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Abstract

Group codes matched to geometrically uniform signal sets allow to transmit at higher
spectral efficiency while inheriting many of the structural properties enjoyed by binary
linear codes. In this thesis the information-theoretical limits of Abelian group codes are
analyzed.

The capacity achievable by Abelian group codes over symmetric channels is char-
acterized. For many important examples, like the Gaussian channel with the m-PSK
modulation as input, Abelian group codes are shown to achieve Shannon capacity, as it
is well-known to be the case for binary-linear codes over binary-symmetric channels. A
counterexample is presented, based on a three dimensional signal set, for which instead,
despite its group symmetry, the use of Abelian group codes leads to a loss in capacity.

The problem of characterizing the minimum Bhattacharyya distance of the typical
Abelian group code is addressed. For the Gaussian channel with 8-PSK as input it is
shown that the typical cyclic group code asymptotically meets the Gilbert-Varshamov
bound, while the typical random code does not. This generalizes a result known for
binary linear codes. It is also shown that a random binary affine code is bounded away
from the Gilbert-Varshamov bound of this channel with probability one. Similar results
can be inferred for the typical error exponent. This shows that not only group codes
matching the symmetry of the channel cause no loss in capacity, but they can guarantee
better performance.

Structural properties of low-density parity-check (LDPC) codes over finite Abelian
groups are studied. Two ensembles of regular LDPC codes over the cyclic group Zm are
analyzed. In the first one the non-zero entries of the parity matrix are all equal to 1;
in the second one they are randomly chosen, independently and uniformly, from the set
of units of Zm. Precise combinatorial results are established for the exponential growth
rate of their type-enumerating functions with respect to the code-length. Minimum
Bhattacharyya distance properties are analyzed when such codes are employed over a
Zm-symmetric transmission channel. In particular, in both cases minimum distances are
shown to grow linearly in the code-length with probability one, and lower bounds are
provided for the typical normalized minimum distance. Numerical results are presented
indicating that the second ensemble definitely outperforms the first. Generalizations to
LDPC codes over finite Abelian groups are also discussed.

The main topics left for future research consist in extending the theory to non-
Abelian group codes and analyzing the performance of LDPC codes over Abelian groups
with message-passing decoding.
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Chapter 1

Introduction

This dissertation deals with the analysis and design of transmission codes with Abelian
group structure. The motivation comes from communication engineering, specifically the
problem of reliable transmission of digital data over a bandwidth-limited noisy channel.

This is a classic problem of information theory dating back to Shannon’s seminal
work [60]. Shannon proved that for every transmission channel there exists a threshold
C, called the capacity of the channel, such that arbitrarily reliable communication is
possible at any rate below C, and conversely reliable transmission is not possible at
rates above C. However, for almost fifty years Shannon’s theoretical limits remained
practically unreachable because of the unaffordable complexity of capacity-achieving
coding schemes.

A major breakthrough in the discipline came in the ’90s with the introduction of
turbo codes [8] and the rediscovery of Gallager’s low-density parity-check (LDPC) codes
[30], which for the first time made it possible to achieve Shannon’s theoretical limits in
practice. Both these high-performance schemes are based on binary linear codes (i.e.
linear subspaces over the binary field Z2) admitting a sparse graphical representation
which allows them to be decoded using a low-complexity message-passing algorithm,
known as belief propagation [52]. In particular LDPC codes are obtained as kernels of
sparse binary matrices, i.e. binary matrices containing a limited amount of non-zero
entries both in each row and in each column. To any LDPC matrix a sparse factor
graph is associated, over which the message-passing decoding algorithm is implemented.

In this thesis, extensions of the theory of LDPC codes to the framework of group
codes will be considered. Group codes are codes that have a group property under a
componentwise group operation. They allow to use non-binary, highly spectral-efficient,
geometrically uniform modulations, while inheriting many of the nice structural proper-
ties enjoyed by binary linear codes. The first part of the thesis is devoted to a fundamen-
tal investigation of the information-theoretical limits of Abelian group codes, with no
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constraints on the density of their kernel (syndrome) representation. In the second part,
structural properties of LDPC codes over arbitrary Abelian groups are investigated.
Studying information-theoretical limits of Abelian group codes is propaedeutic to the
analysis of LDPC codes over Abelian group. Indeed, this approach makes it possible to
distinguish between the possible limitation in performance due to the group structure
and the one due to the sparseness of their graphical representation.

1.1 Ensembles of codes over Abelian groups

Group codes were first introduced by Slepian [64] as extensions of binary linear codes
[63]. A prototypical example comes from the m-PSK Gaussian channel. This is a channel
accepting as possible input any element in the set m-PSK, consisting of all the m-ary
complex roots of the unity; the received output is obtained by adding a homogeneous,
zero-mean, two-dimensional Gaussian variable. By considering the natural labeling λ :

Zm → m-PSK, with λ(l) = e
l

m2πi, any subgroup C ≤ ZN
m yields, through λ, a code over

m-PSK. Such a code (as well as the associated subgroup) is called a Zm-code.
All this construction can be generalized to a broader family of memoryless trans-

mission channels which are symmetric with respect to the action of a finite, possibly
non-Abelian, group G. In this case a group code over G, briefly G-code, is any subgroup
of the direct group product GN . Group codes have complete symmetry, and as a con-
sequence they have congruent Voronoi regions and invariant distance profiles, and they
enjoy the uniform error property, i.e. independence of the error probability on the trans-
mitted codeword. Structural properties of group codes have been extensively studied
during the ’80s and the ’90s using the theory of behavioral group systems: minimality
of state representation, existence of feedback-free encoders and syndrome formers -see
[29] and references therein. In particular it is known that Abelian group codes admit
both homomorphic encoders and syndrome-formers.

Recently, group codes have made their appearance also in the context of turbo codes
[33, 20, 21, 22] and of LDPC codes [6, 66]. LDPC codes over a finite Abelian group G,
briefly LDPC G-codes are subgroups of GN admitting sparse syndrome representation.
In the cyclic case G # Zm this means that we are considering codes

C = {x ∈ ZN
m | Φx = 0} ,

where Φ in ZN×L
m is a matrix containing only a linear (in N) amount of non-zero entries.

LDPC codes over non-binary alphabets were first introduced in Gallager’s seminal work
[30, Sect.5], then more recently studied in [14, 6, 66, 7, 19]. However, almost all the
results available in the literature are limited to LDPC codes over finite fields, while
in this thesis a theory for LDPC codes over arbitrary finite Abelian groups will be
developed.
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A fundamental issue characterizing information theory since its beginning is the use
of the probabilistic method [1]. In order to prove the existence of a coding scheme
with certain properties, a probability space is constructed (code ensemble) and then it
is shown that a randomly chosen code from this space satisfies the desired properties
with positive probability. The probabilistic method was first used by Erdős [18] in graph
theory. It was Shannon who introduced it in information theory in order to prove coding
theorems [60]. He introduced the random coding ensemble, essentially consisting in the
set of all codes of a given rate equipped with the unform probability, and showed that
whenever the design rate is below capacity the average error probability vanishes in the
limit of large block-lengths.

Rather than being an existence proof technique only (often misrepresented as ‘non-
constructive’), in modern coding theory [57] the probabilistic method is exploited as a
fundamental design tool as well. When a code ensemble can be shown to attain some
desired performance (asymptotically) almost surely, then a way to construct a coding
scheme simply consists in randomly generating it accordingly to the code ensemble dis-
tribution. Different code ensembles can be compared in terms of their average or almost-
sure performance, and design criteria can be optimized. In particular low-complexity
code constructions are obtained randomly generating their sparse graphical representa-
tions. Most of the results of this thesis concern the performance of code ensembles with
Abelian group structure.

1.2 Summary of the thesis

Chapter 2

In this chapter, all notation is introduced and Shannon classical coding theory for mem-
oryless channel is summarized. The class of symmetric memoryless channels is intro-
duced, the main example consisting in the AWGN channel with input constrained on
a geometrically uniform constellation. The Gilbert-Varshamov bound for the minimum
Bhattacharyya distance on symmetric memoryless channels is presented. Finally, group
codes are introduced, as well as type-enumerating functions.

Chapter 3

In this chapter the theory of linear codes over binary symmetric channels is extended
to group codes over non-binary symmetric channels. When a finite group G does admit
Galois field structure (i.e. when it is isomorphic to Zr

p for some prime p and positive
integer r), it is a well known result of classical information theory [17, 31] that G-codes
(and in fact linear codes over the Galois field Fpr) allow to achieve Shannon capacity and
average error exponent of a symmetric memoryless channel. We address the question
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whether the same holds true in the more general context of group codes: a result in this
sense was conjectured by Loeliger in [44].

We solve this problem for a generic finite Abelian group G, showing that classical
information-theoretic results generalize in a nontrivial way. A new concept of capacity
is introduced, which we called G-capacity: it conveys information about Shannon ca-
pacities of subchannels associated to subgroups of G, and it is shown to be exactly the
information theoretical limit achievable by G-codes. Examples are presented showing
that in some cases G-capacity and Shannon capacity coincide while in other cases the
former is strictly less than the latter. In particular, for the m-PSK Gaussian channel
the Zm-capacity coincides with the Shannon capacity: therefore, in this case Zm-codes
allow to achieve capacity. Average error exponents are obtained as well; it is shown
that even when the use of Abelian group codes does not cause a loss in the achievable
capacity it does lower the average error exponent at low rates. Extension of the theory
to non-Abelian group codes has been left for future research: however, some results
available in the literature for non-Abelian group codes [27, 49, 39] seem to indicate that
the group product structure might not be the optimal choice for non-Abelian groups.

The material presented in this chapter is partially based on the following papers:

• G. Como, F. Fagnani, “Ensembles of Codes over Abelian Groups”, in Proceedings
of ISIT 2005 (Adelaide, SA, Australia), pp. 1788-1792, 5-9 Sept. 2005;

• G. Como F. Fagnani, “The capacity of Abelian group codes over symmetric chan-
nels”, submitted to IEEE Trans. Inform. Theory, 2005, av. at
http://calvino.polito.it/ricerca/2005/pdf/33 2005/art 33 2005.pdf.

Chapter 4

Beyond the capacity achievability problem, a fundamental question arising is whether,
given a memoryless transmission channel exhibiting certain symmetries, designing codes
matching these symmetries guarantees a gain with respect to designing codes without
taking these symmetries into account. This question has been addressed in the informa-
tion theory literature only for binary-input channels. In this case it is known that not
only are binary linear codes appealing because of their nice algebraic structure and sym-
metries, but they also outperform nonlinear codes over binary symmetric channels. In
fact random binary linear codes are known to meet with probability one the celebrated
Gilbert-Varshamov (GV) [30] lower bound on the minimum distance and the so-called
expurgated error exponent [4] . On the contrary, a binary codes sequence generated
randomly with no linearity constraints can be shown not to achieve the GV bound
with probability one. How this phenomenon generalizes to non-binary-input symmetric
channels and group codes?
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We focus on a special case, the 8-PSK AWGN channel, containing most of the key
ingredients of the general situation. We analyze three different code ensembles all of
which are capacity achieving: the random coding ensemble, i.e. the set of all possible
codes (with no algebraic structure requirement), the Z8-code ensemble consisting in
the set of all subgroups of ZN

8 , and the binary affine code ensemble consisting in the
set of all codes which are affine subspaces of Z3N

2 . While, analogously to the binary
case, the random coding ensemble does not asymptotically achieve the GV bound with
probability one, we prove that almost surely a random Z8-group code sequence achieves
the GV bound. We also show that almost surely a sequence of binary affine codes has
minimum distance asymptotically bounded away from the GV distance. Similar results
can be obtained for the error exponent which (at low rates) is larger for a typical Z8-
code sequence than it is for a typical binary affine code sequence or for a typical code
sequence sampled from the random coding ensemble. This stands in contrast with the
results obtained for the average error exponent, which is larger for the random coding
ensemble and for the binary affine ensemble than it is for the Z8-group code ensemble:
hierarchies are reversed! The paradox can be explained by the fact that the average case
analysis only gives a one side estimation of the performance of a typical code (thanks to
Markov inequality). Ensemble performance may fail to concentrate around its expected
value, and in this case the average case analysis ends up to be too conservative in
estimating the error exponent.

The material presented in this chapter is partially based on the following papers:

• G. Como, F. Fagnani, “On the Gilbert-Varshamov distance of Abelian group
codes”, in Proceedings of ISIT 2007 (Nice, France), pp., 26-30 June 2007;

• G. Como, F. Fagnani, “The outperformance of group codes over non-binary sym-
metric channels: minimum distances”, in preparation, 2008.

Chapter 5

The standard way to construct LDPC codes over a finite Abelian group G consists in
generating a random regular hypergraph with N nodes of a given degree c and L = Nc/d
hyperedges of degree d, and to associate to each hyperedge a homomorphism from
Gd to G. Sparseness is then enforced by considering the limit properties as N and
L tend to infinity while c and d are kept constant. While the optimization of the
degrees c and d has been widely studied in the literature of binary LDPC codes (more
in general degree profiles for irregular ensembles are considered), the way to associate
local homomorphisms to the hyperedges is a peculiar design parameter of non-binary
LDPC codes.

We analyze structural properties of ensembles of regular LDPC codes over an Abelian
group G. The non-zero entries of the parity matrix are randomly chosen, independently
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and uniformly, from an arbitrary label group F of automorphisms of G. The two ex-
treme cases are F = {1} -called the unlabelled ensemble-, and F = Aut(G) -called
the uniformly labeled ensemble. We study in full detail average type-spectra and min-
imum Bhattacharyya distances of the LDPC ensembles introduced above. We show
that minimum distances grow linearly in N with probability one, and we obtain almost
sure lower bounds on the asymptotic normalized minimum distance of the two LDPC
ensembles. Finally, we present some numerical results for the average distance-spectra
clearly indicating that the distance properties of the uniformly labelled ensemble are
much better than those of the unlabelled ensembles. The material presented in this
chapter is partially based on the following papers:

• G. Como, F. Fagnani, “Ensembles of Codes over Abelian Groups”, in Proceedings
of ISIT 2005 (Adelaide, SA, Australia), pp. 1788-1792, 5-9 Sept. 2005;

• G. Como, F. Fagnani, “Average spectra and minimum distances of low-density
parity-check codes over cyclic groups”, submitted to SIAM Journal on Discrete
Mathematics, 2007;

6



Chapter 2

Memoryless symmetric channels
and group codes

In this chapter, all notation is introduced. Shannon classical coding theory for mem-
oryless channel is summarized in Sect.2.2. In Sect. 2.3 the class of symmetric memo-
ryless channels is introduced, the main example consisting in the AWGN channel with
input constrained on a geometrically uniform constellation. In Sect. 2.4 the Gilbert-
Varshamov bound for the minimum Bhattacharyya distance on symmetric memoryless
channels is presented. Finally, in Sect.2.5 group codes are introduced, as well as type-
enumerating functions.

2.1 Notation

Throughout this dissertation N, Z, Q, R, C will denote the usual number sets. With
R+ := [0,+∞) and R+ := (0,+∞) we will indicate the sets respectively of nonnegative
and positive reals. If z is in C, z∗ is its conjugate. The functions log and exp are to
be considered with respect to a fixed, arbitrarily chosen positive base, unless explicit
mention to the contrary. Conventionally, exp(−∞) = 0, exp(+∞) = +∞, inf(∅) = +∞,
sup(∅) = −∞. For any subset B ⊆ A, B := A\B will denote the complementary of B in
A, while B : A → {0, 1} will denote the indicator function of B, defined by B(a) = 1
if a belongs to B, B(a) = 0 otherwise.

Let A = (A,B, ν) be a σ-finite measure space [58]. As usual L1(A) will denote the
space of (equivalence classes of) absolutely integrable functions f : A → R, and P(A) ⊆
L1(A) the subset of probability densities, namely real valued functions f ∈ L1(A) such
that f(a) ≥ 0 ν-almost everywhere, and such that

∫

A f(a) dν(a) = 1.
In the applications we have in mind there will basically be two possible situations.

One case is when A is finite, the σ-algebra B consists of all the subsets of A and ν is the
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counting measure on A. In this case L1(A) = RA, the space of all the possible functions
from A to R and

∫

A
f(a) dν(a) =

∑

a∈A

f(a) .

P(A) thus consists of the usual probability distributions over the finite set A, namely
functions f : A → R+ such that

∑

a∈A f(a) = 1. With slight abuse of notation we will
also write in this case, P(A) for P(A).

The other case we will consider is when A is the n-dimensional Euclidean space Rn,
B is the Borel σ-algebra and ν is the Lebesgue measure. In this case P(A) consists of the
usual probability densities on Rn. The readers preferring concrete formalism may think
of these two examples. We prefer to keep the abstract formalism in our derivations: in
this way we will be able to cover discrete and continuous examples at once in a rigorous
way.

Given f ∈ P(A) we define the entropy of f as

H(f) = −
∫

{f>0}
f(a) log f(a) dν(a) , (2.1)

provided that the righthand side of (2.1) is well defined in [−∞,+∞]. Notice that
the definition of entropy is thus dependent on the specific chosen measure space and
in particular the integral in the righthand side of (2.1) is carried on with respect to
the specific measure ν. In the finite case (2.1) reduces to the usual discrete entropy
H(f) = −

∑

a:f(a)>0 f(a) log f(a) taking values in [0, log |A|]. In the continuous case
instead, it coincides with the so called differential entropy, effectively taking values in
[−∞,+∞] (see [3]). With a slight abuse of notation for any x in [0, 1] we will sometimes
denote by H(x) the entropy of the binary probability density f in P ({0, 1}) defined by
f(1) = x, f(0) = 1 − x. A few properties of the discrete entropy function are recalled
in the Appendix.

For two C-valued functions f ,g over a finite set A, we will use the notation 〈f ,g〉 :=
∑

a∈A f(a)g(a)∗ for their scalar product, while f · g ∈ CA will denote their pointwise
product. We shall indicate by supp(f) :=

{

a ∈ A
∣

∣ f(a) ,= 0
}

the support of f , while for

R+-valued f and C-valued g we define fg in C as fg :=
∏

a∈supp(f) f(a)g(a).

2.2 Shannon theory for memoryless channels

In this section some notation and basic results from Shannon classical theory of memo-
ryless channels is introduced.

A memoryless channel (MC) is described by

• a finite input set X ,
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• an output set consisting of a σ-finite measure space Y = (Y,B, ν),

• a family of transition probability densities P (·|x) ∈ P(Y) indexed by the elements
x ∈ X .

Such a channel will be identified by the triple (X ,Y, P ).
From a MC as above we can define the N -th extension having input set XN and

output set YN = (Y N ,BN , νN ) where BN is the product σ-algebra and νN is the product
measure. The corresponding transition probability densities are given by PN (y|x) =
∏N

j=1 P (yj|xj) and this motivates the name memoryless, the various transmissions being
probabilistically independent once the input signals have been fixed.

A block encoder for the MC (X ,Y, P ) consists of a finite set U and of a map φ :
U → XN . N is said to be the blocklength and

R :=
1

N
log |U|

the transmission rate. The image of a block encoder

C := φ(U) ⊆ XN

is a block code.
A decoder is any measurable mapping ψ : YN → U . A coding scheme consists of a

pair of an encoder and a decoder. Once a coding scheme has been fixed, its word error
probability can be defined as follows. Assume U is a r.v. uniformly distributed on U
and let X = φ(U). Let moreover Y be the r.v. on Y N whose probabilistic description
is given by the conditional density PN (y|x) and whose marginal density is thus given
by

PY (y) =
1

|U|
∑

u∈U

PN (y|φ(u))

(in doing this we are automatically enforcing independence between U and the channel).
Finally, let Û = ψ(Y ) be the decoder’s estimate of the transmitted message. The error
probability is the probability of the event {Û ,= U} and will be denoted by

pe(φ,ψ) :=
1

|U|
∑

u∈U

pe(Φ,ψ|u) ,

where

pe(Φ,ψ|u) :=

∫

YN
{ψ−1(U\{u})}(y)dνN (y)

is the error probability conditioned to the transmission of the information word u.
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It is well known that, given an encoder, the decoding scheme minimizing the error
probability is the so called maximum likelihood (ML) decoding

ψML(y) = argmax
u∈U

PN (y|φ(u)) ,

From now on we will always assume that ML decoding is used and will use the simpler
notation pe(φ) and pe(φ| u) for pe(φ,ψML) and pe(φ,ψML| u).

We recall a few simple consequences of ML decoding that will be used in the chapter.
We assume we have fixed an MC (X ,Y, P ), an encoder φ : U → XN and an element
u ∈ U .

