ t ll’St), for al = Z PYt\Sﬁ.S“.Sb.Ta.Tb(yﬂstvS?vsgatgvt?)
t > 1. Then, we can define the S annon stratedigss 7, o’ Tt
andT? € T, by putting, for everys, € S, ands, € Sy, o P (0. sl]sy)
Sa,5b|5,\ St s St |5t

Tta(Sa) = (bl(ga) (Waa Sﬁg_l]v Sa) = PYt|St7Tta7Ttb (yt|5ta t?, t?) (16)



where the first equality is verified by (3) and (2), whefe= Proof: Let S := (S, 52, S?) ands := (s, s¢, s?). Observe

ti(st) for i = {a,b}. At this point, it is worth to note that that
by (16), one can remov§|, ;) from (15) in the conditioning.
However, we will soon observe why it is crucial to keep it

when we prove the product form. Now, lgt(e) := % Pry 1.y, 5018 (8 855 5l10)
and combining (14)-(15) gives = PS,TE,Tf,ms[t,l] (s,1%, 1%, y|n)
R. + Ry s,sb
< %log(|Wa||Wb|) = Z Py s e o (yls, tavtb)Ps,Tg,Tms[t,u (s,t%,t"|) (22)

a ¢b
S¢yS¢

S( - I(Tta,Ttb;YtIS[t])>+X(€)+(n—1)x(€)

l—eni~ where the second equality is shown in (16). Let us now
(@ 1 1 . consider the termPs . 1us, | (s,t*,t’|u) above. We have
S 7o 2 HIE T Ve S ) +(e) the following
t=1
e 1w a u
_1 — eﬁ I(Tt aTtb§Yt|S[t]) PS,Tta,Ttb\S[t,l] (Sat 7tb|H)
t=1
e - Y Y Yy
== > I(TE, T Vil S) +n(e) (17) Wa €W, wy €Wy fia i b
t=1 PW,Sﬁil],Sf’til],S,Tf,TﬂS[t,l] (W, fta, i, S, 8%, 87| 11)

where(a) is valid sincel (T, T7; Y;|Sy) < log|Y|. Further- (i)
more, = bs(s) Z Z ZZ

Wq €EWa wp€EWp ha  Hb
I(Ty, Ttb§ Y;f|5[t])

u b PW,S“ ,Sb
=n Y o (T8 T Y| Se, S—ny = 1), (18)

[t—1]"[t—1]

and substituting the above into (17) yields (11). [ WaEWa wo €Wy fia bib
Note that, for anyt > 1, I(T{, T V| Sy, Sp_1) = p) is a Pa,sa st 1801 (Ws Has ib| 1)

function of the joint conditional distribution of channehte (iid)
S, inputs T2, TP and outputY; given the past realization — —
(Sie—1) = n). Hence, to complete the proof of the outer 1”“6{/\’“ weEWs e Hb
bounql, we nee_d to show thﬁ’gptany_’Yt:St‘S[H (t, %y, s|p)

factorizes as in (8). This is done in the lemma below. In

T8, TE (S} ) (W, s by £, | 10)

nest—1 (2) PS(S) Z Z Zzl{tl:(bgl)(wz,lll), l=a,b}

PS(S) Z Z Zzl{tl: gl)(wl,,ul), l=a,b}

] TV Sty Sttt (e 614

i it i i (iv)
particular, it is crucial to observe that the knowledge & th (= PS(S)ZPS@U\S[H] (MaW)ZPSﬁ,U\S[Fu (1w p2)

past state at the decod#f;_), is enough to provide a product ™ .

form on T and T°. Let Z L,
a a a a a a—=g{®) Wq ,Mha
T,ua(t ) = {wa: (bl(f )(’wa,S[t,” = pa) =t"}, W EW, |Wa| {t2=¢¢" (wa,pa)}
YO () = {wy: o (wy,sb_y = pp) =t°F  (19) 1
o ¢ (Wh, S[p—) > Lo
{tb=¢;" (wp,pe)}
and e, Vel i
v lra 1 ()
) =Y o = P92 Py isin (ali)
we TS (ta) Wl pa we €Y _(t)
a ra @ Ha
1
mhe () = Z Ak Zpsftﬂ]\s[t,l] (l) Y
b b
wbe*r,l;b(tb) Mo “’beTub(t
ay .__ a (1Q (vi) a (1a
T (t7) = Y wha(t )Psa 15y (Hali), L PS(S)ZPSE;,H\S[FU (1| p)hie (£%)
Ha Ha
T () = Y mR ) Psy s, (mlu),  (20) > Psy s (pl)mlB (t)
Hb Hb
where 1, and up, denote particular realizations (Sfﬁ_l] and (vit) Ps(9)mt. (1), () (23)
S,y respectively. T T
Lemma 2.2:For everyl < ¢t < n andpu € S, the
following holds where (i) is due to (2) and (10)(i) is valid by (10), (i)
P o b is due to (2),(iv) is valid by (1) and (10){v) is valid due
(R R Gt I ) to (19) and(vi) — (vii) is valid due to (20). Substituting (23)
= Ps(s)Py|s a0 (yls, t*,t")mha (1), (t°). (21) into (22) proves the lemma. |



We can now complete the proof of Theorem 2.2. We havET®; Y |T?, S) = H(T*|T")+H (T®|T*)—H(T*|T"Y,S)—
H(T®|T*,Y,S) andI(T*,T%Y|S) = H(T*|T®) + H(T®) —

Ra + Iy H(T*|T®Y,S)— H(T|Y,S). Therefore, it is possible to get
< Z o I(TE, TP V4| S, Spe—1) = ) + nle) an obsolete sum-rate constraintifyy and hence, achievability
nesm of CPZ:S is not guaranteed. Note that the channel inputs are not
a H i a _ a(Qa b _ b/ gb
_ Z a, (T} ,Ttb;Yt|St)7r;a(ta)7r;b(tb) + (e independent sinc& * = T°(S _) and X" =T°(S°). _
HES™) Remark 2.3 (Cases of partial and no CSIR): the situa-
o tion where the receiver has partial information about tlagest
< sup (T8, TP Y3 |Se) + n(e), P

attimet in the sense that it is provided with procg$¥;)}:°,
V; € V, which is independent ofW,, W;) and satisfies the
WhereI(Tt",Ttb;}Q|St),r:;a(ta),rub(tb) denotes the mutual in- following

T
formation induced by the product distributiatf.. (¢*)7/, () o b
and the second step is valid sintl@y", T7; V3| S, Sip—1] = 1) Ps[ﬂ’sﬁpsf’w o (81615 8Ty 87> V)
is a function of the joint conditional distribution of chaain = P(S‘[lt]|U[t])P(Sl[7t]|’U[t])P(S[t],U[t]), 1<t<n, (28)

stateS;, inputsT?, T and outpufy; given the past realization ) ) o
(Sit—1) = ). Hence, sincdim, .o7(e) = 0, any achievable it can be shown that the sum-rate capacity admits a similar
_ - . [} € - 1

pair satisfiesR, + Ry < Sup,,., (o)., (109 1(T% T0:V|S). m expression as in (24) _witS replaced by, see [37, Theorem
As a consequence of The%remsTZ.l and 2.2, we have thé-3]. Furthermore, inspired by the coding schemes of the
following corollary which can be thought of as an extensién ¢°SSess CEO problem [38] as well as of a recently proposed

[11, Theorem 4] to the case where the encoders have cortelftghievable region [14], an inner bound, which demonstrates
CSI. the rate required to transmit the above partial information

Corollary 2.1: about the state in the case where the receiver has no CSl,
is shown in [37, Theorem 5.3.2].

