
Ph.D. course on Network Dynamics

Homework 2

To be discussed on Tuesday, October 15, 2013

Exercise 1 (Stochastic matrices are non-expansive in total variation dis-
tance). Let P be a stochastic matrix and µ, ν two probability vectors.

(a) Prove that
||P ′ν − P ′µ||TV ≤ ||ν − µ||TV

Now, assume that, for all i, j there exists k such that PikPjk > 0.

(b) Prove that
||P ′ν − P ′µ||TV < ||ν − µ||TV

Exercise 2 (Lower bound on expected hitting time and Kac’s formula). Let
P be a stochastic matrix and π = P ′π a stationary distribution. Let A ⊆ V
be a subset of states such that π(A) > 0, and let TA := inf{t ≥ 0 : V (t) ∈ A}
and T+

A := inf{t ≥ 1 : V (t) ∈ A} be, respectively, the hotting time and the
return time on A for the Markov chain V (t) with transition probability matrix
P . Write Pπ( · ) :=

∑

v∈V πvP( · |V (0) = v) for the probability when V (0) is
distributed according to π and Eπ|A( · ) := π(A)−1

∑

a∈A πaE[ · |V (0) = a] for
the expectation when V (0) is distributed according to π|A, i.e., π conditioned
on A.

(a) Prove that
Pπ(TA < t) ≤ tπ(A) , ∀t ≥ 0 .

(hint: use the fact that {TA < t} = ∪t−1

s=0{V (s) ∈ A} and stationarity)
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(b**) Prove Kac’s formula

Eπ|A[T
+

A ] =
1

π(A)

(hint: observe that

Pπ(V (1) /∈ A, V (2) /∈ A, . . . , V (t) /∈ A) = Pπ(V (0) /∈ A, V (1) /∈ A, . . . , V (t−1) /∈ A) ,

for all t ≥ 1, by stationarity, and use it to prove that

Pπ(T
+

A = t) = π(A)Pπ|A(T
+

A ≥ t) ,

then sum both sides of the above over all t ≥ 1.)

Exercise 3 (Hitting times and probabilities on the line). Consider the simple
random walk V (t) on the line graph with nodes {0, 1, . . . , n − 1, n}. For
0 ≤ k ≤ n, let τk := E[T{0,n}] and pk = P(Tn < Tk) be respectively the
expected hitting time on the set {0, n}, and the probability of hitting node n
before node 0, conditioned on starting from node k.

(a) Prove that τk = k(n− k) for all 0 ≤ k ≤ n;

(b) Prove that pk = k/n for all 0 ≤ k ≤ n.

Exercise 4 (Coupon collector lemma). Consider the following stochastic
process. Let X1, X2, . . . be a sequence of independent random variables, with
identical uniform distribution over a finite set {1, . . . , n}. For all t ≥ 0, let
Zt := |{X1, . . . , Xt}| be number of distinct realizations up to time t, and let
Tn := inf{t ≥ 0 : Zt = n} be the first time t that every value in {1, . . . , n}
has occurred at least once in the t-tuple X1, . . . , Xt. This may be thought of
as modeling a company issuing n different different types of coupons and of
a collector buying every day a random coupon. How long should he/she wait
to get all the coupons?

(a) Prove that
n logn ≤ E[Tn] ≤ n(log n+ 1)

(hint: conditioned on having collected k coupons, the time to wait before
getting a new coupon has geometric distribution with expected value n

n−k
.

Then, use the fact (why?) that logn ≤
∑n

k=1
1/k ≤ log n+ 1)
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Figure 1: 2-dimensional torus.

(b*) Prove that , for all c > 0,

P(Tn > ⌈n log n+ cn⌉) ≤ e−c .

(hint: let Ai be the event that coupon i has not shown up among the
first ⌈n log n+ cn⌉ coupons bought. Then, prove that P(Tn > ⌈n logn+
cn⌉) ≤

∑n
i=1

P(Ai), and that P(Ai) ≤ e−c/n for all 1 ≤ i ≤ n)

Exercise 5 (mixing time on the d-dimensional torus). The d-dimensional
torus of size n = md, where m and d are positive integers, is the graph G
with node set V = {0, 1, . . . , n−1}d, and where two nodes u, v ∈ V are linked
to each other if and only if there exists 1 ≤ i ≤ k such that ui − vi ∈ {−1, 1}
(where the difference is modulo n) and uk = vk for all k ∈ {1, . . . , d} \ {i}.
For d = 2 the graph is plotted in Fig. 1. Let P be the stochastic matrix
associated of the lazy random walk on G.

(a) Construct a coupling and use it to prove that the mixing time of P
satisfies

τmix ≤ d2n2/d

(hint: build upon the coupling constructed in class: at each t, chose
1 ≤ i ≤ d uniformly and let V1 V2 move along component i ...)

(b) Prove a lower bound on τmix using the conductance bound.
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Exercise 6 (mixing time of Google’s PageRank algorithm). Let G = (V, E)
be the directed graph describing the WWW, whose nodes v ∈ V correspond to
webpages and where there is a directed edge (u, v) ∈ E whenever page u has
a hyperlink directed to page v. Let du := |Eu| and Eu := {v : (u, v) ∈ E} be
the number of hyperlinks and, respectively, the set of linked pages, from page
u. Define a stochastic matrix Q by Quv = 1/n for all v if du = 0, and, if
du ≥ 1, let Quv = 0 if (u, v) /∈ E and Quv = 1/du if (u, v) ∈ E . Also, let µ be
the uniform distribution over the set of webpages, and β ∈ (0, 1).

(a) Prove that the equation π = (1 − β)Q′π + βµ has a unique solution
π which is a probability vector; (hint: it is sufficient to show that the
matrix W := (I − (1 − β)Q′) is strictly diagonally dominant, hence
nonsingular, so that π = βW−1µ is the unique solution)

In fact, π is the PageRank vector, first introduced by Brin and Page [1] to
measure the relative importance of webpages. Typical values of β used in
practice are about 0.15. For general probability distribution µ, the vector π is
referred to as the personalized PageRank [2], and is used in context-sensitive
searches. Consider the irreducible stochastic matrix

P := (1− β)Q+ β1µ′ ,

and observe that π is its stationary distribution. In fact, the PageRank vector
can be interpreted as the stationary distribution of a random walk on the
directed graph G, which, at each time t, is restarted with probability β from
a random webpage chosen uniformly from V.

(b) Construct a Markov coupling for P , and use it to prove that its mixing
time satisfies

τmix ≤

⌈

−1

log(1− β)

⌉

≤
1

β
+ 1 .
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