(1) Let σ : U ′ → U be a bijection; then,

pe(φ| u) = pe(φ ◦ σ| σ−1(u)) (2.2)

(2) Consider a partition U \ {u} = U1 ∪ . . . ∪ Ur and define φi = φ|Ui∪{u}. Then

max
1≤i≤r

pe(φi| u) ≤ P (e|φ, u) ≤
r
∑

i=1

pe(φi| u) (2.3)

(3) If |φ−1(φ(u))| > 1, then

pe(φ| u) ≥ 1

2
. (2.4)

It follows from (2.2) that, if φ is injective, pe(φ) only depends on the encoder φ
through its image, the code C = φ(U). For this reason, we can speak of the error proba-
bility of a code C, denoted by pe(C). The reason for considering (possibly non-injective)
encoders, instead of codes only, is that sometimes they admit simpler parameterizations
which are suitable for probabilistic averaging arguments.

A further step in Shannon construction consists in considering, for given R ∈ [0, log |X |]
and N ∈ N, a r.v. Φ uniformly distributed over all possible maps from U to XN , where
|U| = /exp(RN)0. pe

R will denote the average error probability with respect to such
probability distribution over the set of all possible encoders having rate equal to R.

In order to state the classical Shannon result we are only left with defining capacity
and error exponents. The capacity of the MC (X ,Y, P ) is defined as

C := max
p∈P(X )

∑

x∈X

p(x)

∫

Y

P (y|x) log

(

P (y|x)
∑

z p(z)P (y|z)

)

dν(y) . (2.5)
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Its random coding exponent is instead defined as follows. We put, for any ρ ∈ [0, 1] and
p ∈ P(X ),

E0(ρ, p) := − log





∫

Y

(

∑

x∈X

p(x)P (y|x)
1

1+ρ

)1+ρ

dν(y)



 (2.6)

and we define

E(R) := max
0≤ρ≤1

max
p∈P(X )

E0(ρ, p)− ρR , R ∈ [0, log |X |] . (2.7)

A well known fact (see [31], [71]) is that

E(R) > 0 ⇔ R < C . (2.8)

Moreover E(R) is continuous, monotonically decreasing and convex in the interval [0, C),
while the dependence of both C and E(R) from the transition probabilities of the channel
is continuous (with respect to the L1(Y) norm). Also notice that, if (X ,Y, P ) and
(X ′,Y ′, P ′) are equivalent MCs, then their capacities and error exponents do coincide.

We can now state Shannon classical result:

Theorem 1 Assume we have fixed a MC (X ,Y, P ) having capacity C and random
coding exponent E(R). It holds

(a)
pe

R ≤ exp(−NE(R)) .

In particular this implies that the average error probability tends to 0 exponentially
fast for N → +∞, provided that the rate of the encoders is kept below C.

(b) For every R > C there exists a constant AR > 0 independent of N such that for any
coding scheme (φ,ψ) having rate not smaller than R, we have that pe(φ,ψ) ≥ AR.

2.3 Symmetric channels and geometrically uniform con-

stellations

In this thesis we will focus on channels exhibiting symmetries. Here we present funda-
mental definitions and examples.

We recall the concept of a group action. Given a finite group G with identity 1G and
a (finite) set A, we say that G acts on A if, for every g ∈ G, it is defined a map from A to
A denoted by a 2→ ga, such that 1Ga = a , ∀a ∈ A; h(ga) = (hg)a , ∀h, g ∈ G , ∀a ∈ A .
The action of G over A is said to be (simply) transitive if for every a, b ∈ A there exists
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(just) one element g of G such that ga = b. If the action is simply transitive, G and A
are clearly in bijection: g 2→ ga0 where a0 is some fixed reference element in A.

Given a σ-finite measure space Y = (Y,B, ν) we say that the group G acts isometri-
cally on Y if it is defined an action of G on Y consisting of measurable bijections such
that

ν(gA) = ν(A) ∀A ∈ B , ∀g ∈ G . (2.9)

Notice that in the case when Y is a finite set, (2.9) is trivially always verified so that
in this case all actions are isometric. Instead in the case when Y = Rn, (2.9) is a real
restriction and is verified if the maps y 2→ gy are isometries of Rn.

Definition 2 A MC (X ,Y, P ) is said to be G-symmetric if

(a) There exists a simply transitive action of G on X ,

(b) There exists an isometric action of G on Y,

(c) P (y|x) = P (gy|gx) for every g ∈ G, x ∈ X , y ∈ Y.

It follows from (a) that X and G are in bijection: often we will tend to identify them.
A first important property of G-symmetric channels is that, for both their Shan-

non capacity C and their random coding exponent E(R), the maximizing probability
distribution p ∈ P(X ) in the variational definitions (2.5) and (2.7) respectively can be
chosen to be the uniform distribution over the input set X . This easily follows from the
convexity of the righthand side of (2.5), and the log-convexity of the righthand side of
(2.6), as functions of the input distribution p, and their invariance with respect to the
transitive action of G.

We now present a couple of simple examples.

Example 1 (Binary-input output-symmetric channels) Consider the case when
G = Z2. Z2-symmetric channels are known in the coding literature as binary-input
output-symmetric (BIOS) channels. Typical examples are the binary symmetric channel
(BSC), where X = Y = {0, 1} and P (1|0) = P (0|1), and the binary erasure channel
(BEC), where X = {0, 1}, Y = {0, 1, 2}, P (1|0) = P (0|1) = 0 and P (2|0) = P (2|1).

Example 2 (m-ary symmetric channel) Consider a finite set X of cardinality m ≥
2 and some ε ∈ [0, 1]. The m-ary symmetric channel is described by the triple (X ,X , P ),
where P (y|x) = 1− ε if y = x and P (y|x) = ε/(m− 1) otherwise. This channel returns
the transmitted input symbol x as output with probability 1 − ε, while with probability ε
a wrong symbol is received, uniformly distributed over the set X \ {x}. The special case
m = 2 is the well-known binary symmetric channel.

The m-ary symmetric channel has the highest possible level of symmetry. Indeed,
it is G-symmetric for every group G of order |G| = m. To see this, it is sufficient
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to observe that every group acts simply and transitively on itself. Another family of
channels enjoying the same property is given by the additive Gaussian channel admitting
m orthogonal equal-energy signals as input. In fact these were the channels considered
by Gallager in [30, Sect.5]. Notice that whenever m = pr for some prime p and positive
integer r, the group G can be chosen to be Zr

p which is compatible with the structure of
the Galois field Fpr .

A rich and important family of symmetric channels is provided by additive channels
having geometrically uniform constellations as input. Consider the n-dimensional Eu-
clidean space Rn. An n-dimensional constellation is a finite subset S ⊂ Rn spanning
Rn, i.e. such that every x ∈ Rn can be written as x =

∑

s∈S αss with αs ∈ R. We will
restrict ourselves to the study of constellations S ⊂ Rn with barycenter 0, i.e. such that
∑

s∈S s = 0: they are the ones minimizing the average per symbol energy over the class
of those constellations obtained one from the other by applying isometries.

We denote by Iso(S) its symmetry group, namely the set of all isometric permutations
of S with the group structure endowed by the composition operation. Clearly Iso(S)
acts on S. S is said to be geometrically uniform (GU) if this action is transitive; a
subgroup G ≤ Γ(S) is a generating group for S if for every s, r ∈ S a unique g ∈ G
exists such that gs = r, namely if G acts simply transitively on S. It is well known that
not every GU constellation admits a generating group (see [65] for a counterexample).
However in what follows we will always assume that the constellations we are dealing
with, do admit generating groups, and, actually, Abelian ones.

Let S be an n-dimensional GU constellation equipped with a generating group G.
Define the S-AWGN channel as the n-dimensional unquantized AWGN channel with
input set S, output Rn with the usual measure structure, and transition probability
densities given by P (y|x) = N(y−x), where N(x) = (2πσ2)−n/2e−||x||2/2σ2

is the density
of an n-dimensional diagonal Gaussian random variable.

Now let S′ be another GU constellation such that S ⊆ S′ and G is isomorphic to a
subgroup of Iso(S′). Let us introduce the quantization map over the Voronoi regions of
S′

q : Rn → S′ , q(x) = argmin
s∈S′

||x− s|| ,

resolving non uniqueness cases by assigning to q(x) a value arbitrarily chosen from the
set of minima. We define the (S, S′)-AWGN channel as the MC obtained by applying
q to the output of the S-AWGN channel. Note that the special case S = S′ coincides
with the so called hard decoding rule.

Proposition 3 The S-AWGN channel and the (S, S′)-AWGN channel are both G-
symmetric.
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Notice that the above construction of G-symmetric channels with a GU constellation
as input can be extended to a much wider class of channels than the AWGN case.
Indeed, let S an n-dimensional GU constellation admitting generating group G. Let
f ∈ P(Rn) be any probability density over Rn depending only on the Euclidean norm of
the argument, i.e. such that there exists f̃ : R+ → R+ such that f(x) = f̃(||x||). An S
additive isotropic noise (S-AIN) channel is a memoryless channel (S, Rn,W ) such that
a function f ∈ P(Rn) as above exists with W (y|x) = f(y − x) for all y ∈ Rn, x ∈ S.

Example 3 The unquantized isotropic Laplacian channel with input constrained on S
is a S-AIN channel. Here Y = Rn with the Lebesgue measure ν, while transition laws
are given by

W (y|x) =
λnΓ(n/2)

2πn/2Γ(n)
e−λ||x−y|| ,

where λ > 0 is a fixed parameter and Γ(t) :=
∫ +∞
0 xt−1e−xdx is the well known Euler’s

Gamma function. !

Now let S′ be another GU constellation such that S ⊆ S′ and G ≤ Γ(S′). We define
an (S, S′)-AIN channel as the MC obtained by applying a quantization over Voronoi
regions of S′ to the output of an S-AIN channel. It is easy to see that the following
generalization of Proposition 3 holds true.

Proposition 4 Any S-AIN channel and any (S, S′)-AIN channel are both G-symmetric.

In the following we present some examples of GU constellations admitting Abelian
generating group.

Example 4 The simplest, one-dimensional, GU constellation is the 2-PAM, defined by

K2 := {1,−1} .

It is trivial to see that Γ(K2) # Z2 is a generating group for K2. It is also possible to
show that K2 is the only one-dimensional GU constellation.

Example 5 For any integer m ≥ 2, define ξm := ei 2π
m . Define the m-PSK constellation

as
Km :=

{

ξk
m, k = 0, . . . ,m− 1

}

⊂ C # R2 .

Clearly S is two-dimensional for m ≥ 3. It can be shown that Γ(Km) # Dm, where
Dm is the dihedral group with 2m elements. Km admits Zm, i.e. the Abelian group of
integers modulo m, as generating group. When m is even there is another generating

14



 0

2 

4 

6 

1 3 

5 7 

1

r 

r2 

r3 

s rs 

r2s r3s 

Figure 2.1: K8-constellation with the two labelings Z8 and D4
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Figure 2.2: Z8-labelled Kβ
8 and Z6-labelled Kβ

3×2

group (see [26], [44]): the dihedral group Dm/2, which is noncommutative for m ≥
6. Now, let m′ =am be an arbitrary multiple of m and define the quantization map
over Voronoi regions of the m′-PSK constellation. The m-PSK-AWGN channel and
the (m-PSK,m′-PSK)-AWGN channel are both Zm-symmetric and (for even m) Dm/2-
symmetric. Constellation K8 with the two possible labelings Z8 and D4 is reported in
Fig.2.1.

Next example shows how higher dimensional GU constellations can be obtained as
Cartesian product of lower dimensional ones.

Example 6 For any integer m > 2 consider the family of 3D GU constellations parametrized
by β ∈ (0,+∞)

Kβ
m×2 :=

{(

√

1

1 + β2
ξk
m,

√

β2

1 + β2
(−1)l

)

, k = 0, 1, 2, l = 0, 1

}

⊂ C× R # R3 .

Fig.5.1 shows the special case m = 3. It’s easy to show that Zm × Z2 is a generating
group for Kβ

m×2; notice that, for odd m, Zm×Z2 # Z2m. Thus, for odd m, unquantized
and quantized AWGN channels with input m-PSK×2-PAM are Z2m-symmetric. !
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Finally we provide an example of an ’effectively’ three-dimensional constellation.

Example 7 For even m > 2 we introduce the family of 3-dimensional GU constella-
tions, parametrized by β ∈ (0,+∞)

Kβ
m =

{(

√

1

1 + β2
ξk
m,

√

β2

1 + β2
(−1)k

)

, k = 1, . . . ,m

}

⊂ C× R # R3 .

An example with m = 8 is shown in Fig.5.1. It can be shown that, similarly to the
constellations Km, the the constellations Kβ

m have two different generating groups, Zm

and Dm/2; so, in the standard way, we obtain channels that are both Zm-symmetric and
Dm/2-symmetric. !

2.4 Bhattacharyya distance and the Gilbert-Varshamov

bound for symmetric channels

The Gilbert-Varshamov (GV) bound is one of the most famous lower bounds on the
achievable minimum Hamming distance of binary codes. Given a rate R in (0, log 2)
and defined δGV (R) as the unique solution in (0, 1/2) of the equation H(x) = log 2−R,
it states that there exist codes of length N and minimum distance at least NδGV (R),
for every N .

The GV bound was introduced in early ’50s [34, 70] and since then it has attracted
a huge amount of attention from researchers. In particular the asymptotic tightness of
the GV bound is one of the most important unproved conjectures in coding theory. This
problem is closely related to the tightness of the expurgated error exponent at low rates
[71]. A well known fact is that the Gilbert-Varshamov bound is asymptotically achieved
with probability one by the binary linear coding ensemble [30], while this is not the case
for the random coding ensemble. An analogous result holds for the expurgated error
exponent on the BSC [4].

In this section we will present an extension of the GV bound to the non-binary case.
There are many different notions of distance for non binary alphabets; the Hamming
distance and the Lee distance for instance have been widely studied. However these dis-
tances have no direct application to the error exponents of channels usually considered.
Here we will follow the approach of [9] considering the notion of Bhattacharyya distance
of a memoryless channel and dealing with the corresponding Gilbert-Varshamov bound.
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2.4.1 Bhattacharyya distance and weight

Consider a MC (X ,Y, P ) and two input elements x, x′ ∈ X , we can consider the quantity
∫

Y

√

P (y|x)P (y|x′)dν(y). Schwartz inequality gives

0 ≤
∫

Y

√

P (y|x)P (y|x′)dν(y) ≤
∫

Y P (y|x)dν(y)
∫

Y P (y|x′)dν(y) = 1 .

Moreover, the first inequality above is an equality iff the set {P ( · |x) > 0}∩{P ( · |x′) > 0}
has measure zero. Instead, the second inequality is equality iff P (·|x) = P (·|x′) ν-almost
everywhere, which means that actually x and x′ have indistinguishable outputs. In this
paper we will assume that, for every x ,= x′, 0 <

∫

Y

√

P (y|x)P (y|x′)dν(y) < 1. While
there is no loss of generality in the latter part of this assumption, the former excludes
from our analysis the class of channels whose 0-error capacity is strictly positive.

To any memoryless channel we can associate a function∆ : X ×X → R+ defined by

∆(x, x′) := − log

∫

Y

√

P (y|x)P (y|x′)dν(y) .

This function is usually called the Bhattacharyya distance (or simply∆-distance) of the
channel and satisfies

∆(x, x′) =∆(x′, x) , ∀x, x′ ∈ X ; ∆(x, x′) = 0 ⇔ x = x′ .

If the MC (X ,Y, P ) is G-symmetric, it is easy to verify that the Bhattacharyya
distance function ∆ satisfies

∆(gx, gx′) =∆(x, x′) ∀x, x′ ∈ X , g ∈ G .

Identifying X with G as usual we can introduce the so-called Bhattacharyya weight:

δ : G → [0,+∞) , δ(x) =∆(x, 1G) , x ∈ G .

Notice that ∆(x, x′) = δ(x−1x′).
Bhattacharyya distance and weight can be extended to direct products in a natural

way. Given x,x′ in XN , we put δ(x) =
∑N

i=1δ(xi) and ∆(x,x′)=
∑N

i=1∆(xi, x′
i). The

minimum ∆-distance of a code C ⊆ XN is defined as

dmin(C) := min{∆(x,x′)
∣

∣ x,x′ ∈ C, x ,= x′} .

In the case of a BIOS channel, we have that

∆(x,x′) =
∑N

i=1 δ(xi − x′
i) = δ(1) |{1 ≤ i ≤ N : xi ,= x′

i}| , ∀x,x′ ∈ XN ,
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i.e. the ∆-distance is proportional to the Hamming distance (the number of different
entries of two strings). For the m-ary symmetric channel of Example 2 we obtain,

∆(x,x′) = − log

(

εm−2
m−1 +

√

(1−ε)ε
m−1

)

|{1 ≤ i ≤ N : xi ,= x′
i}| , ∀x,x′ ∈ XN ,

so that once again the ∆-distance is proportional to the Hamming distance. For the
S-AWGN channel instead, we obtain

δ(x) = − log

∫

Rn

1√
2πσ2n e−(||y−λs(x)||2+||y−λs(1G)||2)/4σ2

dy = ||λs(x)− λs(1G)||2 log e

8σ2
,

∆(x,x′) = δ(x− x′) =
∑N

i=1 ||λs(xi − x′
i)− λs(1G)||2 log e

8σ2
= ||λs(x)− λs(x

′)||2 log e

8σ2
,

i.e. the Bhattacharyya distance is proportional to the squared Euclidean distance.

2.4.2 The Gilbert-Varshamov bound for symmetric channels

Suppose a G-symmetric MC is given, with G an arbitrary finite group, and let δ the
corresponding Bhattacharyya weight function. The Gilbert-Varshamov bound is a lower
bound on the largest normalized minimum distance achievable by codes over G with rate
greater than or equal to some value R. The result can be summarized as follows. For
every R in [0, log |G|], define

δGV (R) := inf
{

〈θ, δ〉
∣

∣ θ ∈ P(G) : H(θ) ≥ log |G|−R
}

.

The following version of the GV bound, can be deduced from [9].

Theorem 5 For every R in (0, log |G|) there exists a sequence of codes (CN ), with CN ⊆
XN , such that

R(CN ) ≥ R , dmin(CN ) ≥ NδGV (R) , ∀N ∈ N .

The proof of Theorem 5 is constructive and based on the following greedy algorithm:

• initialize A = XN , CN = ∅;

• select an arbitrary point x from A; add z to CN and erase from A the discrete
∆-ball of radius r := NδGV (R) centered in x

Br(x) :=
{

z ∈ XN : ∆(z,x) < NδGV (R)
}

;

• iterate the previous point until A = ∅.
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Clearly the algorithm described above constructs a code CN ⊆ XN whose minimum
distance satisfies dmin(CN ) ≥ NδGV (R). That it halts with a code whose rate R(CN )
is not smaller than R follows from the following estimate on the volume of discrete
∆-spheres Br(x) := {z ∈ XN : ||x− z|| ≤ r} (see [44] for the Euclidean space case):

|Br(x)| ≤ exp (N max {H(ϑ) |ϑ ∈ P(G) : 〈ϑ, δ〉 ≤ r/N}) .

While Theorem 5 above guarantees the existence of a sequence of codes with rate
not smaller than R and asymptotic normalized minimum distance above δGV (R), it is
clear that the greedy algorithm its proof is based on does not guarantee that such a
code sequence satisfies additional symmetry properties with respect to any algebraic
structure.

2.5 Group codes and type-enumerating functions

When the MC is symmetric according to Definition 2, a natural class of codes to be
considered is that of group codes. A group code over G, briefly G-code, of length N is any
subgroup of the direct group product GN . Group codes were first introduced by Slepian
[65] as an extension of binary linear codes (the latter correspond to the case G # Z2), and
then studied by [44, 26]. In fact, G-codes enjoy many of the properties of binary-linear
codes. In particular G-codes have complete symmetry, and as a consequence, when used
on G-symmetric MC they enjoy the uniform error property, i.e. independence of the
error probability on the transmitted codeword:

pe(C) = pe(C|x) , ∀ x ∈ C .

Structural properties of group codes have been extensively studied during the ’80s and
the ’90s using the theory of behavioral group systems: see e.g. [29] and references
therein.

For every G-code C of length N we now introduce some combinatorial quantities
characterizing its performance. The type-enumerating function of a G-code C is defined
as

WC : P(G) → Z+ , WC(θ) :=
∑

x : θG(x)=θ C(x) ∀ θ ∈ P(G) .

Notice that since C is a subgroup of GN , 1GN is always a codeword so that WC(δ1G) = 1.
Assume we have fixed a G-symmetric MC channel (X ,Y, P ) and let δ be its associ-

ated Bhattacharyya weight. The minimum ∆-distance of a G-code C of length N is a
function of its type-enumerating function:

dmin(C) = min{δ(x) | x ∈ C \ {0}}
= N inf

{

〈δ,θ〉
∣

∣ θ ∈ P(G) \ {δ0} : WC(θ) > 0
}

.
(2.10)
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Type-enumerating functions and the Bhattacharyya distance play an important role
in the estimation of the maximum-likelihood decoding error probability of G-codes over
memoryless G-symmetric channels. For instance, the so called union-Bhattacharyya
bound, for the error probability of a G-code C of length N , can be written in the form

pe(C) ≤
∑

θ∈P(G)
WC(θ) exp (−N〈δ,θ〉) . (2.11)

In fact, in Section 3.3.1 we will present a stronger result for the error probability of
group codes.