(ma (t9)m s (¢0)€TI)

= sup  I(T*,T%Y|S). (24)
mra (t%) . (t0)
’ " B. CSITs as Deterministic Functions of CSIR: Non-Causal
Proof of Corollary 2.1: We need to show that -zqe

3 (Ra, Ry) € Crny achieving (24). We follows steps akin to . ) . o
[36, p.535] where discrete memoryless MACs are considered!n this section we consider the situation where the trans-
Let us fix 77« (t*)mps (t*) and consider the rate constraintdnitters have access to partial state information availabtee
given inCry decoder. In particular, let; = f*(S}), wheref* : S, — S,

i ={a,b} andS™ € S, such that

I(T%Y|T? S) = H(T*|T® S)— H(T*|T"Y,S)
a a|mb Pg  sa st srow, W(S[n]vsa 75b + (1> Wa, W)
= H(T*)— H(T“|T",Y,S) (25) (n1>5n) Sy Sy Was We [n]> “In]> °[n]
(T Y|T*,S) = H(T"|T*,S)— H(T"|T*,Y,S T 11 o b
( ) | ) ) ( b| ) ) . ( | s ) :HWWPSt,S?,Sf,Sf(St7St78?’St)' (29)
H(T") — H(T*|T*,Y, S) (26) i Wal Wl
and The channel is driven by the state procéSs}i2, and hence,
a . a b T
I(T 5 Tb, Y|S) P}/[n] |W7X[n]7s[n]7s[an],Sf)n]7s[Tn] (y[n] |VV7 X[n] y S[n], S[n] 5 S[n], S[n])
= H(T*,T% — H(T*,T"Y, S) n ,
= H(T") + H(T") — H(T*|T",Y, S) — H(T"|Y, S), (27) = [ Pyaixcs xr.s (el 2f,s0). (30)

t=1

where (25), (26) and (27) are valid sing€ and7" are inde-
pendent of each other and independent o©bserve now that
for any mra (t*) e (1), I(T* Y |T?, S) + (T Y|T?, S) >
fI(T“,rI]”b;Y|S) sinceH(Tb_|Y,d§) > Ijlr(Tb|Ta,¥, S). '(Ij'r;]ere- P}e,q‘Xaxb_’S,‘(yLz:a,:cb,sr)
ore, the sum-rate constraintdh y is always active and hence, u ,
there existy R, Rp) € C;n achieving (24). [ ] = ZPY\XQ7Xb,S(y|x 2, 5)Pgsr(s]s"). (31)
We conclude this section with a number of remarks. s€8

Remark 2.1:0ne essential step in the proof of Theorerhlence, the causal setup of this problem is no more general
2.2 is that, once we have the complete CSI, conditionithan the setup in [13] and the main result of this subsection
on which allows a product form of™® and T?, there is is to show that the result of [13] also holds for non-causal
no loss of optimality (for the sum-rate capacity) in usingoding.
associated memoryless team policies instead of using all th We keep the channel codes definition identical for the causal
past information at the receiver. and non-causal cases, except for the non-causal case we have

Remark 2.2:For the validity of Corollary 2.1, it is cru- qb,(f) S X W, = A i ={a,b}, t =1,--- ,n. Let C]%S
cial to have the product form on the paiff’® 7%). If denote the capacity region. We need to modify Definition 2.2
this is not the case, we would get that7T*;Y|T? S) + in order to take the current CSI into account.

Note that one can define an equivalent channel with condi-
tional output probability



Definition 2.3: A memoryless stationary (in time) teamof the state informationS; at each timet > 1, modeled

policy is a family by S 4 € Sa, Sf,db € &y, respectively. The rest of the
Mo fr— arr b channel model is identical and hence, (1), (2) and (3) are
= {7 = (mxepse (1S (7)) mxoys (C1F7(57)) valid throughout this section. We also assume tais fully

€ P(X,) x P(X)}  (32) available at the receiver. A code can be defined as in Definitio

For everyr defined in (32),7%1%5(7‘7) denotes the region of 2.1, except now

all rate pairsRk = (R,, Ry) satisfying ¢§“) :Sda x W, = X, t=1,2,..n;

R, < I(X%Y|X" 8" (33) ) S W), > Xy, t=1,2,..n1

b. a r
Ry < I(X%Y[X%,5") (34)  Let Cpn denotes the capacity region of the delayed setup.
R, + Ry, < I(X*XbY|S") (35) In the main result of this section the team policies are

whereS”, X4, X* andY are random variables taking Valuescomposed of probability distributions on the channel isput

in S,., X,, X, and), respectively, and whose joint probabilityrather. thgn Sha.nnon strategies. . L
oo . Definition 2.4: A memoryless stationary (in time) team
distribution factorizes as

policy is a family

Pgr xa Ta aa ba I ~ a
5T X vaa’;(S(f)P“’ v) et 57) = {7 = (mxa (), 7x0(-) € P(X") x P(XY)}.  (38)
= Lsr(S )y Xa, xb,5mY|T T, 8
ol ras T r For every memoryless stationary team policy R 0
Xm0 (2457 (2] F(57)). (36) Y memary Y team poliey R ow (7)

enotes the region of all rate paiis= (R,, R,) satisfying

Let E(uT R%s(w)) denote the closure of the convex hull R, < I(X%Y|X"S9) (39)
b. a
of the rate region@%s(ﬁ) given by (33)-(35) associated to Ry < I(X%Y[X%5) (40)
all possible memoryless stationary team polices as defimed i R, +R, < I(X%X%Y|9) (42)
(32). o o where S, X¢, X" andY are random variables taking values
Theorem 2.3:Cyq = EQUW RNS(TT))- in S, X, X% and), respectively and whose joint probability
For the achievability proof, see [13, Section I1]] and olvser distribution factorizes as

that any rate which is achievable with causal CSI is also o oy (8,29, 2%, )
achievable with non-causal CSI. For the converse proofef th = =X\ = > W b . X
non-causal case see Appendix A. The proof for the non-causal = Ps(s)Pyxe xv s(ylz®, a7, s)mxa(@)mxo (27).(42)
case is realized by observing that there is no loss of opitiynal

if not only the past, as shown in [13], but also the future Cé-let@< Uz RDN(fT)) denotes the closure of the convex hull

is ignored given that the receiver is provided with compleigs the rate regiongpx (7) given by (39)-(41) associated to

CSI. A similar observation for independent CSIT is also madg| possible memoryless stationary team polices as defimed i
see [11, Theorem 5]. (38).

Consider now the setup in Section Il in order to observe that_l_h DT p— R N
for the non-causal case the optimality of Shannon stradgie eorem 2.4:Cpy =o| Uz Ron(7) ).

not guaranteed. Recall that, we have Achievability can be shown via random coding arguments. For
" the converse, see Appendix B.
I(W; Vi), Spn) < Z [H(Yi|Sp), Yie—1))— Remark 2.4 (Strictly Causal CSITWhend, = dp = 1,
=1 Theorem 2.4 is the capacity region of the setup with strictly

H(Y,|W, Sy, Y1, T)] (37) causal CSITs. This case was considered in the literature,
e.g., see [14], [16], [15] and [22], where it is shown that
where T, := (T}, T}). Consider now the right hand side ofstrictly causal side information is helpful. Theorem 2.4ifies
(37) and observe that that since the full CSI is available at the receiver and since
the decoder does not need to access the current CSI at
the encoders, there exists no loss of optimality if the past
= Z Py, s, 55,5010 10 (Yelse, o8, 57,6, 7) information at the encoders are ignored.

a b
St 7St

a 4b
Py, \w .5, Vo1, T T (Ye|W, Spn)» Ype—1 5 1)

Xpsg,sfmt,l],st (s?,SfIy[tq], 5¢), D. Degraded Message Set with Noisy CSIT

and therefore, the past channel outputs cannot be elindinate Assume a common message is provided to both encoders
and one of the encoders has its own private message. As-

sume further that the encoder with the private message has

c. Asyr_nmetrlc Noisy CSIT wlth Qelays _ causal noisy CSI, whereas the encoder with the common
Consider the problem defined in Section II-A where the

two encoders have accesses to asymmetrically delayedewhefobviously, whend, > t, I = a,b then X = ¢\ (W,) and X! =
delays arel, > 1 andd, > 1, respectively, and noisy versionss” (w,).



