## Ph.D. course on Network Dynamics Homework 4

## To be discussed on Tuesday, October 29, 2013

**Exercise 1** (Stationary fluctuations in the noisy voter model). Let  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  be a strongly connected directed graph, and  $\alpha \in (0, 1)$ ,  $\beta \in (0, 1]$ . Consider the following noisy voter model process  $X(t) \in \{0, 1\}^{\mathcal{V}}$ : at each time t, a link  $(i, j) \in \mathcal{E}$  is chosen at random with uniform probability, then with probability  $(1 - \beta)$  node i copies node j's state, and with probability  $\beta$  node i updates its state to an independent Bernoulli( $\alpha$ ) random variable. (The case  $\alpha = 1/2$  was discussed in class.)

- (a) Show that X(t) is an irreducible Markov chain on  $\{0,1\}^{\mathcal{V}}$ ;
- (b) Prove that

$$\mathbb{P}(X_i(t) = 1 | X(0)) \xrightarrow{t \to \infty} \alpha, \qquad \forall i \in \mathcal{V},$$

for every initial condition  $X(0) \in \{0,1\}^{\mathcal{V}}$ ; (hint: use point (a) and duality for  $\mathbb{P}(X_i(t) = 1|X(0)) = \mathbb{E}[X_i(t)|X(0)])$ 

Now, let  $\overline{X}(t) := n^{-1} \mathbb{1}' X(t)$  be the mean state (or 'barycenter') at time t, and let

$$\sigma^2 := \lim_{t \to \infty} \mathbb{E}\left[ (\overline{X}(t) - \mathbb{E}[\overline{X}(t)])^2 \right]$$

be its asymptotic variance. Further, let

$$\Delta^2 := \lim_{t \to \infty} \frac{1}{n^2} \sum_{i,j \in \mathcal{V}} \mathbb{E} \left[ (X_i(t) - X_j(t))^2 \right]$$

be the asymptotic mean square disagreement. The physical interpretation is that  $\sigma^2$  is a measure of the amplitude of synchronous oscillations of the stationary states, while  $\Delta^2$  measures the amplitude of asynchronous oscillations. (c) Prove that

$$\frac{\Delta^2}{2} + \sigma^2 = \alpha(1 - \alpha)$$

(Hint: show that  $\sigma^2 = \frac{1}{n^2} \sum_{i,j} \lim_t \operatorname{Cov}[X_i(t), X_j(t)]$ , and that

$$\frac{\Delta^2}{2} = \lim_{t} \frac{1}{n} \sum_{i} \operatorname{Var}[X_i(t)] + \frac{1}{2n^2} \sum_{i,j} (\mathbb{E}[X_i(t) - X_j(t)])^2 - \frac{1}{n^2} \sum_{i,j} \operatorname{Cov}[X_i(t), X_j(t)]$$

You may find a shorter way.)

 $(d^{***})$  Prove that, if  $\mathcal{G}$  is undirected and  $n\beta \to \infty$ , then  $\sigma^2 \to 0$  (hint: find the stochastic matrix Q such that y(t+1) = Qy(t), and prove that if  $(V_1(0), V_2(0))$  is uniformly distributed over  $\mathcal{V}^2$  and  $(V_1(t), V_2(t))$  move with transition probability matrix Q, then  $T_{couple} >> T_{noise}$  with high probability as  $n \to \infty$ , where  $T_{couple}$  is the first time  $V_1(t) = V_2(t)$ , while  $T_{noise}$  is the first time any between  $V_1(t)$  and  $V_2(t)$  is updated to an independent Bernoulli $(\alpha)$  variable)

**Exercise 2** (Voter model with stubborn nodes [1]). Let  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  be a connected undirected graph. Let  $s_0 \neq s_1 \in \mathcal{V}$  be such that  $\{s_0, s_1\} \notin \mathcal{E}$  and consider the voter model process X(t) on  $\{0, 1\}^{\mathcal{V}}$  with stubborn nodes  $s_0$  and  $s_1$ : at each time t, a link  $\{i, j\} \in \mathcal{E}$  is randomly selected with uniform probability from  $\mathcal{E}$ , and node i copies node j or vice versa with probability 1/2, with the exception of the stubborn nodes which are copied with probability 1/2 when a link incident on them is activated but never change their state equal to 1 for  $s_1$  and to 0 for  $s_0$ .

