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Abstract—We consider a class of distributed algorithms for
computing arithmetic averages (average consensus) over net-
works of agents connected through digital noisy broadcast
channels. Our algorithms combine error-correcting codes with
the classical linear consensus iterative algorithm, and do not
require the agents to have knowledge of the global network
structure. We improve the performance by introducing in the
state-upadate a compensation for the quantization error, avoiding
its accumulation. We prove almost sure convergence to state
agreement, and we discuss the speed of convergence and the
distance between the asymptotic value and the average of the
initial values.

I. INTRODUCTION

The problem of distributed computation of averages has
been attracting much interest in the last decades. Indeed, this
problem is widely regarded as a significant case study, in
order to understand the role of communication constraints in
more general problems of distributed computation, in which
a network of communicating processors/agents is asked to
collectively approximate a certain function of their initial
states. In the present paper, we shall consider the adaptation
of the well-known linear averaging algorithms to a network of
digital noisy links.

Related works

The implementation of the classical linear averaging al-
gorithms relies on the ability to communicate real numbers
between agents in an instantaneous and reliable way. As this
assumption is clearly not met by digital communication, the
community has been studying how to adapt such algorithms
to realistic digital networks. A few papers have considered
the issue of quantization, i.e., limited precision in commu-
nications, and provided results on the precision which can
be achieved in approximating the average when using static
uniform quantizers [9], [1], or designed effective quantization
schemes to achieve arbitrary precision (based on adaptive
[14] or logarithmic [3] quantizers). On the other hand, in
the literature we find mainly two approaches to the issue
of noisy communication. First, researchers have considered
the possibility of packet drops or link failures, providing
robustness results; e.g. [13], [8]. Second, noisy communication
has been modeled as the superposition of an additive noise
to the communicated value. This dynamics, first studied in
[19], clearly implies the accumulation of errors, which forbids
to approximate the average with arbitrary precision. For this
reason, several papers have proposed strategies to overcome

this drawback. The proposed solutions usually require the dy-
namics to be dynamically adjusted, by decreasing the so-called
“consensus gains” [7], [10], [11], [12], [15], [17], [18]. This
choice leads to a dynamics which can be studied by stochastic
approximation techniques [2]. However, the communication
complexity of such algorithms is polynomial in the desired
precision.

Starting from this background literature, in [4] we have stud-
ied the problem of computing averages by a network connected
by noisy digital channels, and we have proposed an algorithm
whose communication complexity is only polylogarithmic in
the desired precision. In the proposed algorithm, the agents’
states are communicated using a joint source and channel
coding [5] during communication phases of increasing length.
The latter feature allows the scheme, thus named “Increasing
Precision Algorithm”, to avoid the accumulation of errors.

Contribution

In this note we consider the problem of averaging on
a network of noisy digital communication channels, under
the mathematical formalization of [4]. While the algorithm
in the latter paper is based on joint channel and source
coding, in the present work we decompose quantization and
communication errors, in such a way to exploit the inherent
feedback information which is available about the quantization
error. As such error can be effectively compensated at the
network level, we are able to present a modification of the
Increasing Precision Algorithm, with improved performance
in terms of communication complexity.

Paper structure

The paper is orgnized as follows. After this introduction,
we describe the problem setting in Sect. II-A, and we briefly
review the Increasing Precision Algorithm (IPA) in Sect. II-B
and the relevant criteria for performance analysis in Sect. II-C,
referring the reader to [4] for more details.

In Sect. III we show how the performance of IPA algorithm
can be improved by compensating the error due to quantiza-
tion; in particular, in Sect III-A we introduce the Increasing
Precision Algorithm with Partial Compensation (PC-IPA) and
in Sect III-B we theoretically analyze its performance.

Finally, in Sect. IV we present some simulation results and
a discussion on how the complexity of the PC-IPA algorithm
depends on the topology of the network.



Definitions and notation

The following definitions and notation will be used through-
out the paper. We denote by N, Z+, and R, respectively, the
sets of naturals, nonnegative integers, and real numbers. The
transpose of a vector v ∈ Rn and a matrix M ∈ Rn×n,
are denoted by v∗ and M∗, respectively. We will denote by
tr(M) the trace of M and by ‖ · ‖F the Frobenius norm, i.e.,
‖M‖F =

√
tr(M∗M). Given two matrices M , M ′, we denote

by M�M ′ their entrywise (Hadamard) product. With the sym-
bol 1 we denote the n-dimensional vector all of whose entries
equal 1. A directed graph G = (V, E) is the pair of a finite
vertex set V and a set E ⊆ V×V of directed edges. For a vertex
v ∈ V , we denote by N+

v := {w ∈ V : (v, w) ∈ E , w 6= v},
and N−v := {w ∈ V : (w, v) ∈ E , w 6= v}, respectively, the
sets of its out- and in-neighbors. A matrix P ∈ Rn×n is doubly
stochastic if it has non-negative entries, and all its rows and
columns sum to one. Its induced graph GP has n vertices, and
there is an edge (u, v) if and only if Puv > 0. P is adapted
to a graph G if GP is a subgraph of G. P is primitive if GP
is strongly connected (i.e., any two nodes u, v are connected
by a directed path) and aperiodic (i.e., the greatest common
divisor of cycle lengths is 1).