se W. | Encoder [X{
£ (Wa) v W
W Encoder [X¢ Channel R4 I}D/ecosqer_>
0" (Wa, S, ) W r P(i|xg, X}, 81 [S7 P00 St
Channel [t Decoder [Ya, , Encoder
> D
J‘P(mxg,xtb,st)—’st Vi Sl [, 18 W Wa, S| X7
b
w,| ,,Encoder Tsf
_)(bt (Wb,Wa,S[t])th
Sb Fig. 3. MAC with degraded message set and with noisy CSIT atRC
Fig. 2. MAC with degraded message set and with noisy CSI. common message have no CSI, i.&y = ¢§a)(Wa) and

X} = oM (W, Wy, S[bt]), and let the decoder also have access

: . . . to noisy CSI at timef, S} ; see Fig. 3, where,
message only observes noisy state information with delay y St €5 9

d, > 1. Let the_common and the private messagesiiae Ps[n],S{n],an].,Wa.,Wb (s[n],s[rn],sfn],wa,wb)

and W}, respectively, andS‘ﬁfda], d, > 1, and S[bt] denote " )

the CSI at encodern, b, respectively, wherg(S;, S¢, S?) = H——Pshsg7sg(st,s§,s§) (47)
satisfies (1) and (2). HenceYp = ¢§“)(Wa,5f‘;7da]) and i1 WVal Wl

X = qﬁgb)(Wa,Wb,Sﬁ]); see Fig. 2. LetCc denote the and letCS denote the capacity region for this setup.
capacity region for this channel. Recall th&t= ngb‘. Let for every memoryless stationary team polieydefined

Definition 2.5: A memoryless stationary (in time) teamin (43), RE() denote the region of all rate paiB =

policy is a family (Ra, Ry) satisfying,
= {# = (rxo () € P(X* x T?)} (43) R, < I(T"Y|X*S") (48)
R,+ Ry, < I(X*T%Y|S") (49)

of probability distributions on(X,, 75).
Let for every#, R¢(#) denote the region of all rate pairswhereS”, X¢, T andY are random variables taking values
R = (R,, Ry) satisfying in S, X,, Ty and), respectively and whose joint probability
b " distribution factorizes as
R, < I(T%Y|X%5S) (44)

r .a b
Ra +Rb < I(Xa,Tb,Y|S) (45) PST,X'J,TZ’,Y(S y L 7t 7y)

= Pgr(s") Py xa.1v gr (y]2%, 1%, 8 )T xa @ t%).(50
where S, X2, T® andY are random variables taking values 5 (8 Py e mo 50 (yla, 2 7)o o (@, 1)-(50)
n S’. X“.’ 7y and y respectively and whose joint prOl:)ab'“tyLet@ U. R&(#) ) denote the closure of the convex hull of
distribution factorizes as n
2 b the rate regionsR & (7) given by (48) and (49) associated to
Py xa 0y (5,2%,9) all possibler as defined in (43).

= Ps(s)Py|xa 1 s(ylz?, t°, )T xa b (z%,t"). (46) Theorem 2.6:CS = o . RE(#) ).

Let o U, Re(#) ) denotes the closure of the convex hull Proof: The achievability proof is identical to that of
Theorem 2.5. The converse proof is also similar and theeefor

of the rate regionsic () given by (44) and (45) associatedye oniy provide a sketch. In particular, observe the foltuyi
to all possible memoryless stationary team polices as dfinges of equations for the converse proof of the condition on

in (43). iy

Theorem 2.5:Cc =co| U, Re(7) ). )
See Appendi Cior ti\oe erJ(;of ) I(Wy; Y] Sfyy)

iX . )
< .

Remark 2.5:Theorem 2.5 shows that when the common  — Ir(LWb’Y["J’S[nHWa)
message encoder does not have access to the current noisy _ H(Y.. STIS" v
CSI (since the delayl, > 1), by enlarging the optimization Z [ (V1 5718 p> V-1, Wa)

A . t=1
space of the other encoder, via Shannon strategies, the past

CSI can be ignored without loss of optimality if the decoder
is provided with complete CSI. B &
One important observation to be made in the degraded message = Z {H(YAS[Q]  Yiem1), Wa)
set scenario is that we do not require a product form on the t=1
pair (X, T") (see (46)). In connection with this observation, —H(KIS[Z],Y[FU,WQ, Wb)}
let us consider the following noisy CSIR setup. n
Let the encoder with the private message causally observe _ Z {H(Ytlsﬁ],y[tq],wa,Xf)
t=1

—H (Y, 5718,y Yieo11, Wa, W)

the noisy state information, whereas let the encoder wi¢h th



_H(Yt|S[’”t],Y[t_l],Wa,Wb,Xf)} [20, Theorem 4] the informed encoder has full CSI, i.e.,
X! = ¢§b) (Wa, Wy, Spyg), both the uniformed encoder and the

(? Z {H(thﬁpr) decoder have no CSI and the capacity regiong, is given
=1 as the closure of all rate pai(®,, R,) satisfying
_H(}/t|S[C,]a}/[t—l]vwavwvafaTtb)} R, < I(U;Y|X%) (56)

3

o  ea Ry+R, < IUX%Y) (57)
[H(YilSpy, X2) = H(Yi|Spy, X2, T7)] N |
for some joint measure of x X, x &, x Y x U having the

o~
Il
A

n X form
= D ITYIX] Sy (51) o o
t=1 PY\X‘I,Xb,S(ykr , L 7S)PXI’|U,X“.,S(‘T |’LL,LI' ,S)
where(i) follows since state is i.i.d., whefE® is the Shannon X Ps(s)Pxav(z®,u), (58)

strategy induced by encodeat time¢ as shown in (105), and \, hare U| < |S||X.||X| + 1. On the other hand, for

(i) is valid since conditioning does not increase entropy, a'?ﬁis setup Theorem 2.6 gives the capacity regiofiy, as

(#37) is valid since K , s
co| . R (1) | whereR(7) denotes the region of all rate

pairs R = (R,, Ry) satisfying

R, < I(T;Y|X% (59)
Ro+ R, < I(T,X%Y) (60)

T a 4b
PYt|S[Tt],Y[t,1],W,Xt“,Ttb (yt|8[t] yY[t—1], W, Ty s tt)

_ b a 4b
= E Py, s, .50, x0.10 (Yl Sts 8¢, 1))
StGS,Sé’GSb

b r a 4b
XPS?,St\S[Q],Y[t,l],W,Xf,Ttb(St7St|8[t]7y[t*1]’w7 ', ty)

= Z Py, 5,50 xe1p (Uel st, 80, 2, 17)
5:€8,50ES, Py|Xa7Xb75(y|:v“,:vb, S)be‘syT((Ebls,t)PS(S)ﬁxa,T((Ea,t),
b
xPgy s, (s{, st|sp) (61)
b
= PYt|S;,Xf,Tf(yt|S:aI?att) (52) and7:8 — Xp.

where the first equality is valid due to (3) and the secondAlthough the relation between an auxiliary variable and

equality holds due to (47). Hence, one can directly obtait thShannon strategies is well understood for the single-user
case (e.g., see [26, Section 3.2]), we believe that it requir

Ry< > e I(T)Yi|X7, 87, Sy = pe) +n(e) (53) more attention in the multi user case; in particular, no th
€S difference betweeni/| and |7|. Hence, we provide a proof
R, + Ry for C&y = Cas, see Appendix D.
a b, roor We conclude this section with the following remark.
< 2 ol (KT TEVIIST Sfyy = ) () (54) Remark 2.7:For the validity of converse proof of Theorem
2.6 it is crucial thatX only depends oriV,. To be more
whereq,, = lPs[TH] (ur). We now need to show that theexplicit, let us assumes, = @ and consider the following

n
joint distribution Py 72 v, s7s: (2%, t*, y,s"|ur) satisfies steps of the converse

