Ph.D. course on Network Dynamics Homework 2

To be discussed on Tuesday, October 15, 2013

Exercise 1 (Stochastic matrices are non-expansive in total variation distance). Let P be a stochastic matrix and μ, ν two probability vectors.

(a) Prove that

$$||P'\nu - P'\mu||_{TV} \le ||\nu - \mu||_{TV}$$

Now, assume that, for all i, j there exists k such that $P_{ik}P_{jk} > 0$.

(b) Prove that

$$||P'\nu - P'\mu||_{TV} < ||\nu - \mu||_{TV}$$

Exercise 2 (Lower bound on expected hitting time and Kac's formula). Let P be a stochastic matrix and $\pi = P'\pi$ a stationary distribution. Let $\mathcal{A} \subseteq \mathcal{V}$ be a subset of states such that $\pi(\mathcal{A}) > 0$, and let $T_{\mathcal{A}} := \inf\{t \ge 0 : V(t) \in \mathcal{A}\}$ and $T_{\mathcal{A}}^+ := \inf\{t \ge 1 : V(t) \in \mathcal{A}\}$ be, respectively, the hotting time and the return time on \mathcal{A} for the Markov chain V(t) with transition probability matrix P. Write $\mathbb{P}_{\pi}(\cdot) := \sum_{v \in \mathcal{V}} \pi_v \mathbb{P}(\cdot | V(0) = v)$ for the probability when V(0) is distributed according to π and $\mathbb{E}_{\pi|_{\mathcal{A}}}(\cdot) := \pi(\mathcal{A})^{-1} \sum_{a \in \mathcal{A}} \pi_a \mathbb{E}[\cdot | V(0) = a]$ for the expectation when V(0) is distributed according to $\pi|_{\mathcal{A}}$, i.e., π conditioned on \mathcal{A} .

(a) Prove that

 $\mathbb{P}_{\pi}(T_{\mathcal{A}} < t) \le t\pi(\mathcal{A}), \qquad \forall t \ge 0.$

(hint: use the fact that $\{T_{\mathcal{A}} < t\} = \bigcup_{s=0}^{t-1} \{V(s) \in \mathcal{A}\}$ and stationarity)

(b**) Prove Kac's formula

$$\mathbb{E}_{\pi|_{\mathcal{A}}}[T_{\mathcal{A}}^+] = \frac{1}{\pi(\mathcal{A})}$$

(hint: observe that

 $\mathbb{P}_{\pi}(V(1) \notin \mathcal{A}, V(2) \notin \mathcal{A}, \dots, V(t) \notin \mathcal{A}) = \mathbb{P}_{\pi}(V(0) \notin \mathcal{A}, V(1) \notin \mathcal{A}, \dots, V(t-1) \notin \mathcal{A}),$

for all $t \geq 1$, by stationarity, and use it to prove that

$$\mathbb{P}_{\pi}(T_{\mathcal{A}}^{+}=t)=\pi(\mathcal{A})\mathbb{P}_{\pi|_{\mathcal{A}}}(T_{\mathcal{A}}^{+}\geq t)\,,$$

then sum both sides of the above over all $t \geq 1$.)

Exercise 3 (Hitting times and probabilities on the line). Consider the simple random walk V(t) on the line graph with nodes $\{0, 1, \ldots, n-1, n\}$. For $0 \le k \le n$, let $\tau_k := \mathbb{E}[T_{\{0,n\}}]$ and $p_k = \mathbb{P}(T_n < T_k)$ be respectively the expected hitting time on the set $\{0, n\}$, and the probability of hitting node n before node 0, conditioned on starting from node k.

- (a) Prove that $\tau_k = k(n-k)$ for all $0 \le k \le n$;
- (b) Prove that $p_k = k/n$ for all $0 \le k \le n$.

Exercise 4 (Coupon collector lemma). Consider the following stochastic process. Let X_1, X_2, \ldots be a sequence of independent random variables, with identical uniform distribution over a finite set $\{1, \ldots, n\}$. For all $t \ge 0$, let $Z_t := |\{X_1, \ldots, X_t\}|$ be number of distinct realizations up to time t, and let $T_n := \inf\{t \ge 0 : Z_t = n\}$ be the first time t that every value in $\{1, \ldots, n\}$ has occurred at least once in the t-tuple X_1, \ldots, X_t . This may be thought of a modeling a company issuing n different different types of coupons and of a collector buying every day a random coupon. How long should he/she wait to get all the coupons?