We observe that (2.10) and (2.11) do not generally hold when a G-code is employed
on MC which is not G-symmetric. While this is not an issue for the highly symmetric
channels considered in Example 2, it does matter for the by far more common (and
bandwidth efficient) AWGN chennel with a GU constellation as input. As a concrete
example, one can think of the 8-PSK Gaussian channel. In this case, while both (2.10)
and (2.11) are true for Z8-codes, for a Z3

2-code C, and consequently for a F8-linear code,
neither (2.10) nor (2.11) hold. In fact, the type-enumerating function of a Z3

2-code is
not sufficient for characterizing its performance on the 8-PSK Gaussian channel.
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Chapter 3

The capacity of Abelian group
codes over symmetric channels

3.1 Introduction

In this chapter we address the problem of characterizing the capacity achievable by
group codes over symmetric channels. It is a well-known fact that binary linear codes
suffice to achieve capacity on binary input symmetric channels [31, 71]. The same is
true for Zr

p-codes whenever p is a prime number; in fact in this case linear codes over
the Galois field Fpr have be shown capable to achieve the capacity of any Zr

p-symmetric
channel [31]. Moreover, by averaging over the ensemble of linear codes, the same error
exponent E(R) is achieved as by averaging over random coding ensemble.

Here we investigate whether the same holds true for G-codes employed over G-
symmetric channels. As a concrete example one might think of Zm-codes for the (m-
PSK)-AWGN channel. In [44] it was conjectured that group codes should suffice in this
case to achieve capacity exactly as in the binary case and, up to our knowledge, there has
not been any progress towards this direction. On the other hand, interest in group codes
has not decreased in these years: indeed they give the possibility to use more spectral
efficient modulations while keeping many good qualities of the binary linear codes like
the uniform error property and nice structure for the corresponding minimal encoders
and minimal trellis representations. See [64, 38, 68, 28, 5, 45, 12, 46, 23, 41, 24, 25, 29]
and references therein for an overview of the many research lines on group codes which
have been developing during last years.

Our work focuses on the case when the group G is Abelian and consists of two parts.
In the first part we determine a single-letter characterization for the capacity achievable
using G-codes over this channel: this capacity is called the G-capacity. The result is
contained in Theorem 6 which is a sort of inverse Shannon theorem and in Theorem 13
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which exhibits an average result working in the ensemble of group encoders. Also the
average error exponent is determined.

In the second part we prove that for an important class of examples including the
AWGN channel with m-PSK modulation as input (and m the power of a prime), the Zm-
symmetric capacity and the classical Shannon capacity do coincide so that Abelian group
codes allow to achieve capacity in this case. This answers Loeliger’s conjecture. Finally,
we present a three dimensional AWGN example where instead the two capacities differ
from each other. It remains an open problem if using possibly non-Abelian generating
groups we can always achieve the Shannon capacity.

The chapter is organized as follows. In Section 3.2 we prove an inverse coding
theorem for Abelian group codes, defining the G-capacity of a symmetric channel and
showing that no reliable transmission is possible with G-codes at rates beyond this
threshold value. The theorem is proved first for cyclic group codes, and the result is then
extended to arbitrary Abelian groups. Section 3.3 contains the main result consisting in
a channel coding theorem for Abelian group codes over symmetric channels, stating that
reliable transmission is possible at any rate below the G-capacity. The result is obtained
by using a probabilistic method: we introduce an ensemble of random group encoders
and prove that its average word error probability goes to 0 as the blocklength is increased.
More precisely we show that the average error probability goes to 0 exponentially fast
in the blocklength and that the exponential rate of convergence is at least equal to a
certain function EG(R) which we call the G-random coding exponent. Although we
have no complete tightness result for EG(R) we show that even when there is no loss
of capacity there is a loss in the error exponent at low rates. We also state a similar
result holding for a different ensemble of group codes using the kernel representation
instead of the encoder image one. Section 3.4 is devoted to the proof that for the AWGN
channel with m-PSK constellation as input (and m the power of a prime) Zm-capacity
and Shannon one do coincide, implying thus that Zm-codes employed over this channel
achieve capacity. Finally, in Section 3.5 we provide an explicit counterexample consisting
in a three-dimensional geometrically uniform constellation admitting Zm as generating
group: the AWGN channel with input restricted over this constellation the Zm-capacity
is strictly less than Shannon capacity, implying thus that there is an algebraic obstruction
to the use of Zm-codes in this case. It seems to be possible, but remains a completely
open question, whether using non-Abelian group codes it allows to achieve capacity on
this channel.
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3.2 The converse to the channel coding theorem for Abelian

G-encoders on G-symmetric channels

In this section we define a new concept of capacity for G-symmetric channels when G
is an arbitrary Abelian group and then we exhibit a sort of inverse Shannon theorem.
We will prove that the error probability of any G-code having rate above this capacity
is bounded away from 0, independently of its blocklength.

Let (X ,Y, P ), Y = (Y,B, µ), be a G-symmetric channel. Since the input X can be
identified with the group G itself, block encoders for such channels are (possibly non-
injective) maps φ : U → GN , where N is the block length and U a finite set. We will
focus our attention on the class of G-encoders: namely we assume that U is a group
with identity 1U and φ a group homomorphism.

Whenever dealing with Abelian groups, we will use the additive notation to denote
group operation, while 0 will always denote the identity element. We will use the symbol
⊕ to denote both external direct sum of groups, as well internal sum of subgroups when
their intersection reduce to {0}. We will use the symbol + and

∑

instead to denote
general summation of subgroups. Some facts about the theory of Abelian groups will
be recalled when needed, while we refer to [37] for further details.

3.2.1 The cyclic case

We start our analysis with the special case when G = Zpr for some prime p and positive
integer r. Note that Zpr also has ring structure with the product induced by that of Z.

Suppose one wants to communicate over a Zpr -symmetric MC (X ,Y, P ), using
Zpr -encoders. Our aim is to find out the range of rates at which reliable communi-
cation is possible under these conditions.

From now on we will identify X with Zpr . For l = 1, . . . , r, consider the channel
obtained by restricting the input set from Zpr to its subgroup pr−lZpr : call it the l-th
subchannel and denote its capacity by Cl. The l-subchannel is easily seen to be pr−lZpr -
symmetric, so that Cl can be obtained, in the variational definition (2.5), with uniform
distribution over the input set pr−lZpr . As we will see soon, subchannels will play a
fundamental role in our analysis. Let U be a finite Abelian group and φ : U → ZN

pr a
homomorphic encoder. It is not restrictive to assume that

U = Zk1
p ⊕ Zk2

p2 ⊕ . . .⊕ Zkr
pr . (3.1)

for suitable positive integers k1, . . . , kr. Indeed, in next subsection it will be shown
that if U has not such a structure, than φ is surely noninjective so that pe(φ) ≥ 1

2 by
property (2.4) of ML decoding. As a consequence of (3.1), there exist homomorphisms

φj : Zkj

pj → ZN
pr such that, if we consider u = (u1, . . . ,ur) with uj ∈ Zkj

pj for every j, we

have that φ(u) =
∑r

j=1 φj(uj).
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φ’s rate is given by

R :=
log |U|

N
=

1

N

r
∑

j=1

jkj log p .

For every l = 1, . . . , r, consider

U(l) = Zk1
p ⊕ · · ·⊕ Zkl

pl ⊕ pZkl+1

p(l+1) ⊕ · · ·⊕ p(r−l)Zkr
pr .

Note that
φ(U(l)) ≤ pr−lZN

pr .

Define φl as the restriction of φ to U(l) and denote by R(l) its rate.
The converse to the channel coding theorem (item (b) of Theorem 1) states that

necessary condition for pe(φl) to be made arbitrarily small is that

R(l) ≤ Cl . (3.2)

Notice that,

R(l) =
log |U(l)|

N

= log p
N

(

l
∑

j=1
jkj + l

r
∑

j=l+1
kj

)

≥ log p
N

(

l
r

l
∑

j=1
jkj + l

r
∑

j=l+1

j
rkj

)

= log p
N

l
r

(

l
∑

j=1
kj

)

= l
rR ,

(3.3)

with equality if and only if kj = 0 for j = 1,. . ., r−1, i.e. if and only if U = ZK
pr with

K = RN
r log p .

By the property (2.3) of ML decoding,

pe(φl) ≤ pe(φ) , l = 1, . . . , r . (3.4)

From (3.2), (3.3) and (3.4) it follows that necessary condition for pe(φ) to be made
arbitrarily small is that

R ≤ min
l=1,...,r

r

l
Cl , (3.5)

and that the only way to eventually achieve this bound is by using encoders whose
domain is a free Zpr module, i.e. φ : ZK

pr → ZN
pr .

In the rest of this chapter we will generalize these considerations to generic Abelian
groups G. In Section 4 we will then prove the converse result which, for the particular
cyclic case, will amount to say that at any rate below min

l=1,...,r

r
l Cl we can reliably transmit

using Zpr -encoders.
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3.2.2 Arbitrary Abelian group

In order to generalize our considerations to arbitrary Abelian groups, we need to set
down some more notation and recall some basic facts about finite Abelian groups.

Let M be a finite Abelian group. Given µ ∈ N define the following subgroups of M :

µM = {µx | x ∈ M} , M(µ) = {x ∈M | µx = 0} .

It is immediate to verify that µM = {0} if and only if M(µ) = M . Let then

µM = min{µ ∈ N | M(µ) = M} = min{µ ∈ N | µM = {0}} .

Notice that µM is well defined and µM ≤ |M |, since, as it is easy to see, M(|M |) = M or
equivalently |M |M = {0}.

Decompose µM = pr1
1 · · · prs

s where p1 < p2 < · · · < ps are distinct primes and
r1, . . . , rs are non-negative integers, existence and uniqueness of such a decomposition
being guaranteed by the fundamental theorem of algebra. It is a standard fact that M
admits the direct sum decomposition

M = M(p
r1
1 ) ⊕ · · ·⊕M(prs

s ) . (3.6)

Each M(p
ri
i ) is a Zp

ri
i

-module and, up to isomorphisms, can be further decomposed, in a

unique way, as a direct sum of cyclic groups

M(p
ri
i ) = Zki,1

pi ⊕ Zki,2

p2
i
⊕ · · ·⊕ Z

ki,ri

p
ri
i

. (3.7)

The sequence σM = (p1, . . . , ps) will be called the spectrum of M , the sequence rM =
(rM

1 , . . . , rM
s ) the multiplicity and, finally, the double indexed sequence

kM =
(

ki,j |i = 1, . . . , s ; j = 1, . . . , rM
i

)

,

will be called the type of M . It will be convenient often to use the following extension:
ki,j = 0 for j > rM

i . Given a sequence of primes σ = (p1, . . . , ps), we will say that M
is σ-adapted if σM is a subsequence of σ. Notice that, once the sequence of primes σ
has been fixed, all σ-adapted Abelian groups are completely determined by their type
(which includes the multiplicities rM

i with the agreement that some of them could be
equal to 0). We will denote by Mk the finite Abelian group having type k.

Notice that if M is a finite Abelian group with type k and N ∈ N, the Abelian group
MN has the same spectrum and multiplicity of M and type Nk.

If M and L are finite Abelian groups and φ ∈ Hom(M,L), then φ(M(µ)) ⊆ L(µ)

and φ(µM) ⊆ µL for every µ ∈ N. It follows that φ is surely non-injective if M is not
σL-adapted or if any of the multiplicities in M is strictly larger than the corresponding
in L.
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Suppose now we have fixed, once for all, a finite Abelian group G having spectrum
σG = (p1, . . . , ps), multiplicity rG = (rG

1 , . . . , rG
s ) and type kG. We will consider G-

encoders φ ∈ Hom(U , GN ) with domain consisting of a finite Abelian group U which
is σG-adapted and is such that, rU ≤ rG (in the sense that rUi ≤ rG

i for each i). In
fact if U does not fulfil these requirements then φ is surely noninjective for our previous
considerations, and thus its ML woed error probability is bounded from below by the
constant 1/2. The group U admits a decomposition as illustrated above in (3.6) and
(3.7). Let us fix now a matrix

l =
(

li,j ∈ Z+ | i = 1, . . . , s , j = 1, . . . , rG
i

)

such that li,j ≤ j for every i and j. We will say that l is an rG-compatible matrix.
Define

U(l) =
s
⊕

i=1

U
(p

rG
i

i )
(li) . (3.8)

U
(p

rG
i

i )
(li) =

rG
i
⊕

j=1

p
j−li,j
i Zki,j

pj
i

. (3.9)

An immediate consequence of previous considerations is that

φ(U(l)) ⊆





s
⊕

i=1

rG
i
∑

j=1

p
j−li,j
i G(pj

i )





N

.

These inclusions automatically give information theoretic constraints to the possibility
of reliable transmission using this type of encoders. Denote by Rl the rate of φ|U(l) and
by Cl the capacity of the subchannel having as input alphabet the subgroup Gl of G
defined by:

Gl =
s
⊕

i=1

rG
i
∑

j=1

p
j−li,j
i G(pj

i )
.

Then,
Rl ≤ Cl for every rG − compatible l (3.10)

is a necessary condition for reliable transmission. This does not give explicit constrints
yet to the rates R at which reliable transmission is possible using G-encoders. For this
we need some extra work using the structure of the Abelian groups U(l). Notice that

Rl =
1

N

s
∑

i=1

rG
i
∑

j=1

li,jki,j log pi .
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It is useful introduce the following probability distribution on the pairs (i, j):

αi,j =
jki,j log pi

log |U|
.

From the above definition, and recalling that log |U| = RN , we can represent

ki,j =
RNαi,j

j log pi
.

Hence,

Rl = R
s
∑

i=1

rG
i
∑

j=1

li,j
j

αi,j .

Consequently, (3.10) can be equivalently expressed as

R ≤ min
l #=0

rG−comp.

Cl

s
∑

i=1

rG
i
∑

j=1

li,j
j αi,j

, (3.11)

where l ,= 0 means that li,j ,= 0 for some i, j.
Denote now by P(rG) the set of probability distributions αi,j on the set of pairs (i, j)

such that i = 1, . . . , s and j = 1, . . . , rG
i . We define the G-capacity of a G-symmetric

channel as

CG = max
α∈P(rG)

min
l #=0

rG−comp.

Cl

s
∑

i=1

rG
i
∑

j=1

li,j
j αi,j

. (3.12)

Since P(rG) is compact and

f : α 2→ min
l #=0

rG−comp.

Cl

s
∑

i=1

rG
i
∑

j=1

li,j
j αi,j

is a continuous map from P(rG) to R+, definition (3.12) is well posed in the sense that
f has a maximum point in P(rG). Such a maximum point could be not unique in
principle: nevertheless we will call G-optimal splitting and denote by αG any element
of P(rG) such that

min
l #=0

rG−comp.

Cl

s
∑

i=1

rG
i
∑

j=1

li,j
j αG

i,j

= CG . (3.13)
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It clearly follows from our previous considerations that CG is a un upper bound to
reliable transmission using G-encoders. Precisely, we have the following result which is
an immediate consequence of the inverse Shannon coding theorem (item (b) of Theorem
1).

Theorem 6 Consider a G-symmetric channel and let CG be its G-capacity. Then, for
every R > CG there exists AR > 0 depending on R but not on N , such that, for every
G-encoder φ of rate R and length N , with any decoding rule, the corresponding word
error probability satisfies

pe(φ) ≥ AR .

In the next three examples we present some explicit computations of CG for groups
G with particular algebraic structure. First we examine the field case, showing as in
this case the G-capacity CG does coincide with the Shannon capacity C, as follows from
classical linear coding theory.

Example 8 Suppose the group G admits Galois field structure. In this case we neces-
sarily have G # Zk

p for some prime p and positive integer k. Thus

σG = (p) , rG = (1) .

Consequently, the only rG-compatible l is given by l = 1 and therefore we have that in
this case CG = C.

However, GU constellations admitting a generating group which is isomorphic to
a Galois field are affected by a constraint on their bandwidth efficiency. In fact, if S
is an n-dimensional GU constellation admitting Zk

p as generating group, then standard
arguments using group representation theory allow to conclude that

n ≥
{

k, if p = 2 ;
2k, if p ≥ 2 .

(3.14)

!

In next example we would like to show that in the special case when G = Zpr

condition (3.11) coincides with condition (3.5) obtained in the previous subsection.

Example 9 Let G = Zpr . We want to show that

CG = min
l=1,...,r

r

l
Cl .
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Notice first that in this case σG = (p) and rG = r. A vector l = (l1, . . . , lr) is rG-
compatible if and only if lj ≤ j for every j = 1, . . . , r. Notice now that

Gl =
r
∑

j=1

pj−ljG(pj) =
r
∑

j=1

pj−ljpr−jZpr =
r
∑

j=1

pr−ljZpr = pr−l∗Zpr ,

where
l∗ =

r
max
j=1

lj .

Hence, Cl = Cl∗.
Notice now that P(rG) simply consists of the probability distributions α = (α1, . . . ,αr).

Suppose we have fixed α ∈ P(rG). We have that

min
l #=0

rG−comp.

Cl
r
∑

j=1

lj
j αj

=
r

min
ρ=1

Cρ
1

max
l #=0 rG−comp.

l∗=ρ

r
∑

j=1

lj
j αj

.

Now,

max
l #=0 rG−comp.

l∗=ρ

r
∑

j=1

lj
j
αj ≥

ρ

r

and equality holds true if and only if αr = 1 and αj = 0 for every j ,= r.
Hence, in this case we have rediscovered what we had already found out in the previous

subsection, i.e.

CZpr =
r

min
ρ=1

r

ρ
Cρ , αZpr = (0, . . . , 0, 1) .

!

Example 10 Now consider the Kβ
2×3 constellation introduced in Example 6. Consider a

Kβ
2×3-AWGN channel. It is easy to show that the independence of orthogonal components

of the Gaussian noise imply that the capacity C6(β) of such a channel is equal to the
sum of the capacities of its two subchannels, C2(β) and C3(β). This fact allows us to
explicitly write down the optimal splitting, i.e. the α ∈ P(rG) solution of the variational
problem (3.12) defining CZ6 , as a function of the parameter β.

Since Z6 # Z2×Z3, we have that s = 2, p1 = 2, p2 = 3, and rG =
(

rG
1 , rG

2

)

= (1, 1).
(3.12) reduces to

CZ6(β) = max
α∈P({2,3})

min

{

C2(β)

α2
,
C3(β)

α3
, C6(β)

}

.
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Figure 3.1: The optimal splitting for Kβ
2×3 as a function of β

We claim that, for every β ∈ (0,+∞), CZ6(β) = C6(β) and the optimal splitting is given
by

αZ6(β) =
(

αZ6
2 (β),αZ6

3 (β)
)

= 1
C6(β)(C2(β), C3(β)) .

Indeed we have that

C6(β) ≥ CZ6(β)

= max
α∈P({2,3})

min
{

C6(β), C2(β)
α2

, C3(β)
α3

}

≥ min
{

C6(β), C2(β)
αG

2 (β)
, C3(β)
αG

3 (β)

}

= C6(β) .

In Figure 3.1 αZ6
2 (β) is plotted: notice how the optimal splitting follows the geometry

of the constellation as α2(β) is monotonically increasing in β with lim
β→0

αZ6(β) = (0, 1) (

as β goes to 0 K2×3(β) collapses onto constellation K3) and lim
β→+∞

αZ6(β) = (1, 0) (as

β goes to +∞ K2×3(β) collapses onto constellation 2-PAM). !

As we shall see later in Section 5, there are important cases other than the field one
when CG = C. In Section 6 we will also exhibit examples where CG < C and the more
general problem of evaluating CG will be discussed.

Of course up to now it is not at all clear if the G-capacity CG can actually be achieved
by means of G-encoders. In principle there could be other algebraic constraints coming
into the picture which we have overlooked in our analysis. In Section 4 we will see that
this is not the case: the conditions R < CG will be proved to be sufficient for reliable
transmission using G-encoders over a G-symmetric channel.
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3.3 Classical ensembles of G-codes

We now present a result which completes Theorem 6 by stating that at every rate
R < CG reliable transmission over a G-symmetric channel is possible using G-encoders.

Following the classical technique originally proposed by Shannon we will use a prob-
abilistic method, introducing ensembles of G-encoders and analyzing their average per-
formances. This will then allow us to obtain our result. This technique had already been
used to study performances of linear codes in [31]: this covers the case when G # Zk

p for
some prime p. For general Abelian group however the derivation is more complicate.

We consider G-code ensembles, defined as sequences of Abelian groups UN and of
independent uniformly distributed random variables ΦN ∈ Hom(UN , GN ). We will see
later that different choices of ensembles are possible and give similar results.