(50). Letwg(rayTb(xavtb) = PXtamiS[rtil] (%, t*|pr) and ob- I(Wy; Vi)
serve that

where Py 1 xa x» 5(y, t, 2%, 2%, s) factorizes as

MrES&M

< ZH(}Ql}/[tfl]aX[(:L]) - H(th|yv[tfl]aW7X[(:L]aTtb)

a 4b r
PXg,Ttb,n,Sg‘|s[T ](55 NN TR TS pot

t—1

= Py va xb 2%, t%(s%), s -
Szt;gb S;g Y| XS ,Xt.,St(y| °(s¢), ) _ ;H(Ytnf[t—l]vXﬁl]) _ H(Yt|Y[t—1]aX£17Ttb)- (62)
XPSi%Ser(S?’Sf’ST)PX?,THS[’;fu (2, ] ) Since S; is not available to the decoder, the above equality
= Wg(a Tb(ffaatb)PS;(ST)meg,Ttb,sg(yWaafbaST) (55) is valid if Xﬁl] does not provide any information abof.
" o . Hence, in other words, whether CSITs are noisy or not, if
where gh? first equality is Ve”f'id by (3) and by the fact thafere is no CSI or noisy CSI at the decoder, the arguments
(X{,T7) is independent of Sy, S/, 57). B above would fail if the uninformed encoder observes some

Remark 2.6:1t should be observed that unlike Theoremyeqgree of CSI, i.e.d, < oo so thatX, carries information
2.5 and results in the previous sections, for the validity qf

b Qr
Theorem 2.6, it is not required to have a Markov condition %bom(st’ S0:58).
Pshsgsg(st,sf,s{). Furthermore, the result also holds with
no CSIR, i.e.,S, = 0 is allowed, and in this case Theorem
2.6 is as an extension of [20, Theorem 4] to a noisy setup. We present two examples. In the first example we discuss
Note that for the setup given in [20, Theorem 4], Theorethe state dependent modulo-additive MAC with noisy CSIT

2.6 provides an equivalent characterization. Recall that and complete CSIR (as in Section II-A) and show that the

Il. EXAMPLES
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proposed inner and outer bounds are tight and yield the eghere the second step is valid sinZeis conditionally inde-
pacity region. In the second example we consider the problgrandent of(S¢, S*) given S. Therefore H(Y |T® = t*, T® =
defined in Section I1-B where the channel is a binary mulipli t°, S) = H(Z + t2(S%) + t*(S%)|S). Let (t**,t**) be two
MAC whose state is an interference sequence. mappings fromsS, to X, andS, to X}, respectively, for which
H(Y|T® = t**,T" = t**,S) = Hpn. Now recall that, by

A. Modulo-additive State-dependent MAC with Noisy CSITCorOIIary 2.1, we have

Recall that the results of Section II-A are given in terms = sup [H(Y|S) - H(Y|T*,T",S)]
of Shannon-strategies. Hence, their computation requires e ()T (¢7)
optimization over an extended space of the input alphabet < sup H(Y]S) = Huin, (66)

a(ta b
to a space of strategies and is often hard; in fact, very few e (#)mrs (1)

explicit solutions exist even in the single-user case. Ih [and we now determine the policidsr.(t%), t* € 7,} and
modulo-additive single-user channel with complete CSIT isr.(t*), t* € T} achieving the supremum above. Let us
considered and a closed-form solution for the capacity figst define the following class of strategies
derived. Based on this result, we now consider the modulo-
additive state-dependent MAC with asymmetric noisy CSIT 7o = {7} t7(s*) =t"(s) +7, 7=1,---,q (67)
and show that for the sum-rate capacity, the optimal set7;” := {t’}; 2(s®) =t**(s®) —7, 7=1,--- ,q. (68)
of strategies has uniform distribution. This enables us to
determine the entire capacity region by observing that undﬂOteb thath(Y|T“ =11 = tb*é S) s HY|T* =
the uniform distribution both inner and outer bounds arttig {77~ = L‘g,S;) since H(Y|T* = %, T° = t°,5) = H(Z +

To be more explicit, we consider a two-user state-dependéntS”) +¢"(57)15). Noge thatH (Y[5) < log|Y| = logg, but
MAC in which the channel noise, defined by a procedsWe choosel™ andT™ uniformly distributed within7," and
{Z\e,, is correlated with the state process. The channdl : 'eSPectively (with zero mass on strategies nofjnand
is given byY = X°@® X* @ Z whereX, = X, = ) = 7,"), we would get
Z =1{0,---,¢—1} and Z, is conditionally independent of

P,
(X, X?) given the stateS and in the sequel addition (and vis(vls)

subtraction) is understood to be performed ngodAssume @ Z Z Z Py‘Tb_’Tb75a75b75(y|ta,tb,Sa,Sb,S)
further that we have the setup of Section II-A. The following 50,50 tAETH theTy
theorem is the main result of this example and can be though 1 o b
as an extension of [5, Theorem 1] to a noisy multi-user sgttin q_QPS%S”IS(S 5 ls)
Theorem 3.1:The capacity region of the modulo-additive |
state-dependent MAC defined above is given by the closure = Z Pga sv15(5 5 |3)q_2
of the rate pair§R,, Rp) satisfying 58"

SN Psly —t9(s") — 4(s")s)

Ry <logq — Huin taeT therr
a b

Rb < 1qu - Hmin

(i) a bigy L
Ry + Ry < 10gq — Hnin 63) = ) Poesris(s®s I5) 2 .1
sa,sb tacTx
where Hyip 1= minga o H(Z 4 t4(S*) + t°(5)|9). (i) 1 (69)
Proof: First, recall the rate condition given in Theorem g

2.2; - . I
where (i) valid since7® and T° are uniformly distributed,

R,+ R, < H(Y|S)—H(Y|T*T"S). (64) (ii) is due to (68) (i.e., follows from the fact that € 7,*
traces all possible values &f) and finally, (ii7) is valid since

The proof composed of two steps; we first determine t §| = ¢. Therefore, we get thal>. — log ¢ — Hin Which
optimal distributions oft*, t*, the distributions achieving the i achieved by s

sum-rate capacity, and then we show these distributiorld yie

the same inner bound. Let us first considéfy |7, 7°, S). e (t%) = l7 Vit e T, me () = 1’ vi* e 7. (70)
Clearly, PYLXa,Xb7S(y|$a,xb, s) = Pz s(y — 2* — 2*|s) and q ¢

HY|T*T"S) > mina e HY|T* = t*,T° = t",S). Let us now consider the inner bound. In particular, we need
Observe that to show that the sets of policies in (70) gii&(Y |7, S) =
H(Y|T?,S) = log q. ConsiderH (Y |T¢,S) and observe that

PY|T“,Tb,S(y|ta1 tb, S)
= Z PY‘T“,Tb,S“,Sb,S(y“av tbv Sa7 Sba S)P5a75b|5(8a7 Sb|8) PY|TQ"S(y|ta’ S)

8,8 (iv) @ @
! b b b — Z Z PY\Tb,Tb,Sa,Sb,S(yH ,tb,S ,Sb,S)
=D Prs(Z =y —1%(s") = 1(s")]5) Pou 015 (5", 5°]5) et
s%,sb 1
' ~ P @ b
:PZ+ta(Sa)+tb(Sb)‘S(y|S). (65) q S ,Sb\S(S S |S)
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1

= Z Pyga so15(5% 8|s) = H(S|S", X Xb) = H(S|S"), where the last equality fol-
5o sb q lows from (73). Hence, input distributions do not effect
S Pusly — 14(s%) — ()]5) H(Y|S", X XY). Clearly, H(Y|S") <1, H(Y|S", X%) < 1
—~. 1S andH (Y|S", X*) < 1 and we now show that equalities can be
Ty achieved. More explicitly, we have the following optimigin
© Z Pga go15(s°%, Sb|s)% distributions which can be obtained using basic ineqesliti
58" argmax H(Y|S")
_1 (71)  mxese @) s an (@£ (57))
¢ = {7xa150(0]f*(0)) = 7xaysa (0] f*(1)) = 0.5,
where (iv) is valid sinceT” is uniformly distributed andv) x50 (01F2(0)) = mx0) 5 (0 f2(1)) = 0.5} ,(74)

is due to (68) (i.e., follows from the fact thét € 7,* traces
all possible values o). Thus, H(Y|T%,S) = loggq. It can
be shown similarly that under (7QY (Y|T%,S) =logq. ®

argmax H(Y|S",X?)

mxajga(@®|f(s7))m xb gb (@0 F0(sT))