(a) Prove that, for every initial condition  $X(0) \in \{0, 1\}^{\mathcal{V}}$  such that  $X_{s_0}(0) = 0$  and  $X_{s_1}(0) = 1$ , the vector  $x := \lim_{t \to \infty} \mathbb{E}[X(t)|X(0)]$  satisfies

 $(I-P)x = 0 \text{ on } \mathcal{V} \setminus \{s_0, s_1\}, \qquad x_{s_0} = 0, \qquad x_{s_1} = 1,$ 

where P is the stochastic matrix associated to the (lazy) random walk on  $\mathcal{G}$ ;

(b) Use (a) to show that, for all  $i \in \mathcal{V}$ ,

$$x_i = \mathbb{P}(V(T_{\mathcal{S}}) = s_1 | V(0) = i),$$

where V(t) is a (lazy) random walk on  $\mathcal{G}$ , and  $T_{\mathcal{S}}$  is the corresponding hitting time on  $\mathcal{S} := \{s_0, s_1\};$ 

(c\*) Show that, for all  $i \in \mathcal{V}$ , and  $t \geq 0$ ,

$$|x_i - \pi' x| \le \mathbb{P}(T_{\mathcal{S}} < t | V(0) = i) + \exp(-\lfloor t/\tau_{\min} \rfloor),$$

where  $\pi$  and  $\tau_{\text{mix}}$  are the invariant distribution and, respectively, the mixing time of P.

 $(d^{**})$  Conclude that, if  $(\pi_{s_0} + \pi_{s_1})\tau_{\min} \to 0$  and the maximal degree  $d_{\max}$  in  $\mathcal{G}$  remains bounded as  $n \to \infty$ , then for all  $\varepsilon > 0$  the fraction of nodes i such that  $|x_i - \pi' x| \ge \varepsilon$  vanishes as  $n \to \infty$ , i.e., the stubborn nodes have a homogeneous influence on the rest of the nodes.

**Exercise 3** (Evolutionary dynamics on graphs [2]). The following stochastic model for the evolution of a finite population of constant size n has been considered in the literature. Individuals occupy the nodes of a srongly connected directed graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ . At time t = 0, each node i is occupied by an individual of specie  $S_i(0) \in \mathcal{S}$ . Each species  $s \in \mathcal{S}$  is characterized a 'fitness' parameter  $f_s \in (0, 1]$ . At each time  $t \ge 0$ , a link (i, j) is selected with uniform probability from  $\mathcal{E}$ : then, the individual currently occupying node i generates an offspring of its own specie  $S_i(t)$  which, with probability  $f_{S_i(t)}$ , replaces the individual currently occupying node j.

(a) Show that, when  $f_s = 1$  for all  $s \in S$ , the process  $S(t) \in S^{\mathcal{V}}$  described above coincides with the voter model X(t) on a directed graph  $\tilde{\mathcal{G}}$  (specify  $\tilde{\mathcal{G}}$ ).

Now, assume that  $\mathcal{G}$  is undirected, and that there are only two species, say  $\mathcal{S} = \{0, 1\}$ . Let  $M(t) := \mathbb{1}'S(t)$  be the number of individuals of specie 1, and  $r := f_1/f_0$ .

(b) Prove that

$$\mathbb{P}(M(t+1) - M(t) = 1 | S(t)) = r \mathbb{P}(M(t+1) - M(t) = -1 | S(t)),$$
  
for all  $t \ge 0$ .

Now, assume that r > 1, i.e., specie 1 has a higher fitness than specie 0. For  $i \in \mathcal{V}$ , let

$$\rho_i := \mathbb{P}\left(S(t) \xrightarrow{t \to \infty} \mathbf{1} | S_i(0) = 1, \, S_j(0) = 0 \,\forall j \neq i\right), \qquad i \in \mathcal{V},$$

be the fixation probability, i.e., the probability that a single individual of the most fit specie 1 (a mutant) initially present in node i will eventually take over a population of individuals initially all of the less fit specie 0.

(c\*) Prove that, for all  $i \in \mathcal{V}$ ,

$$\rho_i = \frac{1 - 1/r}{1 - 1/r^n} \,. \tag{1}$$

(hint: use point (b) to show that  $\rho_i$  coincides with the probability that a birth and death chain on  $\{0, 1, \ldots, n\}$  with birth/death ratio r, started at 1 will hit node n before node 0.)

The remarkable property of formula (1) is that  $\rho_i$  is independent both of the node *i* where the mutant is initially placed, and of the graph  $\mathcal{G}$ .

(d\*) Generalize formula (1) to the case when  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  is a directed weighted graph, with weights  $\{w_e > 0 : e \in \mathcal{E}\}$  such that

$$\sum_{j} w_{(i,j)} = \sum_{j} w_{(j,i)}, \qquad \forall i \in \mathcal{V}$$

(here we use the convention that  $w_{(i,j)} = 0$  for every pair  $(i,j) \notin \mathcal{E}$ ).

## References

- D. Acemoglu, G. Como, F. Fagnani, and A. Ozdaglar. Opinion fluctuations and disagreement in social networks. *Mathematics of Operation Research*, 38(1):1–27, 2013.
- [2] E. Lieberman, C. Hauert, and M.A. Nowak. Evolutionary dynamics on graphs. *Nature*, 433:312–316, January 2005.