The above ensemble is completely determined by the sequence UN . We now describe
the construction of specific examples. Given a design rate R ∈ [0, log |G|[, and a splitting
distribution α ∈ P(rG), for each block length N ∈ N define kN by

(kN )i,j =

⌊

RNαi,j

j log pi

⌋

. (3.15)

Let UkN be the corresponding Abelian group having type kN . The corresponding en-
semble will be denoted by EG(R,α). Note that, for each N , ΦN ’s rate is a determin-
istic constant RN (i.e. it is the same for each realization of ΦN ) with RN ≤ R, and
limN→+∞ RN = R.

Let pe(ΦN )
(R,α)

denote the word error probability averaged over the ensemble E(R,α).
Our goal is to estimate this average. To do this we will need to establish a number of
preliminary results extending the classical Gallager bound.

3.3.1 Gallager Bound for codes over groups

In this subsection we state a convenient version of the Gallager bound (see [31]) for the
special case of G-symmetric channels; it is based on the techniques presented in [62].

We start by recalling the classical Gallager bound.

Lemma 7 (Gallager bound) Given a MC (X ,Y, P ), suppose we have a block encoder

φ : U → XN ,

and ML decoding is used. Then, for any fixed u ∈ U and ρ ∈ [0,+∞) the conditioned
word error probability satisfies

pe(φ| u) ≤
∫

YN
PN (y|φ(u))

1
1+ρ





∑

v *=u

PN (y|φ(v))
1

1+ρ





ρ

dµN(y) . (3.16)
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We now want to rewrite the Gallager bound in the special case when the channel
is G-symmetric for an Abelian group G. It is not restrictive to assume that X = G.
Recall that, for any x in GN ,θG(x) in P(G) denotes the type or empirical frequency of
x. The subset of P(G) containing all types of vectors x ∈ GN is denoted by PN (G). For
θ ∈ PN (G) we define GN

θ as the subset of GN containing all vectors of type θ. Clearly
GN = ∪θ∈PN (G)G

N
θ . We introduce type-spectra of an encoder φ : U → GN . For each

u ∈ U and θ ∈ PN (G) we define Wφ(θ| u) as the cardinality of the subset of U \ {u}
consisting of those v such that the difference φ(v)− φ(u) has type θ, i.e.

Wφ(θ| u) =
∑

v∈U\{u}
GN

θ
(φ(v) − φ(u)) . (3.17)

Lemma 8 Given a G-symmetric MC (G,Y, P ), suppose we have a block encoder

φ : U → GN ,

and ML decoding is used. For every u ∈ U the conditioned error probability satisfies the
following inequality:

pe(φ| u) ≤ 1

|G|N
∑

z∈GN

∫

YN

PN (y|z)
1

1+ρ





∑

θ∈PN (G)

Wφ(θ| u)
( N
Nθ

)

∑

x∈GN
θ

(PN (y|z + x))
1

1+ρ





ρ

dµN(y) .

(3.18)

Proof: We generate the following random encoder from φ:

Φ = G + ΩφΠ

where:

• Π is a random variable uniformly distributed over the group of permutations of
the set U leaving u fixed;

• Ω is a random variable uniformly distributed over SN , the group of permutations
of {1, . . . ,N}, independent from Π (we intend ω ∈ SN acting on x ∈ GN by
permuting its components, i.e. (ωx)i := (x)ωi);

• G is a random variable uniformly distributed over GN , independent from Π and
Λ.

Throughout the proof we will denote by E[·] the average operator with respect to such a
probabilistic structure. The crucial point here is that the average word error probability
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of the random encoder Φ is equal to the word error probability of φ. In fact for any
realization π of Π

pe(φπ| u) = pe(φπ| u) = pe(φ| u) .

For every ω ∈ SN realization of Ω we have that, due to the memoryless property of the
channel, ML decision regions Λφ(v) satisfy Λωφ(v) = ωΛφ(v), thus

pe(ωφ| u) = 1−
∫

Λωφ(u)

PN (y|ωφu)dµN (y)

= 1−
∫

ωΛφ(u)

PN (y|ωφu)dµN (y)

= 1−
∫

Λφ(u)

PN (ωy|ωφu)dµN (y)

= 1−
∫

Λφ(u)

PN (y|φu)dµN (y)

= pe(φ| u) .

Moreover, due to the G-symmetry of the channel, for any g ∈ GN realization of G, we
have that ML decision regions satisfy Λg+φ(v) = g + Λφ(v), so implying

pe(g + φ| u) = pe(φ| u) .

Thus we have
E[pe(Φ| u)] = pe(φ| u) .

Now fix an arbitrary x ∈ GN ; we have that

P (Φ(u) = x) = P (G + Ωφ(Πu) = x)

=
∑

z∈GN

P (G = x− z|Ωφ(Πu) = z)P (Ωφ(Πu) = z)

=
∑

z∈GN

P (G = x− z)P (Ωφ(Πu) = z)

=
∑

z∈GN

1

|G|N
P (Ωφ(Πu) = z) =

1

|G|N
;

(3.19)

hence Φ(u) has uniform distribution over GN . We now want to find out for any fixed
v ∈ U \ {u} the conditional distribution of Φ(v) given Φ(u). We start by noticing that

P
(

φ(Πv) = x
)

=
1

|U|− 1

∑

w∈U\{u}

{x}(φ(w)) . (3.20)
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From the independence of Ω, Π and G and the uniform distribution of G in GN , it
follows that Ω, Π and G + Ωφ(u) are independent, and so

P (Φ(v) = z + x|Φ(u) = z) = P (Φ(v)− Φ(u) = x|Φ(u) = z)
= P (Ωφ(Πv) + G− Ωφ(Πu)−G = x|G + Ωφ(u) = z)
= P (Ωφ(Πv)− Ωφ(u) = x|G + Ωφ(u) = z)
= P (Ωφ(Πv)− Ωφ(u) = x) .

(3.21)
For every x ∈ GN we denote by Stab(x) the stabilizer of x in SN , i.e. the subgroup of
SN containing all permutations leaving x fixed; the cardinality of Stab(x) is

(Nθ(x))! :=
∏

g∈G

(Nθg(x))! . (3.22)

By successively applying (3.21), (3.22), (3.20) and (3.17) we get

P (Φ(v) = z + x|Φ(u) = z) = P (Ω(φ(Πv) − φ(u)) = x)

=
∑

ω∈SN

1

N !
P (φ(Πv) − φ(u) = ωx)

= 1
N !

∑

y∈GN
θ(x)

∑

ω∈Stab(y)

P (φ(Πv) = φ(u) + y)

= 1
N !

∑

y∈GN
θ(x)

(Nθ(x))!
1

|U| − 1

∑

v∈U\{u}

{φ(u)+y}(φ(v))

=
( N
Nθ(x)

)−1 ∑

y∈GN
θ(x)

1

|U|− 1

∑

v∈U\{u}

{y}(φ(v) − φ(u))

=
( N
Nθ(x)

)−1 1
|U|−1

∑

v∈U\{u}
GN

θ(x)
(φ(v) − φ(u))

= 1
|U|−1

( N
Nθ(x)

)−1
Wφ(θ(x)| u) .

(3.23)
We now apply the Gallager bound to each realization of the random encoder Φ. We
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get

pe(φ| u) = E [pe(Φ| u)]

≤ E







∫

YN

PN (y|Φ(u))





∑

v∈U\{u}

(

PN (y|Φ(v))

PN (y|Φ(u))

) 1
1+ρ





ρ

dµN(y)







= E







∫

YN

PN (y|Φ(u))
1

1+ρ





∑

v∈U\{u}

(PN (y|Φ(v)))
1

1+ρ





ρ

dµN (y)







= 1
|G|N

∑

z∈GN

∫

YN

PN (y|z)
1

1+ρ E









∑

v∈U\{u}

(PN (y|Φ(v)))
1

1+ρ





ρ∣
∣

∣

∣

∣

∣

Φ(u) = z



 dµN (y) ,

(3.24)
last equality following from (3.19). The conditional expectation in the last term of (3.24)
can be upperbounded by the Jensen inequality, yielding

E









∑

v∈U\{u}

(PN (y|Φ(v)))
1

1+ρ





ρ∣
∣

∣

∣

∣

∣

Φ(u) = z





≤



E





∑

v∈U\{u}

(PN (y|Φ(v)))
1

1+ρ

∣

∣

∣

∣

∣

∣

Φ(u) = z









ρ

=





∑

x∈GN

∑

v∈U\{u}

P (Φ(v) = z + x|Φ(u) = z) (PN (y|z + x))
1

1+ρ





ρ

=





∑

θ∈PN (G)

∑

x∈GN
θ

Wφ(θ(x)| u)

(

N

Nθ(x)

)−1

(PN (y|z + x))
1

1+ρ





ρ

=





∑

θ∈PN (G)

Wφ(θ| u)

(

N

Nθ

)−1
∑

x∈GN
θ

(PN (y|z + x))
1

1+ρ





ρ

(3.25)

where the second equality follows from (3.23) and from GN =
⋃

θ∈PN (G)
GN

θ . Substituting

(3.25) into (3.24) yields (3.18).

We would like to emphasize the fact that both Definition 3.17 and Lemma 8 do not
need φ to be a G-encoder; in what follows we will make use of this generality. When φ
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is a G-encoder it is easy to show that Wφ(θ| u) does not depend on u, so in this case
we will use the notation Wφ(θ). Generalizations of both Definition 3.17 and Lemma 8
to non Abelian groups are straightforward: the only difference is that one has to define
left and right distance spectra (the two notions coincide for group encoders but they
generally do not for arbitrary encoders).

3.3.2 Averaged estimations

The idea is to average estimation (3.18) on our ensembles. In the field case this would
lead us to the classical direct Shannon theorem for linear codes. However, in this context,
we need to be more careful since averaging distance spectra becomes more delicate. For
this we first develop some further considerations on random variables taking values over
Abelian groups.

Let M and L be finite Abelian groups and let Φ be a r.v. uniformly distributed on
the Abelian group Hom(M,L). Given m ∈ M , we want to investigate the probability
distribution of the r.v’s Φ(m). In the case when both M and N are vector space over a
finite field Fpr , it is a standard fact that, if m ,= 0, Φ(m) is a r.v. uniformly distributed
over L. In the general case however the analysis is a bit more complicate due to algebraic
constraints which show up in the problem. We start with a simple preliminary result.

Suppose we have a finite Abelian group G and a r.v. X uniformly distributed over
G. Let H be another Abelian group and θ : G→ H a surjective homomorphism.

Lemma 9 θ ◦X is a r.v. uniformly distributed over H.

Proof: Let y ∈ H. Notice that since θ is surjective, |θ−1(y)| = |G|/|H| for every y. We
now clearly have

P (θ ◦X = y) = P (X ∈ θ−1(y)) =
|θ−1(y)|

|G| =
1

|H| .

Let us go back to our setting with the Abelian groups M and L. Given any m ∈ M
we can consider the valuation homomorphism ψM,L,m : Hom(M,L) → L given by
ψM,L,m(φ) = φ(m). Using Lemma 9 we thus obtain that the r.v. Φ(m) is uniformly dis-
tributed on Im(ψM,L,m). The problem is therefore to characterize the image of ψM,L,m:
this depends on the choice of the element m.

We gather a few simple properties of the valuation homomorphism:

Lemma 10 ψM,L,m satisfies the following properties:

(1) If M = Zpr and m ∈ M is invertible, we have that Im(ψM,L,m) = L(pr).
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(2) Assume that M = M1 ⊕M2 and let m = (m1,m2) ∈ M . Then, Im(ψM,L,m) =
Im(ψM1,L,m1) + Im(ψM2,L,m2).

Assume that M has the structure given by (3.6) and (3.7). Each m ∈ M can be
decomposed accordingly

m = (m1, . . . ,ms), mi = (mi,1, . . . ,mi,ri) .

For any i = 1, . . . , s and j = 1, . . . ri, let li,j ∈ Z+ be such that

mi,j ∈ p
j−li,j
i Zki,j

pj
i

\ p
j+1−li,j
i Zki,j

pj
i

.

We will use the notation li,j(m) (and l(m) in a more compact form) to emphasize
the dependence on the chosen m. Clearly, l(m) is r-compatible. Finally, given an
r-compatible l, define

Hl = {m ∈ M | l(m) = l} . (3.26)

Clearly, the various Hl are pairwise disjoint and form a partition of M .

Proposition 11 Let m ∈ Hl. Then,

Im(ψM,L,m) =
s
∑

i=1

ri
∑

j=1

p
j−li,j
i L(pj

i )
.

Proof Immediate consequence of Lemma 10.

Corollary 12 Let m ∈ Hl. Then, the r.v. Φ(m) is uniformly distributed over the set

s
∑

i=1

ri
∑

j=1

p
j−li,j
i L(pj

i )
.

Notice that the first summation above is direct while the second is not in general.

There are relations among the various p
j−li,j
i L(pj

i )
as j varies keeping the index i fixed.

Indeed it holds
pL(pr) ⊆ L(pr−1) ⊆ L(pr) .

Let us apply these considerations to our context. Recall that we have fixed a G-
symmetric MC (G,Y, P ) where G is a finitely generated Abelian group having spectrum
σG = (p1, . . . , ps), multiplicity rG = (rG

1 , . . . , rG
s ) and type kG. Recall moreover that the

ensemble EG(R,α) consists of the sequence of independent random variables ΦN with
ΦN uniformly distributed over Hom(UkN , GN ), where kN is defined by

(kN )i,j =

⌊

RNαi,j

j log pi

⌋

. (3.27)
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For a random variable X will denote by X
(R,α)

the average operator with respect to
such a probabilistic structure.

We are now ready to prove our first fundamental result:

Theorem 13 Let (G,Y, P ) be a G-symmetric MC. For every R ∈ [0, log |G|[, α ∈
P(rG), the following estimation holds true:

pe(ΦN )
(R,α) ≤

∑

l *=0
rG−compatible

exp (−NEl (Rl)) , (3.28)

where El is the error exponent of the subchannel obtained by restricting the input set to
Gl, and

Rl := R
s
∑

i=1

ri
∑

j=1

li,j
j

αi,j .

Proof Let HkN,l be the set defined by (3.26) for the group UkN . We can thus decompose

UkN =
⋃

l

rG−comp.

HkN,l . (3.29)

It follows from Corollary 12 that, if u ∈ HkN,l, ΦN(u) is a r.v. uniformly distributed
over GN

l .
We now notice that, because of the uniform error property, all estimations of the

word error probability can be done assuming that the all-zero information word u = 0
has been transmitted, i.e.

pe(φ) = pe(φ,0)

for every φ ∈ Hom(UkN , GN ).
For any rG-compatible l, we define the encoder φl as the restriction of φ to the set

{0} ∪HkN ,l. Note that the encoders φl are not G-encoders since their domain is not a
group, so that the UEP does not necessarily hold true for them but for φ only. Since

{0} ∪HkN ,l ⊆
s
⊕

i=1

ri
⊕

j=1

p
ri−li,j
i Z(kN )i,j

p
ri
i

φl’s rate satisfies

log (1 + |HkN ,l|)
N

≤
s
∑

i=1

ri
∑

j=1

1

N
log pi li,j (kN )i,j ≤ Rl .
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A union bound yields

pe(φ,0) ≤
∑

l
rG−comp.

pe(φl,0) =
∑

l *=0
rG−comp.

pe(φl,0) ,

(the equality follows from the fact that HkN ,0 = {0} and thus pe(φ0,0) = 0).
Consider the r.v. ΦN,l obtained by restricting ΦN to the subset HkN,l. Now, given

an rG-compatible l, apply the bound of Lemma 8 (which, as we already remarked, does
not need the encoder to be an homomorphism) to each realization of pe(ΦN,l,0), and
then average with respect to ΦN . For any ρ ∈ [0, 1] we obtain

pe(ΦN,l,0)
(R,α) ≤

≤ 1

|G|N
∑

z∈GN

∫

YN

PN (y|z)
1

1+ρ





∑

θ∈PN (G)

WΦN,l(θ| 0)
( N
Nθ

)

∑

x∈GN
θ

(PN (y|z + x))
1

1+ρ





ρ

dµN (y)

(R,α)

≤ 1

|G|N
∑

z∈GN

∫

YN

PN (y|z)
1

1+ρ





∑

θ∈PN (G)

WΦN,l(θ| 0)
(R,α)

( N
Nθ

)

∑

x∈GN
θ

(PN (y|z + x))
1

1+ρ





ρ

dµN (y) ,

(3.30)
where the last inequality follows from Jensen inequality.

It remains to calculate the average distance spectra of ΦN,l. Using the fact (see
Corollary 12) that for any u ∈ HkN ,l we have that ΦN(u) is uniformly distributed over
GN

l , we obtain

WΦN,l(θ|0)
(R,α)

=
∑

u∈HkN ,l

GN
θ

(Φlu)
(R,α)

=
∑

u∈HkN ,l

GN
θ

(Φu)
(R,α)

=
∑

u∈HkN ,l

P
(

ΦN,l(u) ∈ GN
θ

)

= |HkN ,l|
( N
Nθ

)

PN (Gl)(θ)

|Gl|N

(3.31)

Now fix a set Ωl ⊂ GN of coset representatives, i.e. a set of cardinality |G|N

|Gl|N
containing
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exactly one element for each coset of GN
l . By substituting (3.31) into (3.30) we obtain

pe(ΦN,l,0)
(R,α)

≤ 1

|G|N
∑

z∈GN

∫

YN

PN (y|z)
1

1+ρ





∑

θ∈PN (G)

|HkN ,l|
1

|Gl|N PN (Gl)(θ)
∑

x∈GN
θ

(PN (y|z + x))
1

1+ρ





ρ

dµN (y)

=
1

|G|N
∑

z∈GN

∫

YN

PN (y|z)
1

1+ρ



|HkN ,l|
1

|Gl|N
∑

x∈GN
l

(PN (y|z + x))
1

1+ρ





ρ

dµN(y)

= |HkN ,l|ρ
∫

YN

∑

v∈Ωl

|Gl|N

|G|N
∑

w∈GN
l

1

|Gl|N
PN (y|v + w)

1
1+ρ





1

|Gl|N
∑

x∈GN
l

(PN (y|v + x))
1

1+ρ





ρ

dµN (y)

= |HkN ,l|ρ
∑

v∈Ωl

|Gl|N

|G|N

∫

YN





1

|Gl|N
∑

x∈GN
l

(PN (y|v + x))
1

1+ρ





1+ρ

dµN(y) .

(3.32)
By the G-symmetry of the channel and the memoryless property, we have that, for each
v ∈ Ωl,

∫

YN





1

|Gl|N
∑

x∈GN
l

(PN (y|v + x))
1

1+ρ





1+ρ

dµN (y)

=

∫

YN





1

|Gl|N
∑

x∈GN
l

(PN ((−v)y|x))
1

1+ρ





1+ρ

dµN(y)

=

∫

YN





1

|Gl|N
∑

x∈GN
l

(PN (y|x))
1

1+ρ





1+ρ

dµN(y)

=





∫

Y





1

|Gl|
∑

x∈Gl

(PN (y|x))
1

1+ρ





1+ρ

dµ(y)





N

(3.33)

where (−v)y denotes the action of each component of −v on the corresponding compo-
nent of y (recall that by definition of G-symmetric channel, G isometrically acts on Y).
Therefore,

pe(ΦN,l,0)
(R,α) ≤ |HK,l|ρ





∫

Y





1

|Gl|
∑

x∈Gl

(PN (y|x))
1

1+ρ





1+ρ

dµ(y)





N

.
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Recalling that the random coding exponent El(R) is obtained with uniform distribution
over the input set Gl, and since the choice of ρ ∈ [0, 1] is arbitrary, we can rewrite the
last inequality as

pe(Φl,0)
(R,α) ≤ exp(−NEl(Rl)) .

Now (3.28) follows because El is a non increasing function.

Define now two important figures. The G-random coding exponent is

EG(R) = max
α∈P(rG)

min
l #=0

rG−comp.

El



R
s
∑

i=1

rG
i
∑

j=1

li,j
j

αi,j



 , (3.34)

while the G-optimal splitting rate function is defined by letting, for every R ∈ [0 log |G|],
αG(R) be one of the elements of P(rG) for which the maximum in (3.34) is achieved,
i.e.

min
l #=0

rG−comp.

El



R
s
∑

i=1

rG
i
∑

j=1

li,j
j

αG
i,j(R)



 = max
α∈P(rG)

min
l #=0

rG−comp.

El



R
s
∑

i=1

rG
i
∑

j=1

li,j
j

αi,j





.

(3.35)

Since P(rG) is compact and fR(α) = min
l #=0

rG−comp.

El



R
s
∑

i=1

rG
i
∑

j=1

li,j
j

αi,j



 is continuous from

P(rG) to R for every R ∈ [0, log |G|], the above definition of αG(R) is coherent since fR

has at least (but not necessarily only) one maximum point in P(rG).
We can now state the following result which is an easy consequence of Theorem 13.