Finally, it is easy to see that when there is no side informa- — {mxe1se (O1f*(0)) = mxejse (O1f*(1)) = 0,
tion at the encoders and at the decoder the capacity region of x50 (0] f°(0)) = mxey0 (0] f°(1)) = 0.5} ,(75)
modulo—additive state-dependent MAC is given by the clesur argmax H(Y|S", XY
of rate pairs(R,, R,) where mxajsa (@] (7)), xb gb (2] £0(s7))
R, <logq— H(Z) = {mx0150 (0[°(0)) = mx0150 (0] f*(1)) = 0,
Ry <logq—H(Z) mxalsa(0[f°(0)) = mxvy50 (0] f*(1)) = 0.5} (76)
Ry + Ry <logq — H(2). (72) and in the rest, let us show that these yield the equalitiéissin
Observe that we have conditional entropies. Let us start wif®,, i.e., H(Y|S™, X?).
( (5%) 4 £2(57)]9) Note that
H(Z +t%(S%) + ¢
T by __ r bbby 1
< H(Z|S)+H(ta(5a)+tb(5b)|5) H(Y|S X ) - Z Z PS"(S )7TX1’|S”(*T |f (S ))
s7€{0,1} zbe{0,1}
and xH(Y|S"=s", X" =ab).  (77)
: a/Qa brgb
Hunin = gl}tE}H(Z +4(5%) +17(S7)[9) Substituting (76) in (77) gives
< min [H(Z|S) + H(t"(S*) +t*(S")|S)] H(Y|S", X% = Ps- (0)H(X*® S|X*=1,8" = 0)
(i) . +Psr()H(X* @ S|X" = 1,587 =1). (78)
Y [(z|8)
(vid) We next show that under (78] (X*® S|X*=1,5" =0) =
< H(Z) 1, for which it is enough to show thatx.g,g|x+ s (0|1, 0) =

where (vi) can be achieved with any deterministic mappin8'5' We have

and (vi7) is valid sinceZ and.S (and hence5) are correlated. Pxags|xvs(0[1,0)

Therefore, availability of state information strictly i@ses, ' "

by an amount of at least(S; Z), the capacity region of the - Z Z Pxegs|s xe,xv s (0]s, 2%, 1,0)
modulo-additive state-dependent MAC. s€{0,1} z2€{0,1}

Pssr(5]0)7xa)sa (2] £(0)) (79)
B. Binary Multiplier State-dependent MAC with Interferenc = Pg15r(0]1) [0.5Px0gs|s,x2,xv,57(00,0,1,0)+
Consider the binary multiplier MAC with state process inter 0.5Pxags)s,xe,xv,57(0[0,1,1,0)]
fering the output, namely = X*X®® S whereX, = X, = +Pg)5-(1]1) [0,5PXG@S|S,XG,XZ77ST(O|1, 0,1,0)

Y = S8 = {0,1}. Assume further that the communication
setup is given as in Section II-B witf” = S @ Z" where
Z" ~ Ber(p,.) is Bernoulli with P(Z" = 1) = p,.. Clearly, in
this setup we have where (79) is due to (73) and (32). We can similarly show
that Px.gs)xv,s-(01,1) = 0.5 and henceH (X* & S| X" =
i - . 1,8 = 1) = 1. Therefore,H(Y|S", X®) = 1. Since the

= Pspisy(stlst) Pspisy (si1st) Ps..sp (st 1) (73) apove derivation is symmetric, under (7B)Y|X,S") = 1.
We now show that the capacity region, with both causal andlt now remains to show that with (74} (Y|S") is equal
non-causal coding, of this channel is given by the closure & one. It should be observed that
(Rq, Ry) whereR, < 1— H(S|S"), Ry <1— H(S|S") and T
Ro+ Ry <1 — H(S|S™). PX“XZ’@_S‘ST( 1)

First recall the capacity region given in Theorem 2.3 and ob- @ Z Pxoxvgs|xe,xv,s(-|2%, 2’ s)

serve that (Y |S™, X2, X°) = H(X*X"® S|S", X, X?) = 2ozt 50,1}

+0.5Pyags|s,xe,xb,s(0[1,1,1,0)]
= 0.5,

a b 7T
Psg,sg,s;,st (s¢,5¢,8%,5¢)
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Txaige (] f4(s7))mxo 50 (2| (7)) Psjsr(s|s”)  Observe thatpuyp : pug) € SP~1, where(v : w) denotes the
() o b concatenation of two vectors andw, and
= 0.25 Z Pxaoxvgsxe, xv,s([z% 27, s)

o®,2{0,1} Z Qups = Z Z [lt 1] t+1n (Mp”uf) L

> Psjsr(sls”) (upse) stz o
se{0,1} Lemma A.l:Assume that a rate paR = (R,, Ry), with
=05 block lengthn > 1 and a constant € (0,1/2), is achievable.

Let ©% (up, pue) = I(X Y| XD, St Sh1) = B Sfy1 e =

where(4) is due to (73) and (32)y4) is due to (74) and the , [t
Sl (Npa,uf) = I(Xt7Yt|Xt aStvs[t 1] = MpaS[

last step is valid since for gives, there are only two pairs fig)s

t+1,n]
of (2, z%) for which Py xoas|xe xv.s(-[2% 2, s) = 1 (and pr) and ©F(up,pe) = I(Xg, XEY[S7, S,y =
zero for the other twos). Henc&[ (Y'|S") = 1. Ips S{ii1,0 = k). Then,
Finally, it can be easily shown that the capacity region of
Y = X°X" @ S without CSIT and CSIR is given by the Ri < > au, 07 (pp,pie) +1e)  (81)
closure of(R,, Ry) whereR, < 1— H(S), Ry < 1 — H(S) (p:ipe)
andR,+ Ry < 1— H(S). Therefore, availability of noisy CSI R, < Z O Y, pg) + n(e) (82)

at the encoders (both causal and non-causal) and at theatecod

(kpipig)
increases the capacity region by an amounf @f; S™).
: 57) Ro+Ry < Y u, 00" (up, pe) +n(e)  (83)
IV. CONCLUSION AND REMARKS (mp:pe)

We have considered several scenarios for the memoryless Proof: Let us first consider the sum-rate. With standard
state-dependent MAC with an i.i.d. state process, asynitnetsteps, we get
noisy CSI at the encoders and complete and noisy CSI at the 1 1

receiver. When the encoders have access to causal noisy CSI, fla + % = 7—— (I(W? Yin) Stnp) + H(E)) . (84)

single-letter inner and outer bounds, which are tight fa ﬂ}\lote that sinces?. . is independent oW I(W Y;,, S7.,) =
sum-rate capacity, are obtained. In order to reduce theespfjl Yi,1S7) and (]
of optimization, from Shannon strategies to channel inpués [n]
consider the case where CSITs are asymmetric determlnlstlo‘,’(W Yin][Sh)
functions of noisy CSIR. The causal setup of this problem
is considered in [13] and a single-letter characterizafimm =
capacity region is provided. Hence, we also considered the t
non-causal setup and showed that the causal and non-causal (:)
capacity regions are identical. <
When the decoder does not have access to the current CSI ¢
at the encoder, which matches with the delayed scenario, we (%)
observe that a single-letter characterization of the dapac N
region can be obtained. We further discuss a degraded neessag
set scenario and show that when the common message encodef™”
does not have access to the current noisy CSlI, due to delay, it t=
is possible to obtain a single-letter expression for theacayp n
region. Since a product form is not required in this case, we = I(X4; Yi|ST) (85)
observed that as long as the common message encoder does t=1
not have access to CSlI, then in any noisy setup (the casesvbere () holds condltlonlng does not increase entrofy,
no CSIR or noisy CSIR) it is possible to obtain the capacityolds sinceX; = ¢t (Wz,fZ(ST 1), @ = {a,b}, and (iii) is

|M:

H(YiISh), Y1) = HOGIW, STy, Y )|

Il
-

'MI:

H(Y;|S5) — HOYW, SFy, Y1)

Il
-

|M|:

H(Yi|STy) = HYGW, 87y, Ve, X))

