
Ph.D. course on Network Dynamics

Homework 8

Due on Tuesday, November 26, 2013

Exercise 1 (Resilience of the configuration model with power-law degree
distribution). Consider the configuration model with power-law degree distri-
bution pk = Kβk

−β, where β > 2, and Kβ := (
∑

k≥1
k−β)−1 and finite size n.

Now consider a random node removal process, where every node is removed
with probability 1 − θ and kept with probability θ, where θ ∈ (0, 1) is some
constant. Define the following measure of ‘fragility’ of the network: let θ∗

be the infimum value of θ ∈ (0, 1) such that a random node (selected with
uniform probability) belongs to a connected component of size of order nα,
for some α > 0, with high probability as n grows large.

(a) Show that θ∗(β) = 0 for β ∈ (2, 3], while, for β > 3, θ∗(β) > 0 is an
increasing function of β.

(Hint: find the right branching process approximation, and use the fact that
the graph looks like a tree in the neighborhood of a random node.)

Now, consider the same configuration model with a different model of node
removal: assume that, for some k0 > 1, all the nodes of degree k > k0 are
removed, along with their incident links.

(b) Show that this is equivalent to removing links with probability q = µ−1
∑

k>k0
kpk,

where µ :=
∑

k>0
kpk.

Define k∗
0(β) as the smallest k0 such that such that a random node (selected

with uniform probability) belongs to a connected component of size of order
nα, for some α > 0, with high probability as n grows large.

(c) Show that k∗
0(β) = min

{

k0 :
∑

1≤k≤k0
k(k − 1)pk > µ

}

.
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(Hint: find the right branching process approximation, and use the fact that
the graph looks like a tree in the neighborhood of a random node.)

One interpretation of result (a) is that networks with a power law dis-
tribution with β ≤ 3 (such as the Internet) are ‘robust to random failures’,
while (c) is interpreted as saying that such networks are ‘fragile to malicious
attacks’ (where the malicious attacker is supposed to target the most ‘cen-
tral’ nodes of the network). See [1, 2]. Such results, and especially their
interpretation, have generated also lots of critiques, see, e.g., [3, 4].

Exercise 2 (Completing the proof for the preferential attachment model).
Consider the preferential attachment model described in class, where we start
with a graph G1 = (V1, E1) consisting of two nodes connected by a link, and
at each time t ≥ 2 we generate a graph Gt = (Vt, Et) by adding a new node to
Vt1 and add a link between such new node and another one chosen at random
from Vt−1with probability proportional to its degree in Gt−1. Let Nk(t) be the
number of nodes of degree k in Gt, and nk(t) := E[Nk(t)] be its expected value.

In class, we have shown that nk(t)/t
t→∞−→ 4/(k(k+1)(k+2)) for all k ≥ 1. In

this exercise, we want to show that Nk(t) and nk(t) are close to each other.
We will make use of the following

Hoeffding-Azuma Inequality Let M0,M1, . . . be a martingale such
that P(|Mi − Mi−1| ≥ ci) = 1 for all i ≥ 1. Then, for all ε > 0, and
t = 1, 2, . . .,

P (Mt −M0 ≥ ε) ≤ exp
(

−ε2/
(

2
∑t

i=1
c2i

))

.

Fix k ≥ 1 and t ≥ 1. For all s = 1, . . . , t, define Ms := E[Nk(t)|Gs].

(a) Show that Ms, s = 1, . . . , t, is a martingale;

(b) Show that P(|Ms+1 −Ms| ≤ 2);

(c) Use rthe Hoeffding Azuma inequality to prove that, for all t ≥ 1,

P

(

∣

∣

∣

∣

Nk(t)

t
− nk(t)

t

∣

∣

∣

∣

≥
√

log t

t

)

≤ 2t−1/8 .

Hint: take ε =
√
t log t.
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Exercise 3. The following model does not involve a graph, but can be stud-
ied using the same mean-field method as for the Albert-Barabasi preferential
attachment model.

A famous surrealist author is known to compose text as follows. She starts
with a random word. Suppose that t words (not necessarily different) have
already been written. The next word is chosen as follows:

- with probability α, it is a new word; - with probability 1−α, she chooses
some j uniformly at random from the set of past instants {1, . . . , t− 1} and
copies the j-th word that she has alerady written. Let ni(t) be the expected
number of distinct words that appear exactly i times, after the first t words
have been written.

1. Write down a recursion (in t) for the variables ni(t).

2. Assume (or, better, prove) that ni(t)/t converges to some βi ≥ 0 for all
i ≥ 1. Find equations that relate the βi.

3. Show that βi/βi+1 converges to 1 as i grows large, and that the βi’s
correspond to a power law.
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