II. PROBLEM SETTING AND PROPOSED ALGORITHM

A. Problem statement

We consider a finite set of agents V of cardinality n
and assume that each agent v ∈ V has initially access to
some partial information consisting in the observation of a
scalar value θv , which may for instance represent a noisy
measurement of some physical quantity of interest. The full
vector of observations is denoted by θ = (θv)v∈V . We consider
the case when all θv’s take values in the same bounded interval
Θ ⊆ R; without loss of generality, we shall assume Θ = [0, 1].
For the network, the goal is to compute the average of such
values,

y :=
1

n

∑
v∈V

θv

through repeated exchanges of information among the agents
and without a centralized computing system.

Communication among the agents takes place as follows.
At each time instant t = 1, 2, . . ., every agent v broadcasts
a bit av(t) ∈ {0, 1} to a subset of agents, which will be
denoted by N+

v ⊂ V and will be called the set of out-
neighbors of v. We assume that, for all w ∈ N+

v , between
v and w there is a binary-input memoryless channel (with
non-zero capacity) with output alphabet A : agent w will
receive a possibly corrupted version bv→w(t) ∈ A of the
bit av(t) which was sent by v. Notice that we do not
need any assumption of mutual independence of the received
signals bv→w(t) for the different neighbors w. However, we
do need the assumption that the channels are memoryless
with respect to time, in other words, given av(t), the received
signals bv→w(t) are conditionally independent from θ and from
{av(s), bv→w(s) ∀ 1 ≤ s < t, v, w ∈ V}.

For simplicity, we shall assume that all the channels (for all
v ∈ V , w ∈ N+

v and t ∈ N) have the same output alphabet
A and the same transition probabilities.

The communication setting outlined above can be con-
veniently described by a directed graph G = (V, E) (the
communication graph), whose vertices are the agents, and such
that an ordered pair (u, v) with u 6= v belongs to E if and
only if v ∈ N+

u , i.e., if u transmits to v through a discrete
memoryless channel with non-zero capacity. Throughout the
paper, we shall assume that the graph G is strongly connected.
We will also assume that G has self-loops on each vertex;
this represents the fact that each node has access to its own
information, which is equivalent to assume a noiseless channel
available from u to itself. The presence of self-loops ensures
that G is aperiodic.

In this setting, an algorithm is distributed if, for all transmis-
sion time t and for all agent v, the bit transmitted by v at time
t is a function only of the information available to agent v at
time t− 1, and the estimate ŷv(t) of y that agent v computes
at time t is a function only of the information available to
agent v at time t. In the setting where the communication
channel does not provide a feedback on the transmission, the
information which is available to v at time t consists of all
the bits received so far from its in-neighbors, and of course
v’s initial condition θv .

B. Increasing precision algorithm (IPA)

The idea we introduced in [4] is to use a traditional linear
average-consensus algorithm, combined with suitable coding
schemes.

The ingredients of our algorithm are
• a consensus matrix P , i.e., a doubly-stochastic primitive

matrix adapted to the communication graph G, with non-
zero diagonal entries;

• an increasing sequence of positive integers {`(k)}k∈N,
such that limk→∞ `(k) = +∞; `(k) represents the
number of bits that each node transmits at k-th iteration
of the consensus algorithm;

• a sequence of encoders, i.e., maps

φ(k) : [0, 1]→ {0, 1}`(k) ;

• a sequence of decoders, i.e., maps

ψ(k) : A `(k) → [0, 1] .

Let us recall the classical iterative linear average-consensus
algorithm:

x(0) = θ , x(k) = Px(k − 1) , k ≥ 1 ,

i.e., at k-th iteration, node u receives from its in-neighbors the
numbers xv(k), v ∈ N−u , and updates its state:

xu(k) = Puuxu(k − 1) +
∑
v∈N−u

Puvxv(k − 1) .

It is well-known (Perron-Frobenius theory) that, for primitive
doubly-stochastic P , from any initial condition θ, each entry
of x(k) converges to y.



We propose to adapt this algorithm, in a way that takes into
account the necessity to transmit the real values xu(k) along
digital noisy channels. The initialization of the algorithm is
unchanged: x(0) = θ. Between iterations k − 1 and k of our
consensus-like algorithm, we allow each node v to use `(k)
bits to encode its state xv(k−1) by the use of a (joint) source
and channel encoder φ(k); the codewords will be broadcasted
to neighbors, and then the decoded messages will be used as
estimates of the neighbors’ states for the consensus-like state-
update.

More precisely, with the definitions of h0 = 0 and hk :=∑
r≤k `(r), the algorithm is the following. Initialize x(0) = θ

and then iterate for all k ∈ N the following steps:
• Transmission phase. Each node v broadcasts to its

neighbors the encoded version of its state xv(k − 1).
Namely, for all t ∈ (hk−1, hk], it transmits the
bit a

(t−hk−1)
v (k) where

(
a
(1)
v (k), . . . , a

(`(k))
v (k)

)
=

φ(k)(xv(k − 1)) ∈ {0, 1}`(k).
• Decoding and state update. At the end of the k-th com-

munication phase, i.e., at time t = hk, each node u de-
codes the messages it has received from its out-neighbors,
finding estimates of their states: for all v ∈ N−u , u re-
ceives

(
b
(1)
v→u(k), . . . , b

(`(k))
v→u (k)

)
∈ A `(k) and it computes

x̂
(u)
v (k − 1) := ψ(k)

((
b
(1)
v→u(k), . . . , b

(`(k))
v→u (k)

))
∈ [0, 1].