~

3l

—

H(YiIST,y) = HYiISE, Xo)|
1

region. due to (3). Comb|n|ng (84) and (85) similar to (17), gives
Finally, the following problems are worth exploring in the ]

future: the complete characterization of the capacity aegi R, + Ry, <= ZI(XS,XS;YtIS[Z]) +n(e) (86)

for the problem defined in Section II-A and its non-causal i3

extension, the state-dependent MAC with degraded messag@thermore,
set where either both encoders observe causal noisy CSI or .
the informed encoder observes noisy CSI non-causally whild (X7 XY Yi|Shy) =n x

the other encoder observes noisy CSI with delay. Z ap L(XE, X2 Y48, hoa) = tps Sl 1 = 16)(87)
Hp, kg
APPENDIXA and substituting the above into (86) yields (83).
CONVERSEPROOF OFTHEOREM 2.3: NON-CAUSAL CASE Let us now consider encoder Using Fano’s inequality and
Let standard steps we first get,
1 11
S R T ) (80) Ry < -~ (I(Wai Y, Sp) + HE) . (88)



Furthermore,

I(Wa3 Yiug, Shy)

(i)
<1

—~

Wa; Yv[n]"s’[?;z]a Wb)

H(}/t|S[Tn]a}/[t—l]7Wb) -

.M.:

H(Yi[Shy, Vi1, W)
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Proof: First observe that due to (3) we have

PX XY, ST |S S ( a7xb7y78T|ﬂp7Mf)

[t+1,n]
= PYt\ST Xg, Xb(y|5 750’175017)

iZ?a7.CCb,ST|/,Lp,IUf). (93)

St

Pya rlqr
X2 XESTIST, 1St i1

Let us now consider the second term in (93). We have

t=1
(44) nor a b r
< S [HMIS W) - H(Y|S],, Yiee 1],W)} Py xpspisy, 8000 (@20 8" 1, 1)
t=1 a r
(#i4) ST Z PWXa XESTISE _aps [r+1,n](w’x ,xb,s |/Lp,,LLf)
=D [HMUSE, Wi X)) et

~
Il
-

_H(}/Vr‘,'S[?;l]a}/[tfl]aWa X[n]):|

M:

~
Il
-

NIE

[H(YtIS[Z],Xf) — H(Y,|Spy, XP X0

~~
Il
-

I(X?;YthfaS[Z]) (89)

HM:

where(z) is due to (2) and conditioning does not increase en-
tropy, (¢¢) holds since conditioning does not increase entropy,

(ii1) holds sinceX{ = ¢\(W;, f1(S,))), i = {a,b}, (i) is

valid since conditioning does not mcrease entropy andl§inal

(v) is valid due to (3) and}, i = {a, b}, being a function of
S’I‘

Now combining (88)-(89) and following steps akin to (86)

and (87), we can verify (81). To verify (82) for encodeit
is enough to switch the roles of encodeand (b).

Note that for any for any > 1, I(Xf;YAXf,S{,STt 1

/LpaS[t+1 n] — pe),s I(Xt,Yt|Xa,Sf,S[271] = vaS[t+17n =
ug) and I(Xf,Xf,Yt|ST Sty = MP,S[Tth] = pg) are
functions of an XPY,, 87187 1S, ((Et,(Et,yt,Stlﬂp,Mf)

—1]°[t+1,n

Hence, we need to show that this distribution factorizes
in (36). Let

T (%

Hp, 1t

@ fo(sT)

{wa = &) (was f*(ip, pie), F2(57)) = 2%},
T L. (2 f(s7)
{w : 6 (wy

¥ (ppy e), f(s7)) = 2} (90)

and
a a T 1
AT G COIES > T
wa €YY Mf(ma,fa s7))
, 1
e (21N) = Rz (91)
wpETY, “f(zb
Lemma A.2:For everyl <t < n and (up : uf) e Sht,
the following holds
a b T
an XPYe,STIST, s 5[t+1,n](x ;25 Y, 8" [pp, if)
= PST‘( )PY'ST Xa Xb( |ST (Ea,(Eb)
T e (@ F(STNTE (210(s7). (92)

Z Z l{ml:¢(l)(wlvfl(sTnu'Pnu'f))v l:a,b}

Wq €Wa wp €Wy

r
PWQ,Wb,S |S S[r+l n]( a,Wh, S |/,Lp,’llf)

(i)
- Z Z l{ml:¢(l)(wlvfl(srﬂu‘pnuf))# l:a,b}

Waq EWq wp EWY
1 1

————Pgr(s"
Wl e 1)

i 1
= Ps;(s") D ] e =60 (w5257 o) }
Wq €EWa

1
Z |W_b| 1{mb:¢(b) (wb)lfb(s7~)up7uf))}

wy €W
(i) 1 1
B | a| Z . |Wb| Z .
wa €T, (@e [ (s7) wy €T, (. fo(s7)
(iv) > a|fa/.,r Lp s b T
2 Pop (s)mh b, (0| (7)) mn e (2 f(s7)) (94)

where (i) follows since X} = @ (W;, f'(S7,)), i = {a, b},

(1) is valid sincelV, and W, are independent of; , and
state process being i.i.d. ar(@) follows due to (90) and
(iv) follows due to (91). Substituting (94) in (93) completes
the proof. ]

We can now complete the proof of Theorem 2.3. With
asmma A.1, it is shown that any achievable rate pair can
be approximated by the convex combinations of rate condi-
tions given in (33)-(35) which are indexed Ky, ) and
satisfy (36) for joint state-input-output distributiondence,
since lim._,o n(e) = 0, any achievable rate pair belongs to

(U REs()

APPENDIXB
CONVERSEPROOF OFTHEOREM 2.4

Recall thato,, is defined in (80).

Lemma B.1:Assume that a rate paR = (R,, Rp), with
block lengthn > 1 and a constant € (0,1/2), is achievable.
Then,

Ra< Y o l(X{3Yi|XP,Sp, Siemyy = ) +1(e)  (95)
pnes)

Rb < Z O‘;,LI(X£)7 YVt|X£lu St7 S[tfl] = ,u') + 77(5) (96)
,LLES(")

Ro+ Ry < > apl(X{, X7 YilSh, Sy = 1) + n(e).
nesm)



(97)

Proof:
Let us now consider encoder We have

Rq

IN

1

21 A
~ log([Wa)
1 1
l—en

( (Waa }/[n]a S[n]) + H(E)) : (98)

Furthermore,

I(Wa; Yin), Sinp)
©)
<

I(Wa; Yins Sin) W, SPp)

= Z {H Y;:,St|5[t—1]a

=1

Yv[tfl]u Wbu Sf)n])

o+

~H (Y, SilSu1, Yo, W, Sh)]

NE

|:H(}/:fa St"s’[tfl]ayv[tfl]a Wba Sf)n]aX[bn])

~
Il
-

—H (Y4, Sl Se—1, Yie—11, W, Sf’anﬁl])}

M=

[H(Yt73t|5[t—1]axf)

&
Il
A

_H(}/ta St|S[t—l]7}/[t—l]7W7 Sf)n]vX[l;l]vX[(:l])]

g
R

[H(Yt73t|5[t—1],Xf)

&
Il
A

—H(Y:, St|5[t—1]aXfa Xf)]

I(X{: Vil XY, Spy) (99)

[
NE

t

1
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APPENDIXC
ACHIEVABILITY AND CONVERSEPROOFS OFTHEOREM2.5

Achievability Proof: Fix (R,, Ry) € Rc (7).

Codebook Generation Fix mx.(z*) and mps|xa (t°|2?).
For eachw, € {1,---,2"f}, randomly generater, , ,
each according td];", mx« (¢, ). Reveal this codebook
to encodery and, for eachw, € {1,---,2"F«} andw, €
{1,--- 2"}, encodemn randomly generate ., each
according to[ [}, e xa (tg, wb|:v .). These codeword pairs
form the codebook, which is revealed to the decoder.

Encoding The encoding functions are defined as follows:

o¢(wa) = ¢ (wa,s;_y,)) and g (ws) = ¢ (wy, wa, sf;) =
tﬁ’wb)w (s%) where:v and tfw ., denote theith compo-
nent of:z:[ e andtbn] wp,wa respectlvely Therefore, to send

the messages, and Wy, transmit the corresponquln]
andtl[’n] we.w, TESPECHVEY.