Corollary 14 Consider a G-symmetric memoryless channel of G-capacity CG, G-random
coding exponent EG(R), G-optimal splitting rate function αG(R). Then, EG(R) > 0 if
and only if R < CG and

pe(ΦN )
(R,αG(R)) ≤ AG exp(−NEG(R)) , (3.36)

where

AG =
∣

∣

{

l ,= 0 , rG − compatible
}
∣

∣ =
s
∑

i=1

rG
i (rG

i + 3)

2
− 1 . (3.37)

Proof
Notice that, if l ,= 0 and α is any splitting, we have that

El



R
s
∑

i=1

rG
i
∑

j=1

li,j
j

αi,j



 > 0 ⇔ R
s
∑

i=1

rG
i
∑

j=1

li,j
j

αi,j < Cl ⇔ R <
Cl

s
∑

i=1

rG
i
∑

j=1

li,j
j αi,j

.
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Hence,

min
l #=0

rG−comp.

El



R
s
∑

i=1

ri
∑

j=1

li,j
j

αi,j



 > 0 ⇔ R < min
l #=0

rG−comp.

Cl
s
∑

i=1

ri
∑

j=1

li,j
j αi,j

. (3.38)

By choosing α = αG (the G-optimal splitting for which CG is achieved), we thus obtain

min
l #=0

rG−comp.

El



R
s
∑

i=1

ri
∑

j=1

li,j
j

αG
i,j



 > 0 ⇔ R < CG . (3.39)

This clearly implies that if R < CG then EG(R) > 0. Actually, Theorem 6 immediately
implies that

EG(R) > 0 ⇔ R < CG . (3.40)

Using now Theorem 13 we obtain the result.

Remark: It follows from the proof of Corollary 14 that using input groups correspond-
ing to the G-optimal splitting αG, we can reach CG-capacity. However, in order to
obtain best mean rate of convergence one has to use input groups corresponding to the
splitting αG(R) which in general is a function of the rate R. Straightforward conti-
nuity arguments allow to show that αG(R) can always be chosen in such a way that
αG(CG) = αG. Notice that in the cyclic example G = Zpr (s = 1) it was already proven

that αG(R)r = 1 and αG(R)j = 0 if j < r. This corresponds to take U = Z+RN,
pr . In

other words free input groups over Zpr in this case suffice to achieve Zpr -capacity.

Standard probabilistic considerations allow us to state the following.

Corollary 15 Consider a G-symmetric memoryless channel of G-capacity CG, G-random
coding exponent EG(R), and G-optimal splitting rate function αG(R). The ensemble
E(R,αG(R)) satisfies

PG

(

lim inf
N

− log pe(ΦN )

N
≥ EG(R)

)

= 1 , (3.41)

where PG denotes the probability on the ensemble.

Proof: For any ε ∈ (0, EG(R)), N ∈ N define the event Aε
N as

Aε
N := {pe(ΦN ) ≥ AG exp(−N(EG(R)− ε))} ,
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where AG is defined in (3.37). By applying (3.36) and the Markov inequality to each
r.v. pe(ΦN ) we obtain

PG(Aε
N ) ≤ PG

(

pe(ΦN ) ≥ exp(Nε)pe(ΦN )
(R,αG(R))

)

≤ exp(−Nε) .

Then
+∞
∑

N=1

P (Aε
N ) ≤

+∞
∑

N=1

exp(−Nε) < +∞ . (3.42)

Let us denote by {Aε
N i.o.} the event ’Aε

N occurs infinitely many times’, i.e.

{Aε
N i.o.} :=

⋂

k∈N

⋃

N≥k

Aε
N .

By Borel Cantelli theorem, (3.42) implies that PG(Aε
N i.o.) = 0 for every ε > 0. But

clearly

{Aε
N i.o.}c ⊆

{

lim inf
N

− log pe(ΦN )

N
≥ EG(R)− ε

}

.

By the σ-additivity of PG, this implies

PG

(

lim inf
N

− log pe(ΦN )

N
≥ EG(R)

)

= 1 .

Corollary 16 Consider a G-symmetric channel whose G-capacity is CG. Then, for
every R < CG and for every ε > 0, there exists a G-encoder φG, of rate greater than or
equal to R, whose ML decoding word error probability satisfies

pe(φG) < ε . (3.43)

Proof: Trivial consequence of Corollary 15.

3.3.3 On tightness of the error exponent

In the previous subsection an upper bound to the average word error probability of
the G-codes ensembles has been derived, consisting in a term which is exponentially
decreasing to 0 in the block length for every rate below CG. We now want to address
the question whether this bound is exponentially tight or not.
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First we want to specify what we actually mean by ’tight’. Consider a memoryless
channel (X ,Y, P ). It is a well known fact (see [31], [71], [4]) that the random coding
exponent in (2.7) is given by

E(R) =

{

R0 −R , 0 ≤ R ≤ Rcr

Esp(R) , Rcr ≤ R ≤ C .
(3.44)

where Rcr is the so called critical rate, R0 the cutoff rate, and Esp(R) the sphere packing
exponent, all functions of the channel {P} only.

For the classical Shannon random coding ensemble the error exponent is tight for
any deterministic sequence of codes only for R ≥ Rcr, while this is not the case for
low rates R < Rcr: in fact in this case expurgation techniques lead to the existence
of sequences of codes guaranteeing higher error exponents. There are conjectures ([71],
[26]) about the actual achievable error exponent (the so called reliability function of the
channel) at any rate R ∈ [0, C], but still no completely proved results.

Nevertheless it was proved in [32] that E(R) is tight for the average code from the
classical random coding ensemble at any rate, i.e.

lim
N→∞

− log pe(ΦN )

N
= E(R) , ∀0 ≤ R ≤ C . (3.45)

Moreover, when dealing with a channel which is symmetric with respect to the action
of a Galois field Fq (as for instance a binary-input symmetric-output channel), it is well
known that (3.45) holds true for the Fq-linear coding ensemble. The proof of this fact,
although probably never explicitly published yet ([26]), can be obtained with a slight
modification of Gallager’s proof in [32]. Indeed, a closer look at [32] shows that the
fundamental ingredients of that proof in the special case of Fq-symmetrical channels
are uniform distribution of the codewords over FN

q and their pairwise independence. As
these two properties are preserved when moving from the random coding ensemble to
the Fq-linear one, almost the same proof of [32] can be carried on showing that (3.45)
continues to hold true in this case.

We conjecture that the G-error exponent is tight in the latter sense, i.e. that

lim
N→+∞

− log pe(ΦN )
(R,αG(R))

N
= EG(R) . (3.46)

We have not yet a complete proof of (3.46), but only some partial results, and we want
to explain them in the simple special case when G = Z4.

Let 0 < R ≤ CZ4 . The Z4-coding ensemble is the sequence of independent ran-
dom variables (ΦN )N , with each ΦN uniformly distributed over Hom(ZkN

4 , ZN
4 ), where

kN :=
⌊

RN
log 4

⌋

. The Z4-random coding exponent of the channel is

EZ4(R) = min {E1(R/2), E2(R)} ,
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where, as usual, E2(R) and E1(R) are, respectively, the random coding exponent of
the Z4-symmetric channel, and of its 2Z4-symmetric subchannel. In this case partition
(3.26) reduces to

ZkN
4 = {0} ∪HkN ,1 ∪HkN ,2

where HkN ,1 = 2ZN
4 \ {0}, HkN ,2 = ZkN

4 \ 2ZkN
4 . Consider the random encoders

ΦN,1 := ΦN |HkN ,1∪{0}
, ΦN,2 := ΦN |HkN ,2∪{0}

.

We have, by successively applying the UEP, property (2.3) of ML decoding, and Jensen
inequality (notice that function Rd 9 x 2→ max

1≤i≤d
xi ∈ R is convex),

pe(ΦN )
(R,αG(R))

= pe(ΦN ,0)
(R,αG(R))

≥ max{pe(ΦN,1,0), pe(ΦN,2,0)}(R,αG(R))

≥ max
{

pe(ΦN,1,0)
(R,αG(R))

, pe(ΦN,2,0)
(R,αG(R))

}

.

(3.47)

Now we clearly have that ΦN,1x = ΦNx is uniformly distributed over 2ZN
4 for every

x ∈ HkN ,1 and ΦN,2x = ΦNx is uniformly distributed over ZN
4 for every x ∈ HkN ,2.

Moreover ΦN,1x and ΦN,1y are independent for every x,y ∈ HkN ,1 such that x ,= y.
Indeed (ΦN,1)N is the binary linear ensemble (identifying 2Z4 with the binary field
F2), so that from the previous observations we know that the random coding exponent

E1(R/2) is tight for the term pe(ΦN,1,0)
(R,αG(R))

, i.e.

lim
N→∞

log pe(ΦN,1,0)
(R,αG(R))

N
= E1(R/2) , 0 ≤ R ≤ C1 . (3.48)

Instead, two r.v.s ΦN,2x and ΦN,2y are independent only for those x,y ∈ HkN ,2 such
that x−y ∈ HkN ,2; otherwise, when x−y ∈ HkN ,1, then ΦN,2x has uniform distribution
over the coset ΦN,2y+2ZN

4 . In this case Gallager’s arguments cannot be directly applied

to obtain a tightness result at low rates for the term pe(ΦN,2,0)
(R,αG(R))

(though we
conjecture they can be properly modified to get the desired result), so that we actually
only have that

lim
N→∞

log pe(ΦN,1,0)
(R,αG(R))

N
= E2(R) , Rcr,2 ≤ R ≤ C2 , (3.49)

where Rcr,2 denotes the critical rate of the Z4-symmetrical channel By combining (3.47)
with (3.48) and (3.49), we obtain that

lim
N→∞

log pe(ΦN )
(R,αG(R))

N
= EZ4(R) , whenever EZ4(R) = E1(R) or Rcr,2 ≤ R ≤ CZ4 .

(3.50)
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We observe that the first condition in (3.50) is surely holding at very low rates:
indeed

lim
R→0

E1(R/2) = E1(0) ≤ E2(0) = lim
R→0

E2(R) , (3.51)

with strict inequality holding true in (3.51) for nontrivial channels. So we can conclude
that, even for Z4-symmetric channels for which CZ4 = C4 so that there is no loss of
capacity, there is a loss in the average error exponent at low rates when restricting from
Shannon’s random coding ensemble to the Z4-code ensemble.

Similar considerations can be extended to a generic finite Abelian group G, showing
that, when G does not admit Galois field structure (i.e. when G is not isomorphic to any
Zr

p), then even if the G-capacity coincides with Shannon one, restricting to G-encoders
causes a loss in the average error exponent at low rates.

3.3.4 The parity check ensemble

There is another way to represent Abelian group codes. Instead of using the encoder
image representation, one can as well use kernel representations. We essentially obtain
the same codes, however the probabilistic ensembles present certain differences.

Given a design rate R and a splitting α ∈ P(rG), for each block length N ∈ N we
define hN by

(hN )i,j =

⌈

RN(1− αi,j)

j log pi

⌉

Let VhN the corresponding Abelian group having type hN . Consider a sequence of
independent r.v.s Φ′

N uniformly distributed over Hom(GN ,VhN ). Let UN = ker(Φ′
N )

the corresponding sequence of independent r.v. taking values in the set of subgroups of
GN , and finally let

ΦN : UN ↪→ GN

the immersion of UN in GN . The corresponding ensemble will be denoted by E ′(R,α).
Notice that for this ensemble the rate of ΦN is a r.v. RN ; indeed it can be proved that

P ′
G

(

lim
N

RN = R

)

= 1 (P ′
G denotes the probability with respect to this new ensemble).

Let pe(ΦN )
(R,α,′)

denote the word error probability averaged over this ensemble.

Using techniques very similar to those used to upperbound pe(ΦN )
(R,α)

it is possible to
prove the following estimation, which constitutes an analogous of Theorem 13.

Theorem 17 Let (G,Y, P ) a G-symmetric MC. For every R ∈ [0, log |G|[, α ∈ P(rG),

pe(ΦN )
(R,α,′) ≤

∑

l *=0
rG−compatible

exp (−NEl (Rl))
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where El(R) is the error exponent of the subchannel obtained by restricting the input to
the subgroup Gl and

Rl := R
s
∑

i=1

ri
∑

j=1

li,j
j

αi,j .

3.4 Zpr-codes for pr-PSK do achieve capacity of the AWGN

channel!

In this section we will consider MCs having as input set the m-PSK constellation

Km = {ξk
m, k = 0, . . . ,m− 1}

where, we recall, ξm := e
2π
m i. Notice that Km is a subgroup of the multiplicative group

of non-zero complex numbers C∗.
The following definition captures many interesting channels, among which the 2-

dimensional Km-AWGN channel.

Definition 18 A Km additive isotropic decreasing noise (Km-AIDN) channel is a mem-
oryless channel (Km,Y, P ) where

• Y = (Y,B, µ) where Y is a closed subgroup of C∗ such that Km ≤ Y , B is the
corresponding Borel σ-algebra , and µ is a measure over B;

• the transition laws P (y|x) only depend on the distance |x−y| and such dependence
is monotonically decreasing, i.e. there exists a decreasing function ζ : [0,+∞) →
[0,+∞) such that P (y|x) = ζ(|y − x|).

This rather abstract definition allows us to treat at once many different widely used
symmetric channels with input Km and either continuous or discrete output. Notice that
from Def.18 it follows that any Km-AIDN is Zm-symmetric, since Zm is a generating
group for Km, Zm isometrically acts on Y (by rotations), and P (gy|gx) = ζ(|gy−gx|) =
ζ(|x− y|) = P (y|x). We show some examples of Km-AIDN channels.

Example 11 Both the unquantized Km-AWGN channel and the unquantized Km-Laplacian
channel are AIDN channels. !

Next example shows how discrete output Km-AIDN channels can be obtained from
continuous output ones by a proper quantization.

Example 12 Suppose an unquantized Km-AIDN channel (a Km-AWGN for instance)

(Km, C∗, P ) (3.52)
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is given, and let ζ : [0,+∞) → [0,+∞) the decreasing function such that P (y|x) =
ζ(|y − x|) (whose existence is guaranteed by the Def.18). For every positive integer
m′ such that m | m′, we can introduce a new, discrete output, Km-AIDN channel by
quantizing the output of (3.52) over Voronoi regions of the Km′ constellation. Explicitly
such channel is given by

(

Km,Km′ , P ′) , (3.53)

where the output Km′ is equipped with the counting measure µ′, and transition laws are
given by

P ′(ξk
m′ |ξj

m) :=

∫

V
P (ξk

m′t|ξj
m)dµ(t) =

∫

V
ζ
(

|ξk
m′t− ξj

m|
)

dµ(t) =

∫

V
ζ

(

∣

∣

∣
ξ
k−j m′

m
m′ t− 1

∣

∣

∣

)

dµ(t) ,

and V is the Voronoi region of 1 = ξ0
m′ ∈ Km′ , defined as

V :=

{

ρeiθ ∈ C : ρ > 0,− 2π

2m′ ≤ θ ≤ 2π

2m′

}

.

Clearly Km ≤ Km′ ≤ C, so that, in order to see that channel (3.53) fulfil Def.18, it
remains to show that the second requirement is fulfilled. We start by noticing that for
every ρ > 0, θ ∈ R,
∣

∣

∣
ξk
m′ρeiθ − ξj

m

∣

∣

∣

2
=

(

ρ cos(θ + 2π
m′ k)− cos(j 2π

m )
)2

+
(

ρ sin(θ + 2π
m′ k)− sin(j 2π

m )
)2

= ρ2 + 1− 2ρ
(

cos(θ + 2π
m′ k) cos(j 2π

m ) + sin(θ + 2π
m′ k) sin(j 2π

m )
)

= ρ2 + 1 + 2ρ cos
(

θ + 2π
m′k − j 2π

m

)

.
(3.54)

From (3.54), and from the fact that cos(x) = cos(y) if and only if x = ±y (mod 2π), it
immediately follows that for every couple of values k, k′ ∈ Zm′

∣

∣

∣
ξk
m′ − ξj

m

∣

∣

∣
=
∣

∣

∣
ξk′

m′ − ξj
m

∣

∣

∣
⇐⇒ k − m′

m
j = −k′ +

m′

m
j or k = k′ . (3.55)

Then for k ,= k′ ∈ Zm′ such that
∣

∣

∣
ξk
m′ − ξj

m

∣

∣

∣
=
∣

∣

∣
ξk′

m′ − ξj
m

∣

∣

∣
, we have

P ′(ξk
m′ |ξj

m) =

∫

V
ζ

(

∣

∣

∣
ξ
k−j m′

m
m′ t− 1

∣

∣

∣

)

dµ(t)

=

∫

V
ζ

(

∣

∣

∣
ξ
−k′+j m′

m
m′ t− 1

∣

∣

∣

)

dµ(t)

=

∫

V
ζ

(

∣

∣

∣
ξ
−k′+j m′

m
m′ t−1 − 1

∣

∣

∣

)

dµ(t)

=

∫

V
ζ

(

∣

∣

∣
ξ
k′−j m′

m
m′ t− 1

∣

∣

∣

)

dµ(t) = P ′(ξk′

m′ |ξj
m)

(3.56)
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where we exploited (3.55), the symmetry property of Voronoi region V = V −1, and
finally (3.54). Equality (3.56) clearly implies that transition laws P ′(y|x) are function
of the distance |x− y|, i.e. we can define a function ζ ′ : [0,+∞) → [0,+∞) such that

ζ ′(|ξk
m′ − ξj

m|) :=

∫

V
ζ

(

∣

∣

∣
ξ
k−j m′

m
m′ t− 1

∣

∣

∣

)

dµ(t) = P ′(ξk
m′ |ξj

m) ,

arbitrarily interpolating ζ ′(z) for values of z not included in the set {|ξk
m′ − ξj

m|, k ∈
Zm′ , j ∈ Zm}. At this point we are only left to prove that ζ ′ can be chosen decreasing;
clearly it suffices to show that

|ξk
m′ − ξj

m| < |ξk′

m′ − ξj
m| =⇒ ζ ′(|ξk

m′ − ξj
m|) ≥ ζ ′(|ξk′

m′ − ξj
m|) . (3.57)

Due to (3.55) it is sufficient to show (3.57) for value of k and k′ such that j m′

m ≤ k, k′ ≤
j m′

m + m′

2 . Notice that if

0 ≤ k − j
m′

m
< k′ − j

m′

m
≤ m′

2
, − 2π

2m′ ≤ θ ≤ 2π

2m′ , ρ > 0

then
∣

∣

∣
ξk
m′ρeiθ − ξj

m

∣

∣

∣

2
= ρ2 + 1 + 2ρ cos

(

θ + 2π
m′

(

k − j m′

m

))

≥ ρ2 + 1 + 2ρ cos
(

θ + 2π
m′

(

k′ − j m′

m

))

=
∣

∣

∣
ξk′

m′ρeiθ − ξj
m

∣

∣

∣

2
,

from which it follows that

P ′(ξk
m′ |ξj

m) =

∫

V
ζ
(

∣

∣ξk
m′t− ξj

m

∣

∣

)

dµ(t)

≥
∫

V
ζ
(

∣

∣ξk′

m′t− ξj
m

∣

∣

)

dµ(t)

= P ′(ξk
m′ |ξj

m)

where we made use of the decreasing property of ζ. !

We conclude our series of examples with the following one.

Example 13 Let S1 = {eiθ} ⊂ C be the complex unitary circumference. Consider an
unquantized Km-AIDN channel of type (3.52). We define a new channel by projecting
the output C∗ onto S1. Explicitly we consider the channel

(

Km,Y = (S1,B′, µ′), {P (·|x)}x∈Km ∈ P(Y)
)

(3.58)
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where µ′ is the Lebesgue measure of S1, and

P (y|x) :=

∫ +∞

0
ζ(|ρy − x|)ρdµ′′(t)

and µ′′ is the Lebesgue measure of R.
The verification that (3.58) is an AIDN channel is almost the same as that of Ex-

ample 12. !

Now fix a prime number p and a positive integer r; throughout the rest of the present
section the base of log (and thus of the entropy function H) will be p. For a function
f : Y → R we write {f > 0} to denote the set {y ∈ Y : f(y) > 0}.

In the following we will deal with Kpr -AIDN channels; we will prove that for this
class of channels the Shannon capacity Cpr and the Zpr -capacity CZpr do coincide. Recall
that, by definition

CZpr = min
l=1,...,r

r

l
Cl ,

where Cl is the Shannon capacity of the pl-th channel, i.e. the channel obtained by
constraining the input on the Kpl constellation.

Hence, our result is equivalent to say that

rCpl ≥ lCpr , ∀l, r : 1 ≤ sl ≤ r . (3.59)

Notice that a simple inductive argument shows that (3.59) is equivalent to

qCpq+1 ≤ (q + 1)Cpq , ∀q = 1, . . . , r − 1 (3.60)

The rest of section will be devoted to the proof of (3.60). The result will be achieved
through a series of technical intermediate steps. We start with some notation.