Then, u updates its own state according to the following
consensus-like step:

xu(k) = Puuxu(k − 1) +
∑
v∈N−u

Puvx̂
(u)
v (k − 1) . (1)

During each phase, the estimate ŷ(t) remains constant, and is
equal to the current state:

ŷ(t) = x(k − 1) , ∀t ∈ [hk−1, hk) .

Notice that the encoders φ(k) and ψ(k) are by definition
source and channel encoders/decoders (jointly performing the
two tasks, or cascading two suitable codings). In principle,
they could be different at each transmitting-receiving pair, but
we assume that they are all the same, for simplicity and also
to ensure anonymity to agents and reconfigurability to the
network. Moreover, in principle we need to define a different
encoder/decoder pair for each different k, but it is useful
to consider encoders and decoders which allow to exploit a
common coding scheme at various lengths, see [5].

Another detail of the algorithm that needs to be further
specified is the choice of the phase lengths {`(k)}k∈N. The
actual choice will be done in a different way for different
choice of the encoders and decoders, in order to optimize
the convergence speed. However, an important general remark
is that, in order to avoid accumulation of errors and ensure
convergence of the algorithm, we need to choose increasingly
long phase lengths.

In fact, we can write x̂(v)u (k − 1) = xu(k − 1) + δu→v(k),
and we may think of δu→v(k) as a noise, which is in part
due to the quantization of the real-valued xu(k − 1) and in
part to the channel noise during the `(k) transmissions of the

k-th transmission phase, where the effect of the channel has
already been mitigated by some error-correction. Notice that
δu→v(k) in general does not have zero mean, and depends
on xu(t) (and thus depends on all past noises). A suitable
choice of the encoder/decoder pairs and of the transmission
phases allows one to obtain a noise decreasing with respect to
k, with a speed which is discussed in [4]. To this effect, the
assumption that the transmission lengths `(k) are increasing
in k is essential, because the coding gain is asymptotic in
the length of codewords. This remark leads us to name our
algorithm ‘Increasing Precision Algorithm’ (IPA).

C. Performance criteria

The performance of an algorithm solving the problem
described in Sect. II-A will be evaluated by studying the error

e(t) := ŷ(t)− y1 ,

i.e., the distance between the current local estimates and the
correct average. It is often useful to decompose this error into
two orthogonal parts:

e(t) = z(t) + ζ(t)1 ,

where:
• z(t) := ŷ(t) − 1

n1
∗ŷ(t)1 describes how far the various

agents are from reaching an agreement. Notice that z(t)
is orthogonal to 1.

• ζ(t) := 1
n1
∗ŷ(t) − y accounts for the distance between

the current average of the estimates and the correct
value y.

The question we ask is: how much time is required to reach
a given precision δ ∈ (0, 1]? Namely, we will study the
communication complexity, defined as follows:

τ(δ) := inf
{
t ∈ N : ∀s ≥ t, 1

nE[‖e(s)‖2] ≤ δ
}
.

Here, we are considering as ‘time’ the number of trans-
mitted bits. It is a fair notion of time in the case where the
time needed for the transmission is considerably larger that
the computation time, or in the case where we are not really
interested in time but rather in the energy consumption due to
the transmissions. Otherwise, it is more sensible to consider
a different notion of complexity, which takes into account
both transmission and computation. Such a notion of trans-
mission/computation complexity, allowing a fair comparison
among algorithm with very different computational complexity
(particularly in the decoders) is defined and discussed in [4].
For example, in the IPA algorithm one might want to compare
the use of different encoder/decoder pairs, exploring differ-
ent correction performance vs. complexity tradeoffs: some
random-tree coding (à la Forney) can ensure faster decrease
of the error at the price of a higher complexity, as opposed to
simple repetition-like or fountain-like codes with linear-time
decoding. In particular, on the binary erasure channel (where
even random-tree codes have a polynomial-time computational
complexity) it is not obvious a priori which choice can ensure
faster convergence. On other channels, however, it is clear



that the exponential complexity of decoding such schemes is
unaffordable.

In this paper, we focus on the case where the computational
complexity is very low: we will consider encoders and de-
coders with linear complexity w.r.t. the number of transmitted
bits. For this reason, we will consider as ‘time’ the number
of transmitted bits, the actual time being the same up to a
multiplicative constant.