Decodmg ‘After recelvmg(y[n], ) the decoder looks for
the enly (wa,wb). pair such that( af, @a,tfnj_’wb, y_[n],s[n]_)
are jointly e—typical and declares this pair as its estimate
(wa,wb)

Error Analysis Let E, z= {
A?} ae{l,--
that (wq, wy) =

T5)..00 Yin)s Sin)) €
.-, 2"B» 1 and assume

[n] a’
-, 2nfaY andg e {1, -
(1,1) was sent. Then

PP =PE, U FBap)
(@,8)7(1,1)
< P(ES)+ Y, PEBap)+ Y. P(Eap)
a=1,8#1 a#l,8=1
+ > (102)
a#1,8#1

Since{Y;, S;, X, TP }32, is iid., P(Ef ;) — 0 for n — oo.

1 2

where (i) is due to (2) and conditioning does not increasgext, let us ConS|der the second term

entropy, (i4) is valid sinceXx? = " (Wb, Sp (iii) is

i

valid since conditioning does not increase entropy andl§inal
(iv) is valid by (3). Following similar steps such as (17)
and (18) verifies (95). Finally, (96) and (97) can be verified =

similarly. [ ]
Lemma B.2:For everyl < ¢t < n andpu € S'~1, the
following holds

PX Xt;Yt;St‘S[t 1] (‘T z 7y78|,u/)

= Ps(s )PY|S,XG,Xb(y|va ,xb)WSQa(x“)ﬂé‘(b (a:b).(100)
Let
T, (@) o= {wi : ¢ (wi, sly_gy = ) =a'}, i =a,b (101)
and
. 1
Hi 7 .
mhli(xt) = Z |W K

w; €T7

7T

i E:W

Si_ a5ty (HilR), T = ab.

We can now venfy (100) by following the same steps in

Lemma 2.2.
Lemmas B.1 and B.2 complete the proof of converse.

Y. P(Bazip1)

a=1,8#1
Z P((X[(:z],luT[l;z],Buyv[n]uS[n]) EA?)
a=1,8#1
(_i) b a
= > Pre ixa, (G l2()
a=1,5#1 ( [n];U[n];S[n])EA?

PX Y[n] S[n) ('rl[ln] Yin)» S[n])

< Z |An|2 n[H(T®|X*)— e]2fn[H(Xa,Y,S)fe]
a=1,8#1
< 2an27n[H(Tb|Xa)+H(Xa,Y,S)f

H(X®T*Y,S)—3¢€

(i9) on[Ry—I(T";Y|$,X")~3¢] (103)
where(i) holds smcel”[b] is independent ofY7,,;, Sj,;)) given
X{,;1 and(ii) follows since

H(T"|X®) + H(X",Y,S) — H(X*,T",Y,S)
= H(T'|X") + H(X",Y,5)
—~H(Y|X*, T S)— H(X*T"S)
= H(XY,S)—- H(Y|X%1T"S) - H(X%S)

I(TbY|S, X%



where the second equality follows sin@# and S are inde-
pendent givenX ¢. Next,

Y. PEazisn)
at1,B41
Z P((X[u;z],aaT[Z;L],BaYv[n]a S[n]) € A?)

a#1,8#£1
> >

a#l,f7#1 (zf, 7tl[’n] 1Y[n]>S[n]) EAD

(iti)

Pro xa (t0,20,)

[n]"**[n]
P}/[n] S[n] (y[n] ) S[n])
Z |A?|2—”[H(Tb7Xa)—€]2—n[H(Y,S)—e]

a#1,B#1
on(Ra+Ry)g—n[H(T® X*)+H(Y,S)~H(X*,T"Y,5)~3¢|

IN

(iv) on[Ra+Ry—1(X*,T"Y|S)—3¢] (104)

where (zi7) holds since fora, 5 # 1, (T[‘;lm,X[‘;]_’a) is
independent ofY},,;, S},)) and (iv) follows since
H(T*, X*)+ H(Y,S) — H(X*,T"Y,S)
H(T*, X*) + H(Y,S)
~H(Y|X* S, T’ — H(X®,S,T"
H(T*, X*)+ H(Y,S) - H(Y|X%S,T"
—H(X*,T% — H(S)
I(X*,T%Y|S),

and the rate conditions of thRc(7) imply that each term
tends in (102) tends to zero as— oo. Finally, observe that
the analysis for the error evept ., ;_, P(Ea ) is identical
to the case ofzq#ﬁ#P(Ea,B) which induces the same
sum-rate constraint. ]
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NIE

[H(}/:‘,|S[t]) - H(}/t|wv S[t]a}/[t—l]vathb)]

~~
Il

1

M=

[H (Y| Sy) — H(Y;|S, X2, TP)]

~
Il

1

M=

I(X}, TY3 Yl Spa), (108)

t

1

where (i) can be shown in a similar way as (16), we have,
1 n
R+ Ry < =~ I(X[ T3 |Sp) +n(e) - (109)
t=1

and
I(X{, T} Ya|Sy) =

no > ad(X{ TS Sy = p). (110)
peESt—1

Substituting the above into (109) yields (107).
Let us now consider encodér With Fano’s inequality and
standard steps, we get

1 1
Ry < 1—<en (I(Wb;}/[n]as[n])—"_H(e)) . (111)
Following similar reasonings as in (99) we get,

I(Wy; Y, Spap)
S I(Wb7 Yv[n]as[n]lwaa Sﬁl])

Z |:H(}/15|S[t]a}/[t—l]a Waa SF’;I])
t=1

—H(Y|Sp, Yie—1), Wa, Wh, Sfﬁl])}

Note that the main motivation in indexing mutual informa-
tion terms by the past CSI, is to get a product form on the team
policies. In the degraded message set setup, we do noteequir
product form and therefore, the convex combination argumen
is not essential. However, we herein keep this indexing (see
(46)) to avoid the use of a time sharing auxiliary random
variable.

Converse Proof:Since X} = §b> (Wa, W, Sf;fl], Sf)
we have

T = 6" (Was W, Sh_y) € 1/ (105)

Lemma C.1:Let T} € T, be the Shannon strategy induced
by ¢>§”> as shown in (105). Assume that a rate p&ir=

IN

NE

(YIS0, Ve, Wa, St Xiy)

~~
Il
-

—H (1|51, Yie—1), Wa, Wo, S&],X&])}

NE

[H(}/:‘.|S[t]7Xg)

~~
Il
-

_H(nls[t]ayv[tfl]a Wa7 Wba Sﬁl]aX[(Zsztb)jl

WE

[H(Y:| Sy, X)) — H(Y:| Sy, X7, T7)]

t=1

(R4, Ry), with block lengthn > 1 and a constant € (0,1/2), = > (T YXE, Spy) (112)
is achievable. Then, t=1
Ry, < Z Oz,J(Ttb;YtIXf,St,S[tfu = 1) +1(e) where(i) is valid since
pest (106) Py, 18, wosp, X 10 GelSie) Y1), W S Ty, 1)
b .a ;b

Ro+ Ry <Y aul(XETHYilS: Sy = 1) +11(e) = 2 Prsispxerpilse si 2, t)

pes) sbeS,

(107) PSHS[t],Y[t,l],W,Sa JXe. Tb (Sgls[t]7y[t71],W, Sl[ln]ax([ln]at?)

whereca,, andn(e) are defined in (9).
Proof: Let us first consider the sum-rate condition. Since,

[n]

(e

= Z Py, s, 50 xe 1 (Uelst, 80,28 17) Papys, (st |st)

S?ESb

b
= Pys,xa,10 (Yt|st, ¢, 1)

