Ph.D. course on Network Dynamics Homework 6

Due on Tuesday, November 12, 2013

Exercise 1 (SIR epidemics on infinite regular tree). Consider an infinite k-regular tree, where $k \ge 2$. Consider the SIR epidemics with constant recovery time $\tau = 1$, and infection rate γ on every link. Assume that, at time 0, the root is infected and every other node is susceptible.

- (a) Find the largest $\gamma > 0$ for which, with probability 1, the system will end up having a finite number of recovered nodes.
- (b) Answer point (a) in the case when the recovery time is random with exponential distribution of rate 1.
- (c) Answer point (a) in the case when the recovery time is random with arbitrary probability distribution and expected value 1.

Exercise 2 (Mean-field limit for noisy best response in congestion games). Consider the following stylized model of traffic congestion. There is a finite set of routes $\mathcal{R} := \{1, 2, ..., k\}$ connecting one city (the origin) to another (the destination). There is a population of commuters: each commuter uses one route. The delay incurred by each commuter who is using route $i \in \mathcal{R}$ is given by $d_i(\rho_i^n)$, where ρ_i is the fraction of commuters using road i, and

$$d_i: [0,1] \to (0,+\infty)$$

is a differentiable increasing function. A Wardrop equilibrium is a probability vector $\rho^* \in \mathcal{P}(\mathcal{R})$ such that, for every $i \in \mathcal{R}$, one has that

$$\rho_i^* > 0 \qquad \Longrightarrow \qquad d_i(\rho_i^*) \le d_j(\rho_j^*), \quad \forall j \in \mathcal{R}.$$

(i.e., the delay on every route used by a nonzero fraction of commuters is not higher than the delay on any other route: the interpretation is that, in such a situation, no commuter has an incentive to modify his/her route choice.) Define

$$\Psi(\rho) := \sum_{i \in \mathcal{R}} \int_0^{\rho_i} d_i(s) \mathrm{d}s \,, \qquad \rho \in \mathcal{P}(\mathcal{R}) \,. \tag{1}$$

- (a) Show that $\Psi(\rho)$ is strictly convex on $\mathcal{P}(\mathcal{R})$.
- (b) Show that ρ^* is a minimum of $\Psi(\rho)$ on $\mathcal{P}(\mathcal{R})$ if and only if ρ^* is a Wardrop equilibrium. (hint: you are looking at the minimization of a convex function with linear constraints)
- (c) Use (a) and (b) to conclude that there exists a unique Wardrop equilibrium $\rho^* \in \mathcal{P}(\mathcal{R})$.

Now, assume that the population has finite size n, and consider the following dynamics. Commuters get activated at the thinking of independent rate-1 Poisson clocks. If commuter j is activated at time t, he/she gets the possibility of choosing a new route and switches to route i with probability $g_i(\rho^n(t))$, where $\rho^n(t) \in \mathcal{P}(\mathcal{X})$ is the vector of the fractions of commuters currently using the different routes and

$$g_i(\rho) := \frac{\exp(-\beta d_i(\rho_i^n))}{\sum_{r \in \mathcal{R}} \exp(-\beta d_r(\rho_r^n))}, \qquad r \in \mathcal{R},$$

where $\beta > 0$ is a parameter whose inverse $1/\beta$ is a measure of noise. Let $\rho(t)$ be the solution of the Cauchy problem associated to the ODE

$$\dot{\rho} = g(\rho) - \rho \,, \tag{2}$$

with a given initial condition $\rho(0) \in \mathcal{P}(\mathcal{R})$.

(d) Prove that, if $\rho^n(0) \to \rho(0)$ as n grows large, then $\rho^n(t)$ converges to $\rho(t)$ in probability, on every finite time interval [0, T].

Now, we focus on the behavior of the solution of (2) itself. Define

$$V_{\beta}(\rho) := \Psi(\rho) - \frac{1}{\beta} \operatorname{H}(\rho)$$

where $\Psi(\rho)$ is as in (1) and $H(\rho) := -\sum_i \rho_i \log \rho_i$ is the entropy of ρ .¹

¹Here, we adopt the standard convention that $0 \log 0 = 0$.

(e) Show that the entropy function is strictly concave, so that $V_{\beta}(\rho)$ is strictly convex.

Let ρ^{β} be the unique minimum of $V_{\beta}(\rho)$ on $\mathcal{P}(\mathcal{R})$.

- (f) Show that $\rho^{\beta} \to \rho^*$ as $\beta \to \infty$.
- (g) Prove that $\rho_i^\beta > 0$ for all $i \in \mathcal{R}$.
- (h) Use (g) to prove that $g(\rho^{\beta}) = \rho^{\beta}$, i.e., ρ^{β} is an equilibrium for (2).
- (i) Prove that, for every initial condition $\rho(0) \in \mathcal{P}(\mathcal{R})$, the solution of the Cauchy problem associated to (2) satisfies

$$\frac{\mathrm{d}}{\mathrm{d}t} V_{\beta}(\rho(t)) \le 0\,,$$

with equality of and only if $\rho(t) = \rho^{\beta}$. (Hint: you may find it useful that

$$(\nabla \operatorname{H}(\rho') - \nabla \operatorname{H}(\rho))(\rho' - \rho) < 0, \qquad \forall \rho \neq \rho' \in \mathcal{P}(\mathcal{R}),$$

because of the strict concavity of $H(\rho)$) Conclude that ρ^{β} is a globally attractive equilibrium for the dynamical system (2) on $\mathcal{P}(\mathcal{R})$.

Now, you can go back to the stochastic finite-population process $\rho^n(t)$. Note that $\rho^n(t)$ has a unique invariant probability measure μ_n over $\mathcal{P}_n(\mathcal{R}) \subseteq \mathcal{P}(\mathcal{R})$.

(1) Prove that μ_n concentrates on ρ^{β} as $\beta \to \infty$, i.e.,

$$\lim_{n \to \infty} \mu_n(O) = 1$$

for every open subset $O \subseteq \mathcal{P}(\mathcal{R})$ such that $\rho^{\beta} \in O$.

Exercise 3. Consider the following heterogeneous voter model. There are two populations consisting of finite size n_1 and n_2 , respectively. Individuals in both population get activated at the thinking of independent rate-1 Poisson clocks. If an individual from population $i \in \{1, 2\}$ gets activated, with probability $q_i \in (0, 1)$ he/she selects another individual uniformly at random from the union of the two populations and takes his/her opinion, while with probability $1 - q_i$ he/she keeps his/her opinion.

- (a) Propose a meaningful mean-field approach to this model, find the system of differential equations describing the limit when $n = n_1 + n_2 \rightarrow +\infty$ under the assumption that $n_1/n \rightarrow \nu \in (0, 1)$.
- (b) Study the asymptotic behavior of the system of differential equations found in item (a) as a function of the four parameters ν , q_1 , and q_2 .