III. IMPROVING THE ALGORITHM BY (PARTIAL)
COMPENSATION OF THE ERRORS

A. Partial error compensation

In [4], an idealized setting in which the agents have access
to noiseless feedback about the signals received by their out-
neighbors was also considered. In this case, at the end of the
(k − 1)-th transmission phase, each agent u ∈ V can use
the feedback information in order to compute the corrupted
estimate of its state x̂(v)u (k− 1), which each out-neighbor v ∈
N+
u will use in its state-update. Thus, u can compensate this

error, by using the following modified state-update equation:

xu(k) = xu(k−1)−
∑
v∈N+

u

Pvux̂
(v)
u (k−1)+

∑
v∈N−u

Puvx̂
(u)
v (k−1)

(2)
instead of Eq. (1). This modification ensures that the average
is preserved along the iterations, i.e., 1

n1
∗x(k) = y for all

k ≥ 0. In fact, this modification can be shown to significantly
improve the performance. However, it is implementable only
in the case where the channels provide perfect feedback, which
is a strong and often unrealistic assumption, particularly in the
considered broadcast setting. We shall refer to such idealized
implementation of the IPA algorithm, with the state-update
following Eq. (2) instead of Eq. (1), as to the Increasing
Precision Algorithm with Compensation (C-IPA).

On the other hand, a simple but fundamental remark is that,
even in the more realistic case where there is no feedback
available from the channels, there is still one part of the
error δu→v(k) that depends on the quantization of xu(k − 1)
and not on the channel, and thus it is perfectly known
by agent u. Indeed, one can choose an encoder φ(k) that
is the composition of two separate encoders: a quantizer
Q(k) : [0, 1] → {0, 1}q(k) and an encoder which adds some
redundancy for error correction C(k) : {0, 1}q(k) → {0, 1}`(k).
We shall also use the notation Q̃ to denote the same quantizer
as above, but where the output is seen as a rational number
instead of as a string of bits, i.e., Q̃(x) := R ◦ Q, where
R((r1, . . . , rq)) :=

∑q
j=1 rj2

−j . With this notation, we can
decompose the error that node u makes when it transmits to a
neighbor v during the k-th transmission phase into two parts:
δu→v(k) = νu(k) + δ′u→v(k), where:
• νu(k) = Q̃(xu(k − 1)) − xu(k − 1) is the quantization

error;
• δ′u→v(k) = x̂

(v)
u (k − 1) − Q̃(xu(k − 1)) is the error due

to the channel (already mitigated by error correction).
The key remark is that, even if the channel does not provide
any feedback (agent u does not know δu→v(k)), at least the

quantization error is known: agent u knows νu(k) and can
apply a compensation rule for this part of the error. Clearly,
the error being compensated only partially, the algorithm
will not be able to preserve the average along its iterations;
however, this partial compensation will be enough to improve
the performance with respect to the basic IPA presented in
Sect. II-B. These results are new, and will be presented here
with their proofs.

The modified state-update that we propose is the following:

xu(k) = xu(k−1)−(1−Puu)Q̃(xu(k−1))+
∑
v∈N−u

Puvx̂
(u)
v (k−1).

(3)
With the notation ν(k) = (νu(k))u∈V for the vector of
quantization errors and ∆′(k) for the matrix defined by
∆′(k)uv = δ′v→u(k) if v ∈ N−u , and 0 otherwise, the system
evolution can be described as follows:

x(k) = Px(k − 1) + (P − I)ν(k) + (P �∆′(k))1 . (4)

We shall refer to the IPA where the state update is done accord-
ing to Eq. (3) as to the Increasing Precision Algorithm with
Partial Compensation (PC-IPA). In the following subsection,
we shall present our main results concerning the performance
of the PC-IPA.

B. Performance of PC-IPA

Before stating our main results on performance of PC-IPA,
we describe in detail a particular choice of the quantizers and
of the error-correcting codes that we will use, although the
choice of such specific encoders is not essential, similar results
can be obtained for other coding schemes.

We will consider the probabilistic quantizer, defined as
follows:

Q̃(k)(x)=

{
1

2q(k)

⌊
2q(k)x

⌋
with prob.

⌈
2q(k)x

⌉
−2q(k)x

1
2q(k)

⌈
2q(k)x

⌉
with prob. 2q(k)x−

⌊
2q(k)x

⌋
.

We will assume that, for all u ∈ V and k ∈ Z+, given
xu(k−1), Q̃(k)(xu(k−1)) is conditionally independent from
all the past and from all the neighbors’ states and quantizers.
A simple way to implement such quantizer is to add an
independent random dither to xu(k−1) and quantize the sum
by rounding [1].

As a channel encoder C(k) : {0, 1}q(k) → {0, 1}`(k), we
shall use a simple repetition encoder, whereby each bit is
repeated `(k)/q(k) times. As a decoder, we shall perform
a binary hypothesis test for each transmitted bit. Along this
paper, we will choose `(k) = Skq(k). Indeed, a number of
repetitions of each bit (at k-th transmission round) increasing
linearly with k allows to obtain transmission errors δ′u→v(k)
decreasing exponentially in k.

The performance of the PC-IPA algorithm with increasing
quantization lengths is estimated in the following proposition.

Proposition 1: Consider the setting described in Sect. II-A
and the PC-IPA algorithm with the above-described probabilis-
tic quantizer and repetition encoder, with increasing lengths
q(k) = k and `(k) = Sk2. Then, there exists a constant



β ∈ (0, 1) depending only on the channels such that, defining
α := βS and ρ the second largest singular value of P , if1

α
ρ ≤ C < 1 and 1

2
1
ρ ≤ C < 1, then:

• for all t ∈ Z+,

E[ζ(t)2] ≤ α2(1− α)−2 ;

• for all k ∈ Z+, for all t ∈ [hk, hk+1),

1

n
E[‖z(t)‖2] ≤ ρ2k

1

(1− α/ρ)2

+ ρ2k
1

4− ρ−2

+ ρ2k
1

(1− α/ρ)(1− 1/(2ρ))
.