(113)
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where the first equality is due to (3) and the second equaland ij’l' Aijm = 1, Vj,k,l. Let A denote a|X,|[U||S|-

is due to (1) and (2). Following (16), we can directly verifypy-|X;| binary stochastic matrix, that is a matrix with each
(106). B row has exactly one non-zero element, whichlisObserve
We now need to show that the joint conditional distributionow that any row stochastic matrix can be written as a
PX?,Ttb,Yt,St‘S[H] (z2,t°,y, s|u) factorizes as in (46). Let first convex combination of binary.§tochastic matrices (e.ge, se
Wf;(a’Tb (2%, 1) := ng,Ttbls[H] (z*,t°|n) and observe that [39, Lemma 5] and [40, Proposition IV.1]). Therefore, we dav
k

k
A=>"NAD Y N =1,
=1

=1

b
Pxa v v, 5,5, (x,t°,y, s|p)
= Z Py, xa xp.s, (ylz®,1°(s), s)
stesy
Psf\st(sﬂst)PSt (s)Pxa rp|s,_,, (%, )

Let, for the joint distributionPys y« b x% u,s),
= Wétga Tb(ffaatb)PSt(S)meg,:rf,st(mffaatb,S) (114) : o xe s (@ 2%, 8)

where the equalities are verified by (3), by (1) and by the fact _ }_%b < I YLX Jas (120)
that (X¢,T?) is independent of;. [ Ro+ Ry < I(UX%Y)j. (121)

We can now complete the converse proof of Theorem 23ence, (R,, Ry) € Cas. Now, observe that for a fixed
With Lemma C.1 it is shown that any achievable rate pafistribution Py« ;(2%, u), bothI(U, X% Y) and I(U; Y |X%)
can be approximated by the convex combinations of rafge convex in Pyx. y(ylz®,u) and hence, convex in
conditions which are indexed by € S™ and satisfy (46) Pysixev,5(J2% u, s). This and (119) imply that

(119)

where A is a binary stochastic matrix and by [39, Lemma
5], k < (| XalU]|S])>.

for joint state-input-output distributions. Hence, anhiawable
pair (R, Ry) € @o(U, Re(#7)).

APPENDIXD
PROOF OFC%y = Cas
Let us first show tha€%y C Cas. Recall thatT' € |T| =
1A |ISI and|U| < |X,||A||S|+1. Hence, we have eithélil| >
|7 or else. In the case whel#| < |T|, we note thail{| is

limited to a finite set without loss of generality. Hence, vea ¢
always takdi/| at least| 7| such that it satisfies (56), (57) and

(58). Then we can directly conclude thaf C Cas since
PXb‘S7T(Ib|S,t) = beIS,T(ZCb|S,t,Ia) = 1{wb:t(s)} and this
is a special case QPxu|y, xa s(2°|u, 27, s).

In order to prove the other direction, i.€4s C C%, let
Ch4 be the closure of all rate pai(gz,, Ry) satisfying

R, < IU;Y|X%
Ry+R, < IUX%Y)

(115)
(116)

for some joint measure of x X, x X, x Y x U having the
form

PY|Xa,Xb,S(y|Iaa Iba S)1{mb:m(s,ma,u)}PS(S)PX‘l,U('raa U),
(117)

for somem : U x X, xS — X, where|ll| < |S|| X, || x| +1,
and we first show tha€4g5 = CES, and following this, we
show thatCf¢ C C§s.

Lemma D.1:Cas = CHy.

Proof: It is obvious thaCffS C Cas and hence, we need

to show thatCas C C4g. Let Pxs xa (a2, 2%, u,s) be a
joint distribution in the form of (58), i.e.,

PXb,Xa,U,S(Iba % u, S) = pr|Xa,U,S(517b|Ia7U, 5)

X Ps(s)Pxa v (z®,u). (118)
Let A denote a|X,|[U||S|-by-| ;| matrix whereA; ;. =
Pxoixeus(ilg k,0), 1 < i < [, 1T < j < |&
1 <k< U andl <1< |S|. Hence,A is a|X,[[U||S]|-
by-|X,| row stochastic matrix, i.e.A; x> 0, Vi, j, k.l

k
S NI(U;Y[X ) 0,

i=1

I(U;Y|X%) 5

IN

(122)

k
IU,X%Y)s < Y NI(UX%Y )0, (123)
=1
wherel (U;Y|X )¢ andI(U, X% Y )« denote the mutual
information terms induced b\ ().
Now, let (R%, R;), 1 < i < k, be such that

R, <I(U;Y|X") 00,
L+ R <I(U X% Y) a0,

and hence(R:,R}) € C%s, 1 < i < k. Let (R],R]) =

SF  Ai(RL,R!). Since a convex combination of achievable

rates is also achievable, S®/, R/) € C%g. This obser-

vation and inequalities (120)-(123) complete the claimt tha

(Ra, Rb) S CES |

Up to now, we have shown th&fiq C Cas andChg = Cas.

In order to prove that%g = Cag, it remains to show that

chy C Y. Note thatChy still depends onPx. (2, u) in

which || can be larger thafi7|. Hence, in the next lemma

we basically show that for everfx. (2%, u), there exists

a e y(t*,u) which induces the same rate constraints as

induced byPxa (2%, u).
Lemma D.2:CH¢ C C§s.

Proof: Fix a distributionP;

Y_’Xayxb_’U_’S(y,:ca,:cb,u,s) sat-
isfying (117), i.e.,

P;.,Xa,xb,U,s(yfoavfbv“a s) = P;\Xa,Xb,S(kaaaﬁfba s)
1{zb:m(s,ma,u)}Ps(S)P;(G,U(Iaa U) (124)
Observe that for everyn satisfyingz® = m(u, z%,s), one
can define

b

2’ =m(u,z% s) = m(z* u)(s), m(z* u) €T, (125)

where7 is the set of all mappings fror§ to &3. Now, let

(I(U; YIXDp: oy LU X% Y)p;yxmy,ma,u))
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P)?U.,Xa (yv u, xa)

be the mutual information pair induced BY: . ;(y, 2%, u). log
We have Py xa (ylz*) Py xa (u, )
©) «
T XY )py oy ) = 220 D Brewratu)
teT ueU yey z2€X,
=YY Y Aol . y
uwEU yeY ze€X, 1 voxeryt )

og " "
PYuxe(y,u,z) Py o Wla®) Py xa p(u, 2%, 1)

By (y) Py o (u, %) (9 ZZZ Z Py xo yr(y, 2% u,t)
= ZZZ Z Py xa yr(y, %, u,t) teT ueld yEY z°€X,

teT ueU yeY z2€X, P;;\T_,Xa (y|ta Ia)Pé,T,Xa (Uv t, Ia)

log

* a 1Og * *
log PY,U,Xa (y,u, x%) Py\xa (y|xa)PU7T7Xa (u,t, x)
PG .00 =D 5)3) D PR HEE)
(1) * a u €N,
2 VS S Rt TS
teT uel yeY ze€X, log y,T|xa\Y
log Py y xe r(y,u, 2%, t) Py xe (ylz®) Py (H2)
PP e (0 S 3) DD PPN
(i) * a T TIEX,
IEES Y Aurlnatu T Rt
teT uEl yeY zoc X, 10g Y, T|Xa Y,
log P;?|Xa,:r(y|$av ) Ph 1 xa(u,t, 2%) P;‘Xa(ykv“)P;IXa(ﬂx“)
Py (y) P xa (0, t, 27) = I(T5YIXY)p; 0 vty (128)
= Z Z Z Z Py xour(y, 2% u,t) where (v) and (vi) follow from the same reasonings ¢f)
tGTuEMyEJ/xan: ) and (ii), respectively. LetR, < IU;Y[IX) Py o (g )
log Yxer(y: 2% 1) and R, + R, < I({U,X%Y)p; . (e Which imply
Py (y) P p (27, 1) (R, R,) € C4. Observe now that for a distribution in the
= ZZ Z P} xap(y, 2%, t) form of Py x. 1(y,2%t), one can definetx. r(z%,t) =
T yeY 2oeXs Pr o (a8 P%. p(z%,t). Therefore, sinc€%y = E(Uﬁ- R'C(fr)>, and
v, Xe,7\Y, T, 7 ;o ,
log P (y)Pen (2, 1) dluc_e to (126) and (128)R,, R,) € C%4, which completes the
u ' claim.
= I(TvX ;Y)P;,YXQYT(y,;Ea,t)a (126) m

where (4) is valid sincem(z%,u) € T, i.e., for each(z®, u)
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