Given a Kpq -AIDN channel (Kpq ,Y, P ) we define some connected probability densi-
ties which will play a key role in the following:

• for every y ∈ Y, 1 ≤ q ≤ r,

λq(y) :=
1

pq

∑

x∈Kpq

P (y|x) =
1

pq

pq−1
∑

j=0

P (yξj
pq |1) ;

(second equality follows from the Zpq -symmetry of the channel);

• for every 1 ≤ q ≤ r − 1 and y ∈ Y such that λq+1(y) > 0,

νq(y) :=
1

pλq+1(y)

(

λq(yξ0
pq+1),λq(yξ1

pq+1), . . . ,λq(yξp−1
pq+1)

)

;
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• for every 1 ≤ q ≤ r and y ∈ Y such that λq(y) > 0,

ωq(y) :=
1

pqλq(y)

(

P (y|ξ0
pq), P (y|ξ1

pq), . . . , P (y|ξpq−1
pq )

)

.

Notice that:

• λq ∈ P(Y) ;

• for any fixed y ∈ Y such that λq+1(y) > 0, ωq(y) ∈ P(pq);

• for any fixed y ∈ Y such that λq(y) > 0, νq(y) ∈ P(p);

• Kpq+1 =
⋃

0≤k<p
ξk
pq+1Kpq , and therefore, for y ∈ Y,

λq+1(y) =
1

p

p
∑

k=1

λq

(

yξk
pq+1

)

. (3.61)

For any q = 1, . . . , r consider the pq-th subchannel. Since this subchannel is Zpq -
symmetric (in fact it is a Kpq AIDN channel), its Shannon capacity Cpq is obtained by
uniform distribution over the input set Kpq . The corresponding distribution over the
output set Y is described by

PY (y) =
∑

x∈Kpq

p−qP (y|x) = λq(y) .

So
Cpq = H(λq)−H (P (·|1)) . (3.62)

Therefore (3.60) is equivalent to

H (P (·|1)) + qH(λq+1) ≤ (q + 1)H(λq) , q = 1, . . . , r − 1 . (3.63)

Next lemma shows how the entropies of the families of probability laws ωq(y) and νq(y)
come out in (3.63).

Lemma 19 For every q = 1, . . . , r − 1,

•
H(P (·|1)) = H(λq)− q +

∫

{λq>0}

λq(x)H(ωq(x))dµ(x) ; (3.64)
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•
H(λq) = H(λq+1)− 1 +

∫

{λq+1>0}

λq+1(x)H(νq(x))dµ(x) . (3.65)

Proof:
We have

H (P (·|1)) = −
∫

Y

P (y|1) log P (y|1)dµ(y)

= − 1
pq

pq−1
∑

k=0

∫

Y

P (yξk
pq |1) log P (yξk

pq |1)dµ(y) = − 1

pq

pq−1
∑

k=0

∫

{λq>0}

P (y|ξk
pq1) log P (y|ξk

pq)dµ(y)

= −
∫

{λq>0}

[

1

pq

pq−1
∑

k=0

P (y|ξk
pq)

]

log λq(x)dµ(y)−
∫

{λq>0}

λq(y)
pq−1
∑

k=0

P (y|ξk
pq)

pqλq(y)
log

P (y|ξk
pq)

λq(y)
dµ(y)

= −
∫

{λq>0}

λq(y) log λq(y)dµ(y)−
∫

{λq>0}

λq(y)
pq−1
∑

k=0

(ωq(y))k log(pq(ωq(y))k)dµ(y)

= H(λq)− q +

∫

{λq>0}

λq(y)H (ωq(y)) dµ(y) ,

(3.66)
and

H(λq) = −
∫

Y

λq(y) log λq(y)dµ(y)

= −1
p

p−1
∑

k=0

∫

{λq+1>0}

λq(yξk
pq+1) log λq(yξk

pq+1)dµ(y)

= −
∫

{λq+1>0}

1

p

p−1
∑

k=0

λq(yξk
pq+1) log λq+1(y)dµ(y)−

∫

{λq+1>0}

λq+1(y)
p−1
∑

k=0

λq(yξk
pq+1)

pλq+1(y)
log

λq(yξk
pq+1)

λq+1(y)
dµ(y)

= −
∫

{λq+1>0}

λq+1(y) log λq+1(y)−
∫

{λq+1>0}

λq+1(y)
p−1
∑

k=0

(νq(y))k log(p(νq(y))k)dµ(y)

= H(λq+1)− 1 +

∫

{λq+1>0}

λq+1(y)H (νq(y)) dµ(y) .

(3.67)
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Lemma 19 shows that (3.63) is equivalent to

q

∫

{λq+1>0}

λq+1(y)H (νq(y)) dµ(y) ≥
∫

{λq>0}

λq(y)H (ωq(y)) dµ(y) , ∀q = 1, . . . , r − 1 .

(3.68)
We will prove (3.68) by estimating the two entropies appearing in the integrals.

Now fix an arbitrary y ∈ Y and an integer 1 ≤ q < r, and consider the set of
likelihood values

Pq(y) :=
{

P (y|ξ0
pq), P (y|ξ1

pq), . . . , P (y|ξpq−1
pq )

}

=
{

P (yξ0
pq |1), P (yξpq−1

pq |1), . . . , P (yξ1
pq |1)

}

.

Notice that

Pq+1(y) =
{

P (yξ0
pq+1 |1), P (yξ1

pq+1 |1), . . . , P (yξpq+1−1
pq+1 |1)

}

=
p−1
⋃

j=0

Pq(yξj
pq+1) .

The geometry of the Kpq+1 constellation implies that the ordering of the set Pq+1(y) has
a very particular structure.

Lemma 20 For every 1 ≤ q < r and y ∈ Y, there is a partition

Pq+1(y) =
pq
⋃

k=1

P k
q (y) , P k

q (y) = {wk
q,0(y), wk

q,1(y), . . . , wk
q,p−1(y)}

such that:

•
wk

q,j(y) ∈ Pq(ξ
j
pqy) , ∀k = 0, . . . pq − 1 , ∀j = 0, . . . , p − 1 ;

•
0 ≤ k < k′ < pq =⇒ wk

q,i(y) ≥ wk′

q,j(y) , ∀ i, j = 0, . . . , p − 1 . (3.69)

Proof:
By the definition of an AIDN channel, P (y|x) is a decreasing function of the Euclidean
distance |y−x|, the decreasing ordering of the set Pq+1(y) coincides with the increasing
ordering of the set of distances {|y − x|, x ∈ Kpq+1}. Let

y = ρeθi, ϕj = j
2π

pq+1
, j ∈ Zpq+1 .

Then
|y − ξj

pq+1 |2 = (ρ cos θ − cos ϕj)2 + (ρ sin θ − sinϕj)2

= ρ2 + 1− 2ρ(cos θ cos ϕj + sin θ sinϕj)
= ρ2 + 1 + 2ρ cos(θ − ϕj)
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Let j∗ ∈ Zpq+1 such that

|θ − ϕj∗| ≤ θ − ϕj , ∀j ∈ Zpq+1

Then

ϕj∗ ≤ θ ≤ ϕj∗ +
1

2

2π

pq+1
(3.70)

or

ϕj∗ −
1

2

2π

pq+1
≤ θ ≤ ϕj∗ . (3.71)

Suppose that (3.70) holds true. Then

cos(θ−ϕj∗) ≥ cos(θ−ϕj∗+1) ≥ cos(θ−ϕj∗−1) ≥ cos(θ−ϕj∗+2) ≥ . . . ≥ cos(θ−ϕj∗−+ pq

2
,) .

(3.72)
From (3.72) it follows that, for odd p,

P 0
q (y) =

{

P (y|ξj∗

pq+1), P (y|ξj∗+1
pq+1 ), P (y|ξj∗−1

pq+1 ), . . . , P (y|ξj∗−+ p
2 ,

pq+1 )
}

P 1
q (y) =

{

P (y|ξj∗+. p
2 /

pq+1 ), P (y|ξj∗−. p
2 /

pq+1 ), . . . , P (y|ξj∗+p
pq+1 )

}

...

P pq−2
q (y) =

{

P (y|ξj∗++ pq

2 ,−p

pq+1 ), P (y|ξj∗−+ pq

2 ,+p

pq+1 ), . . . , P (y|ξj∗++ pq

2 ,−+p
2 ,

pq+1 )

}

P pq−1
q (y) =

{

P (y|ξj∗−+ pq

2 ,++ p
2 ,

pq+1 ), P (y|ξj∗++ pq

2 ,−.p
2 /

pq+1 ), . . . , P (y|ξj∗−+ pq

2 ,

pq+1 )

}

.

(3.73)

But (3.73) implies the desired result since for every k the set of ξ’s exponents of the
elements of P k

q (y) contains exactly one element from each equivalence class of integers
modulo p.

The cases when (3.71) holds true instead of (3.70), and p = 2 are analogous.

Notice that for j = 0, . . . , p− 1

Pq(yξj
pq+1) =

{

w0
q,j(y) ≥ w1

q,j(y) ≥ . . . ≥ wpq−1
q,j (y)

}

.

So, for every y ∈ Y such that λq(yξj
pq+1) > 0, if we define

ωq(y, j) :=
1

pqλq(yξj
pq+1)

(

w0
q,j(y), w1

j (y), . . . , wpq−1
q,j (y)

)

,

we clearly have

H (ωq(y, j)) = H
(

ωq(yξj
pq+1)

)

,
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since ωq(yξj
pq+1) and ωq(y, j) simply differ for a permutation.

Consider now the p-adic expansion map

θ : {0, . . . , pq − 1}→ {0, . . . , p− 1}q ,

defined as follows: if s ∈ {0, . . . , pq − 1}, we can write, in a unique way

s =
q−1
∑

k=0

ρkp
k

for suitable elements ρk ∈ {0, . . . , p− 1}. We then define

θ(s) := (ρ0, . . . , ρq−1) .

It is a standard fact that θ is a bijection. Now let Z(y, j) be a random variable on
{0, . . . , pq − 1} with distribution ωq(y, j) and let

Y (y, j) = (Y1(y, j), . . . , Yq(y, j)) := θ ◦ Z(y, j) .

For α = 1, . . . , q, let δαq (y, j) be the distribution of Yα(y, j) on {0, . . . , p−1}. A straight-
forward computation shows that

δα
q (y, j) =

1

pqλq(yξj
pq+1)





pα−1
∑

h=0

pq−α−1−1
∑

h̃=0

wh̃pα+1+spα+h
j (y)

∣

∣

∣
s = 0, . . . , p − 1



 . (3.74)

Lemma 21 For every 1 ≤ α ≤ q,

H
(

ωq(yξj
pq+1)

)

≤
q
∑

α=1

H
(

δα
q (y, j)

)

(3.75)

Proof:
We have

H
(

ωq(yξj
pq+1)

)

= H (ωq(y, j)) = H (Z(y, j)) = H (θ ◦ Z(y, j)) = H (Y (y, j))

≤
q
∑

α=1
H (Yα(y, j)) =

q−1
∑

α=0
H
(

δα
q (y, j)

)

,

where we first used the fact that θ is a bijection, then apply chain rule for entropy, and
finally the conditional entropy bound (see [13] for instance).

Next step of our proof consists in upperbounding the entropies H(δα
q (x)) with the

entropy H(νq(x)), for every 1 ≤ α ≤ q < r and for every j ∈ {0, . . . , p − 1} and y ∈ Y
such that λq(yξj

pq+1) > 0.
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We start by stating a simple result characterizing the so called (generalized) ’permu-
tahedron’ of a given point in the n-dimensional Euclidean space. Let us introduce some
notation. For any K ⊆ Rn the convex hull of K is defined as the smallest convex subset
of Rn containing K: it will be denoted by co(K). The set co(K) can be characterized as
the intersection of all the convex sets K ′ such that Rn ⊇ K ′ ⊃ K. A V-polytope in Rn

is the convex hull of finite set K ⊂ Rn. A H-polytope in Rn is a bounded intersection of
closed halfspaces ({x ∈ Rn :

∑n
i=1 aixi ≤ a0}, ai ∈ R for 0 ≤ i ≤ n). Notice that, since

every halfspace is convex, then every H-polytope is covex too; moreover it can be easily
proved that every H-polythope is the convex hull of its boundary. There is a general
fundamental result (see [74] for instance) stating that an arbitrary set P ⊂ Rn is a
V-polytope if and only if it is an H-polytope: we will therefore simply call it polythope.

In the following we will deal with a special class of polytopes: given a point x ∈ Rn,
we shall consider co(Snx), i.e. the convex hull of the set of all component permutations
of x: this is sometimes called the (generalized) permutahedron of x. By the theorem we
cited above, co(Snx) can be characterized as an H-polytope, and next result explicitly
gives such characterization.

Lemma 22 Let w ∈ Rn be such that

w1 ≥ w2 ≥ . . . ≥ wn . (3.76)

Then
co(Snw) = A

where

A :=
⋂

J⊂{1,...,n}







∑

i∈J

xi ≤
|J |
∑

i=1

wi







⋂

{

n
∑

i=1

xi =
n
∑

i=1

wi

}

⊂ Rn

Proof:
To prove co(Snw) ⊆ A it suffices to note that, for every σ ∈ Sn, σx ∈ A: in fact, it is
easy to check that, due to (3.76), every constraint is satisfied. Since A is convex and
because of the definition of co(Snw) it immediately follows that co(Snw) ⊆ A.

We now prove the converse inclusion, A ⊆ co(Snw), by induction (we use the strong
form of the induction principle). Clearly the statement is true for n = 1. Suppose that
our claim is true for every m ≤ n for some given n ∈ N. Let w ∈ Rn+1 such that
w1 ≥ w2 ≥ . . . ≥ wn+1. For every J ⊂ {1, . . . , n + 1} consider the facet AJ of A defined
by

AJ :=
⋂

I⊂{1,...,n+1}
I *=J







∑

i∈I

xi ≤
|I|
∑

i=1

wi







⋂







∑

i∈J

xi =

|J |
∑

i=1

wi







⋂

{

n+1
∑

i=1

xi =
n+1
∑

i=1

wi

}

.
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We observe that
πJAJ ⊆ BJ , πJcAJ ⊆ CJ , (3.77)

where πJ and πJc are the projections of Rn+1 onto the linear subspaces {xi = 0, i ∈ Jc}
and {xi = 0, i ∈ J} respectively, and

BJ :=
⋂

I⊂J







∑

i∈I

xi ≤
|I|
∑

i=1

wi







⋂







∑

i∈J

xi =

|J |
∑

i=1

wi







⋂ ⋂

i∈Jc

{xi = 0}

CJ :=
⋂

I⊂Jc







∑

i∈I

xi ≤
|J |+|I|
∑

i=|J |+1

wi







⋂







∑

i∈Jc

xi =
n+1
∑

i=|J |+1

wi







⋂⋂

i∈J

{xi = 0} .

In fact, the former inclusion in (3.77) is trivial since BJ is defined as the intersection of
a subset of the halfspaces whose intersection defines AJ , while for the latter it suffices
to observe that, for each I ⊂ Jc,

x ∈ AJ ⇒
∑

i∈I∪J

xi ≤
|I|+|J |
∑

i=1

xi,
∑

i∈J

xi =

|J |
∑

i=1

xi ⇒
∑

i∈I

xi =
∑

i∈I∪J

xi −
∑

i∈J

xi ≤
|I|+|J |
∑

i=|I|+1

xi .

Now let θJ ∈ Sn+1 be any permutation such that

θJ ({1, . . . , |J |}) = J ,

and let SJ := {σ ∈ Sn+1 : σ
∣

∣

{|J |+1,...,n+1} ≡ id}, SJc := {σ ∈ Sn+1 : σ
∣

∣

{1,...,|J |} ≡
id}. Notice that SJ commutes with SJc in the sense that σρ = ρσ, for all σ ∈ SJ

and ρ ∈ SJc . We also define φJ : πJRn+1 → R|J | and φJc : πJcRn+1 → R|Jc| as
the standard isomorphisms. By applying the inductive hypothesis to ΦJπJθJw and
ΦJcπJcθJw respectively, and then immersing beck the results in Rn+1 by Φ−1

J and Φ−1
Jc

respectively, you have that

BJ ⊆ co(πJθJSJw), CJ ⊆ co(πJcθJSJcw) . (3.78)

For every x ∈ AJ we have πJx ∈ BJ and πJcx ∈ CJ from (3.77) and then (3.78) implies
that λ′ ∈ P(SJ) and λ′′ ∈ P(SJc) exist such that

x = πJx + πJcx
=

∑

σ∈SJ

λ′(σ)πJθJσw +
∑

ρ∈SJc

λ′′(ρ)πJcθJρw

=
∑

σ∈SJ
ρ∈SJc

λ′(σ)λ′′(ρ)θJσρw

=
∑

σ∈θJSJSJc

λ(σ)σw ∈ co(Sn+1w),
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with λ ∈ P(θJSJSJc) ⊆ P (Sn+1) defined by λ(θJσρ) := λ′(σ)λ′′(ρ). So, for every
J ⊂ {1, . . . , n + 1}, we have proved that

AJ ⊆ co(Sn+1w) ,

but then

A = co(∂A) = co





⋃

J⊂{1,...,n+1}

AJ



 ⊆ co(Sn+1w) .

Lemma 23 Suppose n2 real numbers {ak
i , i, k = 0, . . . , n− 1} are given, such that

k < k′ =⇒ ak
j ≤ ak′

i , j, l = 0, . . . , n− 1 . (3.79)

Define the two vectors

x =

(

n−1
∑

i=0

a0
i ,

n−1
∑

i=0

a1
i , . . . ,

n−1
∑

i=0

an−1
i

)

, v =

(

n−1
∑

k=0

ak
0 ,

n−1
∑

k=0

ak
1 , . . . ,

n−1
∑

k=0

ak
n−1

)

.

Then v ∈ co(Snx), i.e. v is a convex combination of permutations of x.

Proof: (3.79) implies that
x0 ≥ x1 ≥ . . . ≥ xn−1

and, for every J ⊂ {1, . . . , n− 1},

∑

i∈J

vi ≤
|J |−1
∑

i=0

xi .

So Lemma 22 can be applied to show that v ∈ co(Snx).

We can now prove the following inequality.

Lemma 24 For every 0 ≤ α < q < r, and y ∈ Y such that λq+1(y) > 0,

H







∑

0≤j<p:λq(yξ
j

pq+1 )>0

λq(yξj
pq+1)

pλq+1(y)
δα

q (y, j)






≤ H (νq(y)) (3.80)
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Proof: We will show that

νq(y) ∈ co






Sp







∑

0≤j<p:λq(yξ
j

pq+1 )>0

λq(yξj
pq+1)

pλq+1(y)
δα

q (y, j)












. (3.81)

Then (3.80) simply follows by the concavity of the entropy function.
From Lemma 20 and from (3.74) it follows that

∑

0≤j<p:λq(yξ
j

pq+1 )>0

λq(yξj
pq+1)δ

α
q (y, j) =





p−1
∑

j=0

pα−1
∑

h=0

pq−α−1−1
∑

h̃=0

wspα+h+h̃pα+1

j (y) , s = 0, . . . , p − 1





while, by definition,

pq+1λq+1(y)νq(y) =

(

pq−1
∑

i=0

wi
q,0(y),

pq−1
∑

i=0

wi
q,1(y), . . . ,

pq−1
∑

i=0

wi
q,p−1(y)

)

.

If we define, for 0 ≤ j, s ≤ p− 1,

as
j :=

pα−1
∑

h=0

pq−α−1−1
∑

h̃=0

wspα+h+h̃pα+1

q,j (y) ,

then

pq
∑

0≤j<p:λq(yξ
j

pq+1 )>0

λq(yξj
pq+1)δ

α
q (y, j) =





p−1
∑

j=0

a0
j

p−1
∑

j=0

a1
j , . . . ,

p−1
∑

j=0

ap−1
j



 ,

while

pq+1λq+1(y)νq(y) =

(

p−1
∑

s=0

as
0,

p−1
∑

s=0

as
1, . . . ,

p−1
∑

s=0

as
p−1,

)

Fix a couple (k, k′) ∈ {0, . . . , p− 1} such that k < k′: from (3.69) we have

wkpα+h+h̃pα+1

q,j (y) ≥ wk′pα+h+h̃pα+1

q,i (y) ,

for every j, i ∈ {0, . . . , p − 1}, h ∈ {0, . . . , pα−1 − 1}, h̃ ∈ {0, . . . , pq−α−1 − 1}, and thus

ak
j =

pα−1
∑

h=0

pq−α−1−1
∑

h̃=0

wkpα+h+h̃pα+1

j (y)

≤
pα−1
∑

h=0

pq−α−1−1
∑

h̃=0

wk′pα+h+h̃pα+1

i (y) = ak′

i .
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So the coefficients {ak
j , j, k = 0, . . . , p − 1} satisfy (3.79) and then Lemma 23 can be

applied to conclude that

pq+1λq+1(y)νq(y) ∈ co






Sp






pq

∑

0≤j<p:λq(yξ
j

pq+1 )>0

λq(yξj
pq+1)δ

α
q (y, j)












, (3.82)

which in turn implies (3.81), since we have supposed λq+1(y) > 0.