This implies that there exists a real-valued random variable ŷ
satisfying

E[(ŷ − y)2] ≤ α2(1− α)−2

and such that

lim
t→∞

ŷ(t) = ŷ1 with prob. 1 .

Moreover, it is possible to choose the initial phase length S
in such a way that

τ(δ) ≤ c+ c′
log4(δ−1)

log3(ρ−1)
.

for some constants c, c′ depending only on the channels and
on C. �

C. Do lengths really have to be increasing?

The increasing lengths `(k) = Skq(k) and q(k) = k
ensure that 1

nE[‖z(t)‖2] decreases to zero exponentially fast
with 3

√
t, and thus the algorithm converges with probability

1 to a consensus. However, one might renounce asymptotic
convergence and be interested in only reaching, at some time
τ(δ) < ∞, a required precision δ. In the idealized case
where perfect feedback is available, one would not need
increasing lengths any more, as constant lengths would suffice.
In contrast, in the realistic case when no feedback is available,
and the partial compensation rule is adopted, one needs to keep
increasing the repetition length `(k)/q(k) = Sk in order to
avoid accumulation of the errors δ′u→v(k), but can decide to use
constant lengths for the quantizersQ(k). Increasing quantizers’
lengths q(k) = k are needed in order to ensure convergence

1The assumptions ρ > α in Prop 1 and ρ2 > α in Prop 2 are not very
restrictive: one can always choose S such that they hold true. The assumption
ρ > 1

2
seems more restrictive, but it can be loosened by choosing q(k) = Ak

with A larger than 1. Moreover, all such assumptions are not really essential:
they are only needed to get the exact expressions we give in the statements of
the propositions, but removing them does not significantly change the behavior
of the algorithms, it simply slightly modifies the expressions of the bounds.
For example, if ρ = 1

2
or ρ < 1

2
, the second term in the upper bound for

E[‖z(t‖)2] in Prop. 1 becomes 1
4
kρ2k or 1

4k+1
1

1−4ρ2
, respectively. We

have chosen to focus on the case with larger ρ because it is useful to analyze
the dependence of the performance on ρ in the ‘bad’ case, where ρ is near 1
(see Sect. IV-C).

(Prop. 1), while constant quantizers’ lengths q(k) = q are
enough to ensure τ(δ) < ∞, as stated in the following
proposition.

Proposition 2: Consider the setting described in Sect. II-A
and the PC-IPA algorithm with the probabilistic quantizer
and repetition encoder described in Sect. III-B, with constant
quantization length q(k) = q and increasing phase length
`(k) = Skq.

Then, there exists a constant β ∈ (0, 1) depending only on
the channels such that, defining α := βS and ρ the second
largest singular value of P , if1 α

ρ2 ≤ C < 1, then:

• for all t ∈ Z+,

E[ζ(t)2] ≤ α2(1− α)−2 ;

• for all k ∈ Z+, for all k ∈ Z+, for all t ∈ [hk, hk+1),

1

n
E[‖z(t)‖2] ≤ ρ2k

1

(1− α/ρ)2

+
1

4q+1
Φ(P )

+
1

2q
ρ2k(1− α/ρ2)−2 ,

where Φ(P ) := 1
n

∑∞
r=1 ‖P r+1 − P r‖2F.

Hence, it is possible to choose the phase length S in such a
way that

τ(δ) ≤ c+ c′
log4(δ−1)

log2(ρ−1)
,

for some constants c, c′ depending only on the channels, on
C and2 on Φ(P ). �

D. Proof of Propositions 1 and 2

The proofs of Propositions 1 and 2 being very similar, we
give them together. They are based on the following lemma
characterizing the properties of the noises ν(k) and ∆′(k).

Lemma 1: Consider the setting described in Sect. II-A and
the PC-IPA algorithm with the probabilistic quantizer and
repetition encoder described in Sect. III-B, with quantization
length q(k) = q and phase length `(k) = Skq(k). Then, the
errors ν(k) and ∆′(k) satisfy the following properties:

1) E[νu(r)] = 0;
2) E[νu(r)νv(s)] = 0 if r 6= s or u 6= v (or both);
3) E[νu(k)2] ≤ 1

4q(k)+1 ;
4) there exists β ∈ (0, 1) which depends only on the

channel, such that E[∆′vw(k)2] ≤ α2k with α := βS ;
5) E[∆′vw(r)∆′v′w′(s)] ≤ αr+s;
6) E[νu(r)∆vw(s)] = 0 if s ≤ r;
7) E[νu(r)∆vw(s)] ≤ 1

2q(r)+1α
s. �

Proof: Items 1), 2) and 6) are true because, for all x(k−
1), E[νu(r)|xk−1] = 0.

