
Ph.D. course on Network Dynamics

Homework 7

Due on Tuesday, November 19, 2013

Exercise 1 (Supercritical branching process). Consider a branching process
Zt with offspring distribution pk := P(ξit = k), k ≥ 0. Let µ :=

∑

k kpk be the
expected number of offsprings and Φ(x) :=

∑

k pkx
k its generating function.

Assume that µ > 1, and p0 > 0, so that that the extinction probability ρext is
the unique solution in (0, 1) of x = Φ(x). Prove that

(a) the process conditioned on extinction, Z̃t, is a branching process with
offspring distribution having generating function

Φ̃(y) =
Φ(ρextx)

ρext
;

(hint: if ξ̃11 is the number of first generation offsprings with a finite line
of descent, then P(ξ̃11 = k, ext) = pkρ

k
ext, for k ≥ 0 )

(b) show that, conditioned on survival, if one looks only at individuals that
have an infinite line of descent, then one obtains a new branching pro-
cess Z̃t with offspring distribution having generating function

Φ̃(y) =
Φ((1− ρext)y + ρext)− ρext

1− ρext
.

(hint: if ξ̃11 is the number of first generation offsprings with an infinite
line of descent, then P(ξ̃11 = k) =

∑

j≥k pj
(

j

k

)

(1− ρext)
kρj−k

ext , for k ≥ 1)

Exercise 2 (Short cycles in Erdös-Rényi random graph). Consider the Erdös-
Rényi ramdon graph G(n, p). Fix a node v ∈ {1, . . . , n}. For k ≥ 3, let Nk(v)
be the number of cycles of length k passing through node v in G(n, p).
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(a) Prove that

E[Nk(v)] =
1

2
(n− 1)(n− 2) . . . (n− k + 1)pk ;

(Hint: show that the possible cycles containing v are (n − 1)(n −
2) . . . (n − k + 1)/2, since one has to choose k − 1 out of n − 1 other
nodes (beyond v) ...)

(b) Using Markov’s inequality, prove that

P(∃cycle of length ≤ k containing v) ≤















1

n

λ3

2

λk−2 − 1

(λ− 1)
if λ 6= 1

1

n

k − 2

2
if λ = 1

Conclude that:

(c) if λ < 1, then

P(∃cycle containing v) ≤
λ3n−1

2(1− λ)
n→+∞
−→ 0 ;

(d) if λ > 1, then

P(∃cycle of length ≤ a log n containing v) ≤
λna log λ−1

2(λ− 1)
n→+∞
−→ 0 ,

for all a < 1/ log λ.

Observe that the above does not mean that there are no cycles of short length
in the Erdos-Renyi random graph. In fact, for every given k ≥ 3, let Mk be
the total number of cycles of length k in G(n, λ/n), and

(e) Prove that

lim
n→+∞

E[Mk] =
1

2k
λk .

In fact, one can prove that Mk converges in distribution to a Poisson random
variable, i.e.,

lim
n→∞

P(Mk = j) = e−γ γ
j

j!
, ∀j ≥ 0 ,

where γ := 1
2k
λk. ([1, Theorem 4.1])
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The following exercises will refer to the configuration model and its two-
phase branching process approximation. Let us recall a bit of notation. We
start with a (node-perspective) degree distribution {pk : k ≥ 0}, and let
µ :=

∑

k kpk be its first moment, which will always be assumed finite. We
also let

qk :=
1

µ
(k + 1)pk+1 , k ≥ 0 , ν :=

∑

k

qkk =
1

µ

∑

k

pkk(k − 1) ,

be the link-perspective degree distribution and its first moment.

Exercise 3 (Short cycles in the configuration model). For k ≥ 3 and even
n ≥ 2, let Gn be the random (hyper-)graph generated by the configuration
model with fixed degree k ≥ 2. Fix an arbitrary node v.

(a) Prove that

P(v has a self-loop) ≤
k(k − 1)

kn− 1

(hint: compute the probability that any of the k half-links stemming
from k is connected to some other half-link stemming from v)

Now, for l ≥ 1, let El be the event that Gn does not contain cycles of length
less than or equal to 2l passing through node v.

(b) Show that, conditioned on El, v has exactly k(k−1)l−1 nodes at distance

l, and exactly 1 + k (k−1)l−1
k−2

nodes at distance less than or equal to l.

(c) Prove that

P(El+1|El) ≥ 1− k2(k + 1)
(k − 1)2l

n− (k − 1)l+1/(k − 2)

(hint: proceed by matching the k(k−1)l half-links connecting the nodes
at distance l to nodes at distance ≥ l; show that, independently from
how the first j−1 half-links are matched, the probability that the j-th
half-link is matched in such a way to unveil a cycle of length 2l + 1 or
2l+2 is not more than 2k2(k−1)l/(nk−2k(k−1)l(k−1)/(k−2)), where
the numerator is an upper bound on the number of potential matches
that create cycles of length 2l + 1 or 2l + 2, and the denominator is a
lower bound on the total number of potential matches)
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(d) Use (c) to show that

lim
n→∞

P (Eα logn) = 0 , ∀α ∈ [0, 1/ log(k − 1)) ,

i.e., for every α < 1/(log(k−1)) the (α log n)-distance neighborhood of
node v is tree-like with high probability as n grows large.

Exercise 4 (Link-oriented versions of power laws and Poisson distributions).

Let p0 = 0 and, for k ≥ 1, pk = Cβk
−β with β > 1, and Cβ :=

(
∑

k≥1 k
−β

)−1
.

(a) prove that µ is finite if and only if β > 2, while ν is finite if and only if
β > 3;

Let λ > 0, and pk = e−λλk/k!, for k ≥ 0;

(b) prove that qk = pk, for k ≥ 0.

Conversely, assume that qk = pk, for k ≥ 0, and

(c) prove that pk = e−λλk/k!, for k ≥ 0, where λ =
∑

k kpk = µ.

I.e., the Poisson distribution is the unique distribution which is the same
from node and link perspective.

Exercise 5 (SIR epidemics on the configuration model). Let {pk}k≥0 be a
degree distribution with finite first moment µ :=

∑

k pkk. Let T be a random
infinite tree generated by the branching process with offspring distribution
{pk} Consider the SIR epidemics with constant recovery time τ = 1, and
rate-γ Poisson infections on every link, on T . Assume that, at time 0, the
root node is infected and every other node is susceptible. Also, assume that
randomness of the graph generation and of the infection process are indepen-
dent.

(a) Find the largest γ > 0 for which, with probability 1, the system will end
up having a finite number of recovered nodes.

Now, let Gn be the random graph with n ≥ 1 nodes, generated by the con-
figuration model with degree distribution {pk}. Consider the SIR epidemics
as above on Gn, assuming that, at time 0, one node v is infected and every
other node is susceptible.
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(b) Find the largest γ > 0 for which the final number of recovered nodes
R∞ is bounded with high probability as n grows large, i.e.,

lim
m→∞

lim
n→∞

P(R∞ ≤ m) = 0

Hint: use the two-phase branching process approximation to conjecture the
result, then assume the generalization of Exercise 3 holds true for the con-
figuration model with degree distribution {pk} holds true, in order to make
your argument rigorous.
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