(a) Prove that

$$n\log n \le \mathbb{E}[T_n] \le n(\log n + 1)$$

(hint: conditioned on having collected k coupons, the time to wait before getting a new coupon has geometric distribution with expected value $\frac{n}{n-k}$. Then, use the fact (why?) that $\log n \leq \sum_{k=1}^{n} 1/k \leq \log n + 1$)

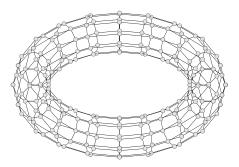


Figure 1: 2-dimensional torus.

 (b^*) Prove that, for all c > 0,

$$\mathbb{P}(T_n > \lceil n \log n + cn \rceil) \le e^{-c}.$$

(hint: let A_i be the event that coupon *i* has not shown up among the first $\lceil n \log n + cn \rceil$ coupons bought. Then, prove that $\mathbb{P}(T_n > \lceil n \log n + cn \rceil) \le \sum_{i=1}^n \mathbb{P}(A_i)$, and that $\mathbb{P}(A_i) \le e^{-c}/n$ for all $1 \le i \le n$)

Exercise 5 (mixing time on the *d*-dimensional torus). The *d*-dimensional torus of size $n = m^d$, where *m* and *d* are positive integers, is the graph \mathcal{G} with node set $\mathcal{V} = \{0, 1, \ldots, n-1\}^d$, and where two nodes $u, v \in \mathcal{V}$ are linked to each other if and only if there exists $1 \leq i \leq k$ such that $u_i - v_i \in \{-1, 1\}$ (where the difference is modulo *n*) and $u_k = v_k$ for all $k \in \{1, \ldots, d\} \setminus \{i\}$. For d = 2 the graph is plotted in Fig. 1. Let *P* be the stochastic matrix associated of the lazy random walk on \mathcal{G} .

(a) Construct a coupling and use it to prove that the mixing time of P satisfies

 $\tau_{\rm mix} < d^2 n^{2/d}$

(hint: build upon the coupling constructed in class: at each t, chose $1 \le i \le d$ uniformly and let $V_1 V_2$ move along component $i \ldots$)

(b) Prove a lower bound on τ_{mix} using the conductance bound.

Exercise 6 (mixing time of Google's PageRank algorithm). Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be the directed graph describing the WWW, whose nodes $v \in \mathcal{V}$ correspond to webpages and where there is a directed edge $(u, v) \in \mathcal{E}$ whenever page u has a hyperlink directed to page v. Let $d_u := |\mathcal{E}_u|$ and $\mathcal{E}_u := \{v : (u, v) \in \mathcal{E}\}$ be the number of hyperlinks and, respectively, the set of linked pages, from page u. Define a stochastic matrix Q by $Q_{uv} = 1/n$ for all v if $d_u = 0$, and, if $d_u \geq 1$, let $Q_{uv} = 0$ if $(u, v) \notin \mathcal{E}$ and $Q_{uv} = 1/d_u$ if $(u, v) \in \mathcal{E}$. Also, let μ be the uniform distribution over the set of webpages, and $\beta \in (0, 1)$.

(a) Prove that the equation $\pi = (1 - \beta)Q'\pi + \beta\mu$ has a unique solution π which is a probability vector; (hint: it is sufficient to show that the matrix $W := (I - (1 - \beta)Q')$ is strictly diagonally dominant, hence nonsingular, so that $\pi = \beta W^{-1}\mu$ is the unique solution)

In fact, π is the PageRank vector, first introduced by Brin and Page [1] to measure the relative importance of webpages. Typical values of β used in practice are about 0.15. For general probability distribution μ , the vector π is referred to as the personalized PageRank [2], and is used in context-sensitive searches. Consider the irreducible stochastic matrix

$$P := (1 - \beta)Q + \beta \mathbb{1}\mu',$$

and observe that π is its stationary distribution. In fact, the PageRank vector can be interpreted as the stationary distribution of a random walk on the directed graph \mathcal{G} , which, at each time t, is restarted with probability β from a random webpage chosen uniformly from \mathcal{V} .

(b) Construct a Markov coupling for P, and use it to prove that its mixing time satisfies

$$\tau_{\min} \leq \left\lceil \frac{-1}{\log(1-\beta)} \right\rceil \leq \frac{1}{\beta} + 1.$$

References

- S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In *Proceedings of the 7th International World Wide Web Conference*, pages 107–117, 1998.
- [2] H. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. *IEEE Transactions on Knowledge Data Engineering*, 15(4):784–796, 2003.