2In most cases, even for families of graphs for which ρ→ 1 for n→∞,
Φ(P ) remains bounded. In particular, [9, Coroll. 9] ensures that, if P is
normal (i.e., P ∗P = PP ∗), then Φ(P ) ≤ 1−p

p
where p := minu Puu. A

loose bound for Φ(P ) wich does not require any assumption is the following:
Φ(P ) ≤ (1− ρ2)−1.



For item 3), notice that, with the short-hand notation x̃ :=
2q(k)x, we have

E[(x− Q̃(x))2]

= 1
4q(k)

[
(x̃− bx̃c)2(dx̃e − x̃) + (x̃− dx̃e)2(x̃− bx̃c)

]
= 1

4q(k) (x̃− bx̃c)(dx̃e − x̃)

≤ 1
4q(k)+1 .

Item 4). Using [6, Th. 11.9.1] on the Bayesian error proba-
bility of binary hypothesis tests of length Sk, one has that the
probability of mis-decoding any of the q(k) bits can be upper-
bounded by εSk, for some constant ε ∈ (0, 1) depending on the
channel only. Moreover, if the most significant mis-decoded
bit is the j-th, then ∆′vw(k)2 ≤ 2−2(j−1). It follows that

E[∆′vw(k)2] ≤
q(k)∑
j=1

(
1

2

)2(j−1)

εSk ≤ 4

3
εSk .

Finally, items 5) and 7) are obtained from 3) and 4) with
Cauchy-Schwarz inequality:

E[∆′vw(r)∆′v′w′(s)] ≤
√

E[∆′vw(r)2]E[∆′v′w′(s)
2] ≤ αr+s

and similarly for 7). �
The bound E[ζ(t)2] ≤ α2(1 − α)−2 comes immediately

from [4, Prop. 3]. For the bound on 1
nE[‖z(t)‖2], we need

to go through the proof of [4, Prop. 3], so as to take care of
the additional terms involving quantization noise. First of all,
from Eq. (4), we get:

z(t) = P kz(0) +

k∑
r=1

P k−r(P − I)ν(r) +

k∑
r=1

P k−ru(r)

for all t ∈ [hk, hk+1), where u(k) := (P �∆′(k))1− ξ(k)1
and ξ(k) := 1

n1
∗(P �∆′(k))1. Thus, ∀t ∈ [hk, hk+1)

1
nE[‖z(t)‖2] = E[‖P kz(0) +

k∑
r=1

P k−ru(r)‖2]

+ 1
nE[‖

k∑
r=1

P k−r(P − I)ν(r)‖2]

+ 2
n (P kz(0))∗

k∑
r=1

P k−r(P − I)E[ν(r)]

+ 2
n

k∑
r=1

k∑
s=1

E[(P k−r(P − I)ν(r))∗P k−su(s)]

(5)

Now, we will give bounds for the four terms in Eq. (5). Along
the proof, we will use the fact that both (P−I)ν(k) and u(k)
are perpendicular to 1, and that ‖Px‖ ≤ ρ‖x‖ for all x ⊥ 1.

i. From [4, Prop. 3],

E[‖P kz(0) +

k∑
r=1

P k−ru(r)‖2] ≤ ρ2k(1− α/ρ)−2 .

ii. Thanks to item 2) in Lemma 1,

1
nE[‖

k∑
r=1

P k−r(P − I)ν(r)‖2]

= 1
n

k∑
r=1

E[‖P k−r(P − I)ν(r)‖2]

≤ 1
n

k∑
r=1

ρ2(k−r)
n

4q(r)+1
.

Now, for Prop. 1 we have q(r) = r and thus the latter
line is equal to

1
4ρ

2k
k∑
r=1

(2ρ)−2r ≤ 1
4ρ

2k 1

1− 1/(4ρ2)
.

For Prop. 2, instead, we have q(r) = q and thus we have
1

4q+1

∑k
r=1 ρ

2(k−r) ≤ 1
4q+1

1
1−ρ2 . However, following [9,

Thm. 7] we can get the following tighter bound, which
exploits linearity of expectation and of trace, the simple
remark that for a scalar value a, a = tr a, and the property
tr(ABC) = tr(CBA) whenever the size of the matrices
A,B,C allows to write such products.

1
n

k∑
r=1

E[‖P k−r(P − I)ν(r)‖2]

= 1
n

k∑
r=1

E[tr{ν(r)∗(P − I)∗(P k−r)∗P k−r(P − I)ν(r)}]

= 1
n

k∑
r=1

tr{E[ν(r)ν(r)∗](P − I)∗(P k−r)∗P k−r(P − I)}

= 1
n

1

4q+1

k∑
s=1

tr{(P − I)∗(P s)∗P s(P − I)}

=
1

4q+1
Φ(P ).

iii. Thanks to Lemma 1, the third term is zero.
iv. Using Lemma 1 and Cauchy-Schwarz inequality, we get:

2
n

k∑
r=1

k∑
s=1

E[(P k−r(P − I)ν(r))∗P k−su(s)]

≤ 2
n

k∑
r=1

k∑
s=1

√
E[‖P k−r(P − I)ν(r)‖2E[‖P k−su(s)‖2

≤ 2

k∑
r=1

k∑
s=r+1

ρk−r
1

2q(r)+1
ρk−sαs

For Prop. 1 we have q(r) = r and thus the latter line is
equal to

ρ2k
k∑
r=1

(2ρ)−r
k∑

s=r+1

(
α
ρ

)s
≤ ρ2k 1

1− (2ρ)−1
1

1− (α/ρ)−1
.



