Ph.D. course on Network Dynamics Homework 3

To be discussed on Tuesday, October 22, 2013

Exercise 0 Do Exercise 6 of Homework 2.

Exercise 1 (Mixing time on the hyper-cube). For $d \ge 1$, let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be the d-dimensional hypercube (with node set $\mathcal{V} = \{0,1\}^d$), and let P be the stochastic matrix associated to the lazy random walk on \mathcal{G} . Consider the Markov chain $(Z^1(t), Z_2(t))$ on $\mathcal{V} \times \mathcal{V}$ obtained by sampling at each time $t \ge 0$ a uniformly distributed component $I(t) \in \{1, \ldots, d\}$ and a an independent uniform binary variable B(t), and putting $Z^1_{I(t)}(t+1) = Z^2_{(I(t))}(t+1) = B(t)$ and $Z^j_i(t+1) = Z^j_i(t)$ for all $i \in \{1, \ldots, d\} \setminus \{I(t)\}$ and $j \in \{1, 2\}$. Show that this is a Markov coupling for P, and use it to obtain an upper bound on the mixing time of P. (Hint: use Exercise 4 of Homework 2.)

Exercise 2 (Voter model and 'conservation of the total magnetization'). Let $\mathcal{G} := (\mathcal{V}, \mathcal{E})$ be a strongly connected directed graph. Consider the following Markov chain X(t) on $\{0, 1\}^{\mathcal{V}}$: at time $t \ge 0$ a directed link $(i, j) \in \mathcal{E}$ is sampled with uniform probability from \mathcal{E} , and the state is updated as $X_i(t + 1) = X_j(t)$, and $X_k(t + 1) = X_k(t)$ for all $k \in \mathcal{V} \setminus \{i\}$ (i.e., node i copies node j's state, and the other states do not change). This is (a special of) the voter model. For every choice of the initial state $X(0) \in \{0, 1\}^{\mathcal{V}}$,

- (a) show that, with probability one, X(t) converges to one of the two absorbing states, the all-zero vector **0** or the all-1 vector **1**.
- (b) prove that, if \mathcal{G} is undirected (in the sense that $(i, j) \in \mathcal{E}$ if and only if $(j, i) \in \mathcal{E}$), then

$$\mathbb{P}\left(X(t) \xrightarrow{t \to \infty} \mathbf{1} | X(0)\right) = \frac{1}{n} \sum_{v \in \mathcal{V}} X_v(0) \,.$$

(Hint: prove that $n^{-1} \sum_{v} \mathbb{E}[X_v(t)]$ is constant in t: in the statistical physics jargon, such a property is sometimes referred to as 'conservation of the total magnetization'.)

 (c^*) generalize (b) to directed graphs by proving that

$$\mathbb{P}\left(X(t) \stackrel{t \to \infty}{\longrightarrow} \mathbf{1} | X(0)\right) = \sum_{v \in \mathcal{V}} \pi_v X_v(0) \,,$$

where π is the stationary distribution of a suitably defined irreducible stochastic matrix P. (you should explicitly construct such P!)

Exercise 3 (Universal bounds on the mixing time for random walks). Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a connected undirected graph with $n := |\mathcal{V}|$ nodes and $m := |\mathcal{E}|$ links. Let P be the stochastic matrix associated to the lazy random walk on \mathcal{G} .

- (a) Use Cheeger's inequality to prove that the mixing time of P satisfies $\tau_{\text{mix}} \leq Cm^2 \log m$, for $m \geq 2$, where C > 0 is an absolute constant;
- (b**) Prove that the spectral gap of P satisfies $1 \lambda_2 \geq C'/(nm)$, where C' > 0 is an absolute constant,. (hint: first observe that, for all x such that $\pi' x = 0$ and $\sum_v \pi_v x_v^2 = 1$, one has that $x^* x_* \geq 1/\sqrt{2m}$, where $x^* := \max_v x_v$ and $x_* := \min_v x_v$. Then, find a simple path $\mathcal{P} = (i = v_0, v_1, \ldots, v_k = j)$ in \mathcal{G} joining $i := \operatorname{argmax}_v x_v$ to $j := \operatorname{argmin}_v x_v$ and use Cauchy-Schwartz's inequality to prove that $k \sum_{1 \leq l \leq k} (x_{v_l} x_{v_{l-1}})^2 \geq 1/(2m)$. Use the variational characterization of $1 \lambda_2$.)
 - (c) Use (b) to show that $\tau_{\min} \leq C'' n^3 \log n$ for $n \geq 2$ where C'' > 0 is some absolute constant.