Finally, we are ready to prove the following fundamental result.

Theorem 25 For every 1 ≤ q < r,

qCpq+1 ≤ (q + 1)Cpq . (3.83)

Proof: We already noticed that (3.83) is equivalent to

q

∫

{λq+1>0}

λq+1(y)H (νq(y)) dµ(y) ≥
∫

{λq>0}

λq(y)H (ωq(y)) dµ(y) . (3.84)

Fix an arbitrary y ∈ {λq+1(y) > 0}. Successively applying (3.75), the concavity of the
entropy function H and (3.80), we obtain

∑

0≤j<p:
λq(yξj

pq+1 )>0

λq(yξj
pq+1)

pλq+1(y)
H
(

ωq(yξj
pq+1)

)

≤
q
∑

α=1





∑

j

λq(yξj
pq+1)

pλq+1(y)
H
(

δα
q (y, j)

)





≤
q
∑

α=1

H





∑

j

λq(yξj
pq+1)

pλq+1(y)
δα

q (y, j)





≤
q
∑

α=1

H (νq(y))

= qH (νq(y)) .

(3.85)

Thus

1

p

∑

0≤j<p:
λq(yξj

pq+1 )>0

λq(yξj
pq+1)H

(

ωq(yξj
pq+1)

)

≤ qλq+1(y)H (νq(y)) ∀y ∈ {λq+1 > 0} ,

(3.86)
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which implies, since {λq+1>0}(y) ≥ {λq>0}(yξj
pq+1),

∫

{λq>0}

H (ωq(y)) dµ(y) =

∫

Y

λq(y)H (ωq(y)) {λq>0}(y)dµ(y)

= 1
p

p−1
∑

j=0

∫

Y

λq(yξj
pq+1)H

(

ωq(yξk
pq+1)

)

{λq>0}(yξj
pq+1)dµ(y)

=

∫

Y

1

p

∑

0≤j<p:
λq(yξj

pq+1 )>0

λq(yξj
pq+1)H

(

ωq(yξj
pq+1)

)

{λq+1>0}(y)dµ(y)

≤ q

∫

Y

λq+1(y)H (νq(y)) {λq+1>0}(y)dµ(y)

= q

∫

{λq+1>0}

λq+1(y)H (νq(y)) dµ(y) .

(3.87)

We summarize the results of the present section in the following:

Corollary 26 For any prime p and positive integer r, every Kpr-AIDN channel is such
that

ĈZpr = Cpr . (3.88)

Combining Corollary 26 with Corollary 16, we can finally state a result first conjec-
tured by Loeliger in [44].

Corollary 27 Zpr(-free) codes achieve capacity of the pr-PSK AWGN channel.

3.5 An example when CG < C

In the previous section we have shown that for a wide class of Zpr-symmetric channels
with pr-PSK as input Zpr -capacity and Shannon capacity do coincide, thus implying by
Corollary 16 that Zpr -codes do suffice to achieve Shannon capacity of such channels. At
this point the question arising is whether it is the case for any higher dimensional GU
constellation admitting generating group isomorphic to Zpr . The answer is negative as
we will show in this section. In fact we will provide a whole family of counterexamples
based on the three-dimensional constellations introduced in Example 7 of Section 2.
We will prove that Z2r -capacity of the AWGN channel with input constrained on some
of these constellations is strictly less than the corresponding Shannon capacity, thus
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leading to an effective algebraic obstruction to the use of Z2r -codes. This motivates the
investigation of non Abelian group codes for such constellations.

We start by fixing some notation. Let r be an arbitrary positive integer to be
considered fixed throughout this section. We consider the family of three-dimensional
GU constellations Kβ

2r , parameterized by β ∈ (0,+∞) and defined as

Kβ
2r :=

{

xk =

(

√

1
1+β2 e

2π
2r ki,

√

β2

1+β2 (−1)k
)

, k = 0, 1, . . . , 2r − 1

}

⊂ C× R # R3 .

We recall that the symmetry group of Kβ
2r is isomorphic to the dihedral group D2r ,

and that Kβ
2r admits two non isomorphic generating groups: the cyclic one Z2r and the

dihedral one D2r−1 . Let us fix a standard deviation value σ > 0, and consider the corre-

sponding family of Kβ
2r -AWGN channels

(

Kβ
2r , R3, P

)

, with P (y|x) = 1
(2πσ2)3/2 e−

||y−x||2

2σ2 .

For s = 1, . . . , r we will use the notation C2s(β) for the capacity of the Kβ
2s-AWGN chan-

nel, while CZ2r (β) will be the Z2r -capacity of the Kβ
2r -AWGN channel, i.e.

CZ2r (β) = min
1≤s≤r

r

s
C2s(β) .

We start our analysis by considering the limit case as β goes to 0. For β = 0, Kβ
2r

degenerates into an R3 embedding of the 2r-PSK constellation, so that we can extend
our definition of Kβ

2r to the case β = 0 in a natural way:

K0
2r :=

{

xk =
(

e
2π
2r ki, 0

)

, k = 0, 1, . . . , 2r − 1
}

⊂ C× R # R3 .

Notice that clearly K0
2r is not a 3-dimensional constellation since it does not span R3.

It is a trivial fact that, since orthogonal components of the additive Gaussian noise are
mutually independent, for every 1 ≤ s ≤ r C2s(0) coincides with the capacity of the K2s-
AWGN channel, i.e. the 2-dimensional AWGN channel with input constrained over the
2s-PSK constellation. Thus, all the results of last section hold true for the K0

2r -AWGN
channel: in particular we have Z2r -capacity and Shannon one coinciding, i.e.

CZ2r (0) = C2r(0) . (3.89)

Similar arguments can be applied, for every given β > 0, to the 2r−1-th subconstel-
lation

{(

√

1
1+β2 e

2π
2r−1 ki,

√

β2

1+β2

)

, k = 0, 1, . . . , 2r−1 − 1

}

which coincides with a 3-dimensional embedding of the constellation
√

1
1+β2 K2r−1, i.e.

the 2r−1-PSK rescaled by the homotopy x 2→
√

1
1+β2 x. This observation, combined with
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the equivalence of AWGN-channels with the same signal to noise ratio, and again the
independence of orthogonal components of the Gaussian noise, allows us to apply the
results of the previous section to state that

(r − 1)C2s(β) ≥ sC2r−1(β) , 1 ≤ s ≤ r − 1 . (3.90)

Thus, for every given β ∈ (0,+∞), in order to check whether C2r(β) and CZ2r (β) do
coincide or not we are only left to compare the two capacities C2r(β) and C2r−1(β), i.e.

CZ2r (β) = C2r(β) ⇐⇒ (r − 1)C2r(β) ≤ rC2r−1(β) .

If we now let the parameter β go to +∞, the constellation Kβ
2r approaches an

R3 embedding of the 2-PAM modulation, with the 2r−1 even labeled points {x2k, k =
0, . . . , x2r−1−1} collapsed into the point (0, 0, 1), and the odd labeled ones {x2k+1, . . . , 2r−1−
1} into the point (0, 0,−1). Let us define this limit constellation as

K∞ := {(0, 0, 1), (0, 0,−1)} .

We denote Shannon capacity of the K∞-AWGN channel by C(∞) and notice that, for
every finite standard deviation value σ, we have

C(∞) > 0 ,

while every subchannel of K∞ trivially has zero Shannon capacity. We now want to
evaluate the limit of both capacities C2r(β) and C2r−1(β) as β goes to infinity. Intuitively,

as Kβ
2r is approaching K∞

2r , we can expect that respectively C2r(β)
β→∞−→ C(∞) and

C2s(β)
β→∞−→ 0 for every s < r. In fact this is true as can be formally proved in the

following way. We start by noticing that

∑

x∈Kβ
2r

1
2r P (y|x) log

(

P (y|x)
1
2r

P

z∈K
β
2r

P (y|z)

)

≤
∑

x∈Kβ
2r

1
2r

∑

z∈Kβ
2r

1
2r P (y|x) log

(

P (y|x)
P (y|z)

)

= 1
22r

∑

x,z∈Kβ
2r

P (y|x) log e
(

− ||y−x||2

2σ2 + ||y−z||2

2σ2

)

≤ 1
22r

∑

x,z∈Kβ
2r

P (y|x) log e
2σ2

(

−||y − x||2 + (||y − x|| + ||z − x||)2
)

≤ 1
22r

∑

x,z∈Kβ
2r

P (y|x) log e
2σ2

(

||y − x||2 + 2||x− z||2
)

≤ 1
2r

∑

x∈Kβ
2r

P (y|x) log e
2σ2

(

||y − x||2 + 8
)

where the first inequality is due to the convexity of the function x → log 1
x , the second

one to the triangular inequality, the third one comes from the fact that 2ab ≤ a2 + b2
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for every a, b ∈ R, and the last one from the fact that x and z both lie on a sphere of
radius 1, so that ||x− z|| ≤ ||x|| + ||z|| ≤ 2. Since

1

2r

∑

x∈Kβ
2r

∫

C∗
P (y|x)

log e

2σ2

(

||y − x||2 + 8
)

dµ(y) = log e

(

1

2
+

4

σ2

)

< +∞

we can apply Lebesgue’s dominated convergence theorem (see [58]) in order to exchange
the limit and the integral signs in evaluating the expressions limβ→+∞ C2s(β) for any s ≤

r. By this argument and the continuity of transition densities P (y|x) = 1
2πσ2 e−

||y−x||2

2σ2 ,
we get

lim
β→+∞

C2r(β) = lim
β→+∞

∑

x∈Kβ
2r

1

2r

∫

Y

P (y|x) log

(

P (y|x)
1
2r

∑

z∈Kβ
2r

P (y|z)

)

dµ(y)

=

∫

Y

1

2r
lim

β→+∞

∑

x∈Kβ
2r

P (y|x) log

(

P (y|x)
1
2r

∑

z∈Kβ
2r

P (y|z)

)

dµ(y)

=

∫

Y

1

2

∑

x∈K∞

P (y|x) log

(

P (y|x)
1
2

∑

z∈K∞
P (y|z)

)

dµ(y) = C(∞)

(3.91)

and, for every 1 ≤ s < r

lim
β→+∞

C2s(β) = lim
β→+∞

∫

Y

1

2s

2s−1
∑

j=0

P (y|x2r−sj) log











P (y|x2r−sj)

1
2s

2s−1
∑

k=0
P (y|x2r−sk)











dµ(y)

=

∫

Y

1

2s

2s−1
∑

j=0

lim
β→+∞

P (y|x2r−sj) log











P (y|x2r−sj)

1
2s

2s−1
∑

k=0
P (y|x2r−sk)











dµ(y)

=

∫

Y

P (y|(0, 0, 1)) log

(

P (y|(0, 0, 1))
P (y|(0, 0, 1))

)

dµ(y) = 0 .

(3.92)
Thus a continuity argument applied to C2r(β) and C2r−1(β) implies the existence of
β = β(σ) ≥ 0 such that

C2r−1(β) < C2r(β) , ∀β > β .
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8 as a function of β

As a consequence we have that

CZ2r (β) = C2r(β) ⇐⇒ β ≤ β . (3.93)

As an immediate consequence of Theorem 6, (3.93) tell us that for every σ > 0
algebraic obstructions surely occur for β > β(σ). We can conclude that for sufficiently

high -but finite- values of β Z2r -codes do not achieve Shannon capacity of the Kβ
2r -AWGN

channel of any arbitrary given signal to noise ratio. We observe that it can be proved
that, for r > 2,

(r − 1)C2r (0) < rC2r−1(0) .

A continuity argument implies then that β > 0, i.e. for sufficiently small -but positive-
values of β, Z2r -codes do achieve capacity of the Kβ

2r -AWGN channel.
Figure 3.2 reports the behaviour of C8(β) and CZ8(β) as a function of the parameter

β (Montecarlo simulations).
Summarizing, in this section we have provided an example of Abelian G-symmetric

channel -the Kβ
2r -AWGN channel for β > β- for which G-codes are not sufficient to

achieve Shannon capacity. It remains an open question whether or not for high values
of β the capacity of the Kβ

2R AWGN-channels can still be achieved by D2r−1-codes, i.e.

codes which are subgroups of DN
2r−1. Our feeling is that it could be possible: it seems

to us that, roughly speaking, the structure of the dihedral group is more suitable to be
adapted to Kβ

2r when β goes to infinity, since D2r−1 contains a binary subgroup with cor-

responding subconstellation

{(

√

1
1+β2 ,

√

β2

1+β2

)

,

(

√

1
1+β2 e

2π
2r i,−

√

β2

1+β2

)}

approach-

ing K∞ = {(0, 1)(0,−1)} as β goes to infinity. More in general, one can ask which
geometrically uniform constellations S admit eventually non-Abelian generating groups
G such that Shannon capacity of the S-AWGN channels can be achieved by G-codes.
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3.6 Conclusions

In this chapter we developed a Shannon theory for group codes over symmetric memo-
ryless channels, when the generating group G is an arbitrary finite Abelian group. Our
results generalize the classical theory for binary linear codes over symmetric channels.
The main example we have in mind is the AWGN channel with input restricted over
a geometrically uniform constellation S admitting G as generating group and either
soft or quantized output. We have individuated a new threshold value for the rates at
which reliable transmission is possible with G-codes, which we called the G-capacity
CG, defined as the solution of an optimization problem involving Shannon capacities of
the channels obtained by restricting the input to some of the subgroups of G. We have
shown that at rates below CG the average ML word error probability of the ensemble
of G-codes goes to zero exponentially fast with the block length, with exponent at least
equal to the G-channel coding exponent EG(R), while at rates beyond CG the word error
probability of any G-code is bounded from below by a strictly positive constant. We
have proved that for the AWGN channel with m-PSK constellation as input (and m the
power of a prime) the G-capacity CG does coincide with the Shannon capacity C, so that
in this case we have shown that reliable transmission at any rate R < C can in fact be
reached using group codes over Zm. Finally we have exhibited a counterexample when
CG < C: it consists of the AWGN channel with as input a particular three-dimensional
constellation admitting Zm as generating group.

Among the still open problems we recall:

• giving a full proof that EG(R) is tight for the average G-code, and analyzing the
error exponent of a typical G-code from the ensemble;

• studying new geometrically uniform constellations;

• extending the theory to non-Abelian groups.

Especially last point seems to us a great challenge for future research.
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Chapter 4

Typical minimum distances of
Abelian group codes

4.1 Introduction

In this chapter, we investigate the minimum Bhattacharyya-distance properties of Abelian
group codes on symmetric channels. It is well-known [30] that the typical binary linear
code achieves the Gilbert-Varshamov bound on the minimum Hamming distance. It is
also known that the typical random code does not achieve the GV bound [4]. Analogous
results are known for the typical error exponent: the linear-coding ensemble achieves
the so-called expurgated exponent [71] with probability one, while the random coding
ensemble is bounded away from it. Therefore, not only is the linear-coding ensemble
capacity achieving on any BIOS channel, but in fact it is superior to the random coding
ensemble in terms of the performance of the typical code.

We have seen in Chapter 3 that Abelian group codes allow to achieve capacity on
a large family of symmetric channels, even if not for all of them. Here we will analyze
the typical performance of Abelian group code ensembles on symmetric channels, and
in particular study the behaviour of the minimum Bhattacharyya distance. Rather
than presenting a general theory, we will focus on specific example, the 8-PSK AWGN
channel, containing most of the key ingredients of the general situation. Three different
code ensembles will be analyzed: the random coding ensemble, i.e. the set of all possible
codes (with no algebraic structure requirement), the Z8-code ensemble consisting in the
set of all subgroups of Zn

8 , and the binary affine code ensemble consisting in the set of all
codes which are affine subspaces of Z3n

2 . All the three ensembles achieve the Shannon
capacity of the channel. While, analogously to the binary case, the random coding
ensemble does not asymptotically achieve the GV bound with probability one, we will
prove that almost surely a random Z8-group code sequence achieves the GV bound. We
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will also show that almost surely a sequence of binary affine codes has minimum distance
asymptotically bounded away from the GV distance.

Analogous results could be obtained for the error exponent which (at low rates) is
larger for a typical Z8-code sequence than it is for a typical binary affine code sequence
or for a typical code sequence sampled from the random coding ensemble. This stands in
contrast with the results obtained for the average error exponent, which is larger for the
random coding ensemble and for the binary affine ensemble than it is for the Z8-group
code ensemble: hierarchies are reversed! The paradox can be easily explained by the
fact that the average case analysis only gives a one side estimation of the performance
of a typical code (thanks to Markov inequality). However ensemble performance may
fail to concentrate around its expected value, and in this case the average case analysis
ends up to be too conservative in estimating the error exponent.

The rest of this chapter is organized as follows. In Sect. 4.2 three capacity-achieving
ensembles for the 8-PSK AWGN channel are introduced: the random coding ensemble,
the Z8-code ensemble, and the binary affine ensemble. In Sect. 4.3 we analyze the
typical asymptotics of normalized minimum distance of the random coding ensemble:
these results are standard generalizations of the binary case. In Sect. 4.4 we study the
normalized minimum distance of the Z8-code ensemble: although the results obtained
generalize the ones known for the binary linear ensemble, this generalization is non-
trivial. In Sect. 4.5 we characterize the asymptotics of the normalized minimum distance
of the binary-affine ensemble: the results presented are new, at to our knowledge.

4.2 Three capacity-achieving ensembles for the 8-PSK-AWGN

channel

Throughout this chapter we will restrict ourself to considering transmission on the 8-
PSK AWGN channel. As usual, since the channel is Z8-symmetric, we will identify its
input Z8 with Z8 itself. For every design rate R in (0, log 8) and N in N, define

R := log 8−R , L :=

⌊

R

log 8
N

⌋

.

We will analyze three code ensembles, defined as follows:

1. let SR
N be a random subset of ZN

8 , such that the events
{

x ∈ SR
N

}

, for x in ZN
8 ,

are independent each having probability 8−L; the random coding ensemble of rate
R is the sequence of random codes

(

SR
N

)

; 1

1In Chapter 2 the random coding ensemble was constructed in a different way. However, the two
constructions are very close to each other and in fact they share all the fundamental properties studied
in this chapter.

68



2. let ΦR
N be a random variable uniformly distributed over hom

(

ZN
8 , ZL

8

)

, the set of
all group homomorphisms from ZN

8 to ZL
8 . The cyclic group code ensemble of rate

R is the sequence of random codes
(

T R
N := ker ΦR

N

)

.

3. let η : Z3
2 → Z8 be an arbitrary bijection; for every N let ηN : Z3N

2 → XN denote its
componentwise extension. Consider a random variable ΨR

N uniformly distributed
over Hom

(

Z3N
2 , Z3L

2

)

, the set of Z2-linear maps from Z3N
2 to Z3L

2 . Moreover, let
ZN be a random variable uniformly distributed over Z3L

2 , independent of ΨR
N . The

binary affine code ensemble of rate R is the sequence of random codes
(

UR
N

)

, where
UR

N is defined as the image through ηN of the preimage of ZN through ΨR
N : 2

UR
N := ηN

(

(

ΨR
N

)−1
ZN

)

. (4.1)

The fact that the random coding ensemble as defined above achieves capacity follows
from the mutual independence of the events

{

x ∈ SR
N

}

for x ∈ ZN
8 , by an adaptation

of the standard averaging random coding arguments. More precisely such an argument
allows to show that

E
[

pe(SR
N )
]

≤ exp(−NE(R)) , (4.2)

so that, once fixed a design rate R below the capacity C, the average error probability of
the random coding ensemble

(

SR
N

)

approaches zero exponentially fast in the blocklength
N . Moreover from the independence of the events Sx it follows that the arguments of
[32] can be applied showing that (4.2) is exponentially tight for the average code, i.e.

lim
N∈N

− 1

N
log E

[

pe(SR
N )
]

= E(R) . (4.3)

Similar arguments apply to the binary affine ensemble defined by (4.1). Here, for
any x in ZN

8 , the event Ax :=
{

x ∈ UR
N

}

has probability 8−L. Moreover, arbitrarily
choosing three distinct N -tuples x1, x2 and x3 in ZN

8 , it is possible to show that the
events Axi for i = 1, 2, 3 are mutually independent. Then, all the considerations made
above can be repeated concluding that

E
[

pe(UR
N )
]

≤ exp(−NE(R)) , lim
N∈N

− 1

N
log E

[

pe UR
N )
]

= E(R) . (4.4)

Finally, the fact that Z8-code ensemble achieves capacity follows from Theorem 16
of Chapter 2. In particular we have seen that the average error probability can be
upperbounded by a term exponentially decreasing in the blocklength

pe(T R
N ) ≤ exp(−NEZ8(R)) .