For Prop. 2, instead, we have q(r) = q and thus we have
(exchanging the order of summation):

1

2q
ρ2k

k∑
s=1

(
α
ρ

)s s−1∑
r=1

ρ−r ≤ 1

2q
ρ2k

k∑
s=1

(
α
ρ

)s
(s− 1)ρ−(s−1)

≤ 1

2q
ρ2k

k∑
s=1

(
α
ρ

)s−1
sρ−(s−1)

≤ 1

2q
ρ2k

∞∑
s′=0

(s′ + 1)(α/ρ2)s
′

=
1

2q
ρ2k[1− (α/ρ2)]−2 .

This concludes the first part of the proof. Then, convergence
with probability 1 follows from Markov inequality and Borel-
Cantelli Lemma, as in [4, Thm. 4].

Finally, the bounds on τ(δ) are obtained as follows. For
the case with q(k) = k, we know from the first part of
Prop. 1 that the following conditions are sufficient to ensure
that 1

nE[‖e(t)‖2] ≤ δ for all t ≥ h(k) =
∑
r≤k `(r):

1) α2(1− α)−2 ≤ δ/4;
2) ρ2k 1

(1−α/ρ)2 ≤ δ/4;
3) ρ2k 1

4−ρ−2 ≤ δ/4;
4) ρ2k 1

(1−α/ρ)(1−1/(2ρ)) ≤ δ/4.

Recalling that α = βS , clearly there exists constants c1 and c2
depending only on β and on C such that the first inequality is
true for all S ≥ c1 log(δ−1) and the three other inequalities are
true for all k ≥ c2 log(δ−1)/ log(ρ−1). The claim on τ(δ) then
follows by recalling that h(k) =

∑
r≤k `(r) =

∑
r≤k Sr

2 ≤
Sk3. The proof of the bound on τ(δ) in Prop. 2 is obtained
with the same technique. �

IV. SIMULATIONS AND DISCUSSION

This section is devoted to some examples illustrating the
averaging algorithms proposed in this paper. Specifically, in
Sect. IV-A we provide a practical implementation of the PC-
IPA. In Sect. IV-B we provide a comparison between the
IPA, PC-IPA, and C-IPA algorithms. Finally in Sect. IV-C we
comment on how the complexity of the presented algorithms
depends on the topology of the network.

In all our simulations, we use as a simple example of
channel the binary erasure channel (BEC), i.e., the output
alphabet is A = {0, 1, ?} and each sent bit is erased with
probability ε, while it is correctly received with probability
1− ε. In our simulations, we use ε = 1/2.

We describe here the communication graph and the con-
sensus matrix P adopted in our simulations. We consider
n = 30 agents, and a communication graph which is a strongly
connected realization of a two-dimensional random geometric
graph, where vertices are 30 points uniformly distributed in
the unit square, and there is a pair of edges (u, v) and
(v, u) whenever points u, v have a distance smaller than 0.4.
The communication graph is bidirectional, in the sense that
N−v = N+

v for all v ∈ V . The consensus matrix P is built

according to the Metropolis weights:

Puv =


1

1+max{deg(u),deg(v)} if (u, v) ∈ E
1−

∑
w∈N−u Puw if u = v

0 otherwise

where deg(v) is the number of neighbors of node v. The
construction is distributed, as it uses only information on
neighbors.

The initial condition θ of each experiment is randomly
sampled from a uniform distribution on [0, 1]n. All plots show
curves averaged over 1000 simulations: a different random
geometric graph and a different initial condition, as well as a
different channel noise sequence, are independently generated
for each simulation.

In all our simulations we use the quantization and channel
coding described in Sect. III-B, which a choice of the lengths
q(k) and `(k) which is specified for each simulation. Notice
that, with this simple repetition code and for the BEC, the
decoding is trivial: a bit is correctly decoded whenever at least
one of its repeated copies is received unerased.

A. Performance of PC-IPA

We start by providing a practical implementation of the PC-
IPA and commenting on its performance.

As indicated in Proposition 1, we set q(k) = k and `(k) =
Sk2, S > 0.
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Fig. 1. Behavior of n−1E[‖e(t)‖2] for different values of S when the
PC-IPA algorithm is adopted.

The simulation results obtained are plotted in Figures 1
and 2, which show n−1E

[
‖e(t)‖2

]
and n−1E

[
‖z(t)‖2

]
re-

spectively, for different values of S. Observe that the larger
is the value of S, the better is the attainable performance in
terms of e(t). On the other hand, larger values of S also imply
a slower convergence to 0 of z(t).

B. Effect of (partial) compensation on performance

It is natural to expect that the partial compensating rule
introduced in PC-IPA permits to improve performance with
respect to the simple IPA, and that the total compensation
of C-IPA improves performance even more, provided channel
feedback is available. Indeed, according to Prop. 1 and to [4,
Theorems 4 and 5], the three algorithms ensure almost sure
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Fig. 2. Behavior of n−1E[‖z(t)‖2] for different values of S when the
PC-IPA algorithm is adopted.

convergence to consensus and their communication complex-
ities τ(δ) satisfy

• for IPA: τ(δ) ≤ c+ c′
log5(δ−1)

log3(ρ−1)
;

• for PC-IPA: τ(δ) ≤ c+ c′
log4(δ−1)

log3(ρ−1)
;

• for C-IPA: τ(δ) ≤ c+ c′
log3(δ−1)

log3(ρ−1)
;

using communication phases of length `(k) = Sk2.
In order to illustrate why these bounds depend on log(δ−1)

in a different way, we compare the three algorithms assuming
that coding is done by quantization followed by a simple repe-
tition as described in Sect. III-B, with lengths q(k) = Ak and
`(k)/q(k) = Bk, for some positive A,B and so `(k) = Sk2

with S = AB. In the case of IPA, at each iteration k both
a quantization error ∼ 2−Ak and a channel error ∼ ε−Bk

accumulate on the marginally stable subspace of the dynamical
system, so that choosing A = B =

√
S ensures that δu→v(k)

decreases exponentially in
√
Sk, and that |ŷ − y| ≤ β

√
S , for

some β depending only on the channel. Thus, to get within a
distance δ from y, we need to choose

√
S that grows (at least)

linearly in log(δ−1). Instead, for PC-IPA, only the channel
error accumulates, so that one can choose q(k) = k and
have the channel error decrease exponentially in Sk, which
implies that S (as opposed to

√
S for IPA) needs to grow

linearly in log(δ−1). Finally, for the C-IPA, ŷ = y and no
error accumulates, so that one can choose q(k) = k and S
independent of δ.

In Figures 3 and 4 we reported the results obtained simulat-
ing the IPA, PC-IPA and C-IPA strategies, adopting the same
coding/decoding scheme for all three algorithms. Precisely we
set q(k) =

√
Sk and `(k) = Sk2 with S = 16. In Figure 3

we depict the behavior of n−1E
[
‖e(t)‖2

]
while in Figure 4

we plot the quantity

d(t) := |ζ(t)| =
∣∣ 1
n1
∗ŷ(t)− y

∣∣ .
Since d(t) is equal to 0 in the C-IPA algorithm, in Figure 4 we
depict only the curves for IPA and PC-IPA. As expected, the C-
IPA algorithm outperforms the other two strategies. However,
it is clear that perfect channel feedback is a strong and often
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Fig. 3. Behavior of n−1E[‖e(t)‖2] for the IPA, PC-IPA and C-IPA
algorithms.
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Fig. 4. Behavior of d(t) for the IPA and PC-IPA algorithms.

unrealistic assumption. Remarkably, we can see from Figure 4
that also the partial compensation on the quantization error
introduced in PC-IPA allows for a significant improvement
over the IPA.

C. Performance scaling with network size

We conclude with some considerations on how the com-
plexity of the presented algorithms depends on the topology
of the network. The matrix P is adapted to the communication
graph G, and ρ, the second largest singular value of P , depends
on the network topology. A precise characterization of this
dependence can be obtained for some families of graphs. For
instance, consider a regular grid with n = md nodes on a d-
dimensional torus: such graph can be seen as a Cayley graph
on the Abelian group Zdm. When there is a family of Abelian
Cayley graphs of increasing size with bounded neighborhoods
and the coefficients in the adapted matrices P do not vary with
n either, then the asymptotic behavior of the second largest
singular value is the following (see, e.g., [16]):

ρ = 1− C
n2/d +O

(
1

n4/d

)
n→∞,

where C is a positive constant, depending only on d and on
the coefficients assigned to neighbors.

It is worth to notice that this qualitative behavior for n→∞
does not strictly rely on the group structure of Zdm, but
is more general and can be observed in other families of
dimension-dependent graphs, like geometric graphs, that is



graphs whose nodes belong to an hypercube [0, 1]d ⊂ Rd
and have ‘local’ neighborhoods in a Euclidean sense. Under
mild non-degeneracy assumptions, matrices P adapted to such
graphs are shown in [16] to satisfy ρ = 1−Θ(n−d/2).

These facts and Prop. 1 imply that on these families of
d-dimensional graphs, the communication complexity of the
PC-IPA with `(k) = Sk2 is O(n6/d) for n → ∞. Similar
bounds can be obtained for all the algorithms discussed above.
Although such results suggest that the performance of our
algorithms may not scale nicely with the size of the network,
simulations do not seem to show such a drawback. Likely, ρ
does not provide the most significant information about the
role of topology in the achievable performance. A similar
remark has been made in [9] and in [19], in the case of
quantization or additive noise, respectively. In those cases, it
was possible to obtain different and tighter bounds, involving
all the eigenvalues of P instead of only the dominant one,
and having a nicer scaling with respect to n for many classes
of graphs (see also the survey [16]). It is an open problem
to look for similar bounds in our setting, where we have the
additional difficulty that the errors do not have zero mean and
are not independent.
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parameter estimation by consensus based stochastic approximation,”
IEEE Trans. Autom. Control, in press.

[19] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with
least-mean-square deviation,” J. Parallel and Distributed Computing,
vol. 67, no. 1, pp. 33–46, 2007.