2An alternative way to sample the binary affine ensemble consists in considering a r.v. VN uniformly

distributed over Z3N
2 and independent of ΨR

N . Then, kerΨR
N + VN and

`

ΨR
N

´−1
ZN can be shown to be

identically distributed.
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The exponent appearing in the righthand side of the above inequality is given by

EZ8(R) := min
{

E8(R), E4(
2
3R), E2(

1
R )
}

with E4(
2
3R) and E2(

1
R ) respectively denoting the random coding error exponents of the

AWGN channels with input restricted over the 4-PSK and the 2-PSK modulation.
Thus, the average error exponents of respectively the random kernel ensemble and

the binary affine ensemble both equal the random coding ensemble E8(R), while the error
exponent of the Z8-linear ensemble is given by EZ8(R). We have observed in Chapter
3 that, while EZ8(R) and E8(R) do coincide at rates close to capacity, the former is
strictly less than the latter at lower rates; in fact it coincides with the exponent E2(

1
3R)

of the binary subchannel. In other words, even if algebraic constraints do not affect
the capacity achievable by Z8-codes over the 8-PSK AWGN channel, they do lower the
average error exponent achievable by the Z8-linear ensemble of codes.

If fact, as a consequence of the results presented in the sequel, we will see that the
above claim is misleading. Indeed, it refers to the performance of the average code
rather than to the performance of the typical code sampled from the three ensembles.
While a first order method can always be used to guarantee that the error exponent of a
typical code sequence is always bounded from below by the average case error exponent,
this bound can fail to be tight. Indeed average performance of code ensembles can be
affected by asymptotically vanishing fractions of bad codes. This generally observed
phenomenon can cause the average-case analysis to be conservative in estimating error
exponents. In this case so called expurgation techniques can be used to obtain the exact
error exponent of a typical code sequence.

The main results of this chapter concern the typical asymptotic behaviour of the
normalized minimum distance of the three ensembles. In particular we will characterize
the almost sure limit of the three random sequences. It will be shown in the following
sections that:

• for the random coding ensemble with probability one the sequence 1
N dmin(SR

N )
converges to δ8(2R), the Gilbert-Varshamov distance corresponding to twice the
design rate;

• for the cyclic group code ensemble with probability one the sequence 1
N dmin(T R

N )
converges to the Gilbert-Varshamov distance δ8(R);

• for the binary affine code ensemble (with an arbitrary labeling η : Z3
2 → Z8) with

probability one the sequence 1
N dmin(UR

N ) has minimum distance asymptotically
strictly between δGV (2R) and δGV (R) (see Sect.4.5 for a precise characterization).

Therefore hierarchies for typical normalized minimum distances are reversed with respect
to those for the average error probability. The typical Z8-linear code has larger minimum
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distance than the typical Z2-affine code, which in turn has larger minimum distance than
the typical random code.

4.3 The minimum distance of the typical random code

In this section we will prove that with probability one the normalized minimum Bhattacharyya-
distance of the random coding ensemble converges to δGV (2R), the GV bound corre-
sponding to twice the rate. Although this is an extension of known results for binary
codes [4], we present here a proof, since it allows us to present some techniques which
will be used in the following sections.

For any ϑ in the set of joint types P(Z8 × Z8), we denote the number of ordered
pairs of elements of the random code SR

N of joint type ϑ by

SR
N (ϑ) :=

∣

∣

∣
(Z8 × Z8)

N
ϑ ∩

(

SR
N × SR

N

)

∣

∣

∣
.

Observe that the minimum distance of the random code SR
N is a function of its joint-type

enumerating function SR
N :

dmin
(

SR
N

)

= min
{

∆(x,z)
∣

∣ x ,= z ∈ SR
N

}

= N min
{

〈ϑ,∆〉
∣

∣ ϑ ∈ P∗(Z8 × Z8) : SR
N (ϑ) > 0

}

,

where
P∗(Z8 × Z8) := {ϑ ∈ P(Z8 × Z8) |∃x ,= z : ϑ(x, z) > 0}

is the set of joint measures whose support is not contained in the diagonal set {(x, x)}.
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It turns out that the typical asymptotic spectrum of the RCE can be characterized
as explained in the following series of results. The first of them concerns the average
value and variance of the joint-type enumerating function SR

N . We will use the notation
π1

#ϑ(x) =
∑

y ϑ(x, y), π2
#ϑ(y) =

∑

x ϑ(x, y) in P(Z8) for the marginals of a joint
measure ϑ in P(Z8 × Z8).

Lemma 28 For every ϑ in P∗
N (Z8 × Z8) we have

E
[

SR
N (ϑ)

]

=

(

N

Nϑ

)

1

82L
, (4.5)

Var
[

SR
N (ϑ)

]

≤
(

N

Nϑ

)

2

82L
+ 2

(

N

Nϑ

)2 1

83L

(

(

N

Nπ1
#ϑ

)−1

+

(

N

Nπ2
#ϑ

)−1
)

. (4.6)

Proof Fix a pair (x,z) in (Z8 × Z8)
N
ϑ . Since ϑ is in P∗ (Z8 × Z8), it follows that

necessarily x ,= z. Then, the events {x ∈ SR
N} and {z ∈ SR

N} are independent so that

P
(

x ∈ SR
N ,z ∈ SR

N

)

= P
(

x ∈ SR
N

)

P
(

z ∈ SR
N

)

=
1

82L
.

It thus follows that

E[SR
N (ϑ)] = E

[

∑

(x,z)∈(Z8×Z8)N
ϑ {x∈SR

N} {z∈SR
N}
]

=
∑

(x,z)∈(Z8×Z8)N
ϑ

P
(

x ∈ SR
N ,z ∈ SR

N

)

=

(

N

Nϑ

)

1

82L
,

showing (4.5). Let us turn to estimate the variance of SR
N (ϑ). We have

Var
[

SR
N (ϑ)

]

= Var
[

∑

(x,z)∈(Z8×Z8)N
ϑ {x∈SR

N ,z∈SR
N}
]

=
∑

(x,z),(x′,z′)∈(Z8×Z8)
N
ϑ

Cov
[

{x∈SR
N ,z∈SR

N}, {x′∈SR
N ,z′∈SR

N}
]

.

Consider two pairs (x,z) and (x′,z′) in (Z8 × Z8)
N
ϑ . Since, as already observed x ,= z,

then
2 ≤

∣

∣

{

x,z,x′,z′}
∣

∣ ≤ 4 .

If |{x,z,x′,z′}| = 4, then the events
{

x ∈ SR
N ,z ∈ SR

N

}

and
{

x′ ∈ SR
N ,z′ ∈ SR

N

}

are
independent and therefore

Cov
[

{x∈SR
N ,z∈SR

N}, {x′∈SR
N ,z′∈SR

N}
]

= 0 .
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If instead |{x,z,x′,z′}| = 2, then necessarily x′ = x and z = z′ or x′ = z and z = x′.
In both cases

Cov
[

{x∈SR
N ,z∈SR

N}, {x′∈SR
N ,z′∈SR

N}
]

= Var
[

{x∈SR
N ,z∈SR

N}
]

=
1

82L

(

1− 1

82L

)

.

As there are at most 2
( N
Nϑ

)

such choices of pairs (x,z) and (x′,z′) in (Z8 × Z8)
N
ϑ , their

contribution is taken into account by the first summand in the righthand side of (4.6).
Finally, we consider pairs (x,z) and (x′,z′) such that |{x,z,x′,z′}| = 3. In this case

Cov
[

{x,z∈SR
N}, {x′,z′∈SR

N}
]

≤ P
(

x,z,x′,z′ ∈ SR
N

)

=
1

83L
.

We claim that there are at most 2
( N
Nϑ

)2
(

( N
Nπ1

#ϑ

)−1
+
( N
Nπ2

#ϑ

)−1
)

such choices of pairs

(x,z) and (x′,z′) in (Z8 × Z8)
N
ϑ . Indeed, once fixed (x,z) (there are

( N
Nϑ

)

different
possibilities), for |{x,z,x′,z′}| = 3 it is necessary that either x′ = x, or x′ = z, or

z′ = x, or z′ = z. There are
( N
Nϑ

)( N
Nπ1

#ϑ

)−1
different choices of (x′,z′) in (Z8 × Z8)

N
ϑ

with x′ = x,
( N
Nϑ

)( N
Nπ2

#ϑ

)−1
choices with z′ = z, at most

( N
Nϑ

)( N
Nπ2

#ϑ

)−1
with z′ = x

and at most
( N
Nϑ

)( N
Nπ1

#ϑ

)−1
with x′ = z. This justifies the second summand in the

righthand side of (4.6).

Now, a first-order method allows us to prove that, almost surely, pairs of codewords
of any joint type θ whose entropy is below 2R exist only for finitely many values of N .

Proposition 29 For every rate R in (0, log 8) and ε > 0 we have that with probability
one there exists some N0 in N such that

SR
N (ϑ) = 0 , ∀ϑ ∈ P∗ (Z8 × Z8) : H(ϑ) ≤ 2R− ε , ∀N ≥ N0 . (4.7)

Proof Consider a type ϑ in P∗ (Z8 × Z8) such that H(ϑ) ≤ 2R. From (4.5) it follows
that for every N

E
[

SR
N (ϑ)

]

≤
(

N

Nϑ

)

1

82L
≤ exp

(

N
(

H(ϑ)− 2R
))

≤ exp(−εN) ,

with the first inequality above holding as an equality iff ϑ belongs to PN (Z8 × Z8). For
every N define the events

Aϑ
N :=

{

SR
N (ϑ) ≥ 1

}

, Aε
N :=

⋃

H(ϑ)≤2R−ε

Aϑ
N .
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We have

P (Aε
N ) ≤

∑

H(ϑ)≤2R−ε

P
(

Aϑ
N

)

≤
∑

H(ϑ)≤2R−ε

E
[

SR
N (ϑ)

]

≤ |PN (Z8 × Z8)| exp (−εN) ,

the first inequality above following by a union bound estimation, the second one from
Markov inequality, the third one from (4.5). Since |PN (Z8 × Z8)| grows polynomially
fast in N , we have

∑

N P (Aε
N ) ≤

∑

N |PN (Z8 × Z8)| exp(−εN) < +∞ .

Then, an application of Borel-Cantelli lemma implies that with probability one the event
Aε

N occurs only for finitely many values of N in N.

The following can be considered as a partial converse to Proposition 29. Its proof is
based on an application of the second-moment method.

Proposition 30 For a design rate R in (0, log 8), let ϑ in P (Z8 × Z8) satisfy

H(ϑ) > 2R , H(π1
#ϑ) > R , H(π2

#ϑ) > R . (4.8)

Then for every sequence (ϑN ) in P (Z8 × Z8) converging to ϑ, with ϑN in PN (Z8 × Z8)
for every N , with probability one

∃N0 ∈ N : SR
N (ϑN ) ≥ 1 , ∀N ≥ N0 . (4.9)

Proof From Chebyshev inequality and Lemma 28 it follows that

P
(

SR
N (ϑN ) = 0

)

≤
Var

[

SR
N (ϑN )

]

E
[

SR
N (ϑN )

]2 ≤ 2
82L

( N
Nϑ

) + 2
82L

( N
Nπ1

#ϑ

) + 2
82L

( N
Nπ2

#ϑ

) .

Then

lim sup
N∈N

1

N
log P

(

SR
N (ϑN ) = 0

)

≤ lim sup
N∈N

1

N
log





82L

( N
NϑN

) +
8L

( N
Nπ1

#ϑN

) +
8L

( N
Nπ2

#ϑN

)





= max
{

2R −H(ϑ) , R−H
(

π1
#ϑ
)

, R−H
(

π2
#ϑ
)}

< 0 .

Therefore
∑

N P(SR
N (ϑN ) = 0) < +∞, and Borel-Cantelli lemma implies that (4.9)

holds with probability one.

We are now ready to prove the main result of this section.

Theorem 31 For every design rate R in (0, log 8)

P
(

lim
N∈N

1

N
dmin

(

SR
N

)

= δGV (2R)

)

= 1 (4.10)
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Proof For every ε > 0, it follows from Proposition 29 that with probability one there
exists N0 such that

dmin(SR
N ) ≥ N min

{

ϑ ∈ P (Z8 × Z8) : H(ϑ) ≥ 2(R − ε)
}

, ∀N ≥ N0 .

Therefore,

P
(

lim inf
N∈N

1

N
dmin

(

SR
N

)

≥ δGV (2R + ε)

)

= 1 , ∀ ε > 0 .

It thus follows from the monotonicity and continuity properties of δGV (R) that

P
(

lim inf
N∈N

1
N dmin

(

SR
N

)

≥ δGV (2R)

)

= P
(

lim inf
N∈N

1
N dmin

(

SR
N

)

≥ lim
k∈N

δGV (2R + 1
k )

)

= P
(

⋂

k∈N

{

lim inf
N∈N

1
N dmin

(

SR
N

)

≥ δGV (2R + 1
k )

})

= lim
k∈N

P
(

lim inf
N∈N

1
N dmin

(

SR
N

)

≥ δGV (2R + 1
k )

)

= 1 .

Let us now turn our attention to proving that

P
(

lim sup
N∈N

1

N
dmin

(

SR
N

)

≤ δGV (2R)

)

= 1 . (4.11)

Fix an arbitrary ε > 0, and let θε in P (Z8) be such that

δGV (2R− ε) = 〈θε, δ〉 , H(θε) ≥ log 8− 2R + ε .

Then, define ϑε in P (Z8 × Z8) by

ϑε(x,w) :=
1

8
θε(w − x) , ∀w, x ∈ Z8 .

It is easy to verify that both the marginals π1
#ϑε and π2

#ϑε coincide with the uniform
distribution over Z8, while the conditioned measures are shifted versions of θε:

ϑε|{x}×Z3
2
(·) = θε (·− x) .

Hence,
H
(

π1
#ϑε

)

= H
(

π2
#ϑε

)

= log 8 ≥ R + ε ,
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and from (7.3) we have

H (ϑε) = H
(

π1
#ϑε

)

+
∑

x∈Z8
[π1

#ϑε](x)H
(

ϑε|(π1)−1(x)

)

= log 8 + H (θε)

≥ 2 log 8− 2R + ε

= 2R + ε .

Since PN

(

Z3
2 × Z3

2

)

is dense in P
(

Z3
2 × Z3

2

)

, there exists a sequence of joint types (ϑN )
converging to ϑε and such that, for every N , ϑN belongs to PN

(

Z3
2 × Z3

2

)

. It follows
from Proposition 30 that with probability one SR

N (ϑN ) ≥ 1 definitively in N . Moreover

〈ϑε,∆〉 =
∑

x,z∈Z8
ϑε (x, z)∆ (x, z)

=
∑

x,z∈Z8

1
8θε(z − x)δ(z − x)

= 〈θε, δ〉
= δGV (2R− ε) .

Therefore

P
(

lim sup
N∈N

1

N
dmin(SR

N ) ≤ δGV (2R − ε)

)

= P
(

lim sup
N∈N

1

N
dmin(SR

N ) ≤ lim
N∈N

〈ϑN ,∆〉
)

= 1 .

Then (4.11) follows from the arbitrariness of ε > 0 and the continuity of the GV-distance
δGV (2R) as a function of R.

4.4 Minimum distance of the typical Z8-code

In this section we will prove that the normalized minimum Bhattacharyya-distance of
the Z8-code ensemble converges almost surely to the GV distance. In other words, a
typical Z8-code sequence asymptotically meets the Gilbert-Varshamov bound. In Sect.
4.4.1 we will use a first order method to prove that the GV distance is a lower bound on
the asymptotics of a typical realization of the sequence

(

1
N dmin

(

T R
N

))

. In Sect. 4.4.2
instead, we will apply a second order method in order to show that the GV distance
also gives an almost sure upper bound on the lim sup of the same random sequence.

Recall from Section 2.5 that the minimum distance of a Z8-code is a function of its
type-enumerating function. If we denote the type-enumerating functions of the Z8-code
ensemble by

TR
N : P(Z8)→ Z+ , TR

N (θ) :=
∣

∣

∣
(Z8)

N
θ ∩ ker ΦR

N

∣

∣

∣
.

we have
dmin

(

T R
N

)

= N min
{

〈θ, δ〉
∣

∣ θ ∈ P(Z8) \ {δ0} : TR
N (θ) ≥ 1

}

.
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4.4.1 A lower bound on the typical asymptotic minimum distance

A first step in our analysis consists in evaluating the average value and the variance of
the random variables SR

N (θ). It is convenient to introduce the following function:

l : P(Z8) → R , l(θ) :=
8

gcd(supp(θ))
. (4.12)

In other words for a Z8-type θ, l(θ) equals the order of the smallest subgroup of Z8

supporting θ. Observe that the function l takes values only on the set of divisors of 8.
Moreover it is lower semicontinuous since it jumps to lower values when approaching
Z8-types supported on smaller subgroups of Z8.

The following result motivates definition (4.12).

Lemma 32 For any x in ZN
8 , the random variable ΦR

Nx is uniformly distributed over
the subgroup 8

l(θ)Z
L
8 , with θ = υZ8(x) denoting the type of x.

Proof Let (δi) for i = 1, . . . ,N be the canonical basis of ZN
8 . If we write x =

∑N
i=1 xiδi,

we have that xi belongs to 8
l(θ)Z8 for every i, and there exists some i∗ such that

gcd(xi∗ , 8) = 8
l(θ) . Since

{

ΦR
Nδi , 1 ≤ i ≤ N

}

is a collection of i.i.d. random variables

uniformly distributed over ZL
8 , it follows that xi∗ΦR

Nδi∗ is uniformly distributed over
8

l(θ)Z
L
8 , and is independent from the r.v.

∑

i*=i∗ δiΦR
Nei which itself takes values in

8
l(θ)Z

L
8 . Then, for every z in 8

l(θ)Z
L
8 we have

P(ΦR
Nx = z) =

∑

y∈ 8
l(θ)ZL

8
P
(

xi∗ΦR
Nδi∗ = z − y , Σi*=i∗xiΦR

Nδi = y
)

=
∑

y∈ 8
l(θ)ZL

8

1
l(θ)L P

(

Σi*=i∗xiΦR
Nδi = y

)

= 1
l(θ)L ,

which shows that ΦR
Nx is uniformly distributed over 8

l(θ)Z
L
8 .

The following is an immediate consequence of Lemma 32.

Lemma 33 For every design rate R in (0, log R) and θ ,= δ0 in PN (Z8), we have

E
[

TR
N (θ)

]

=

(

N

Nθ

)

1

l(θ)L
.

Proof By the linearity of the average operator

E
[

TR
N (θ)

]

= E
∑

x∈(Z8)N
θ

{ΦR
N x=0} =

∑

x∈(Z8)N
θ

P
(

ΦR
Nx = 0

)

=

∣

∣(Z8)Nθ
∣

∣

(l(θ))L =

(

N

Nθ

)

1

(l(θ))L
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Observe that as a consequence of Lemma 33 we have

E
[

TR
N (θ)

]

≤ exp

(

N

[

H(θ)− log l(θ)

log 8
R

])

, (4.13)

lim
N∈Nθ

1

N
log E

[

TR
N (θ)

]

= H(θ)− log l(θ)

log 8
R ,

for any Z8-type θ in PN(Z8). For every t in [0, log 8] define the set

At :=

{

θ ∈ P(Z8) : H(θ)− log l(θ)

log 8
t ≥ 0

}

.

From the continuity of the entropy function H(θ) and the lower semicontinuity of l(θ) it
follows that At is closed in P(Z8). Moreover it is nonempty for every t ≤ log 8. Therefore,
Lemma 64 can be applied showing that the function t 2→ min

{

〈θ, δ〉
∣

∣ θ ∈ At
}

is lower
semicontinuous over the interval [0, log 8]. Furthermore, observe that from (4.12), for
every design rate R in (0, log 8) we have

AR =
{

l(θ) = 8 ,H(θ) ≥ R
}

∪
{

l(θ) = 4 ,H(θ) ≥ 2
3R
}

∪
{

l(θ) = 2 ,H(θ) ≥ 1
3R
}

⊆
{

H(θ) ≥ R
}

∪
{

supp(θ) ⊆ 2Z8 ,H(θ) ≥ 2
3R
}

∪
{

supp(θ) ⊆ 4Z8 ,H(θ) ≥ R
3

}

.

It follows that

min
{

〈θ, δ〉 |θ ∈ AR

}

≥ min
{

δ8(R), δ4(
2
3R), δ2(

1
3R)

}

, (4.14)

where δGV (R) is the 8-PSK GV distance, while

δ4
(

2
3R
)

:= min
{

〈θ, δ〉
∣

∣ supp(θ) ⊆ 2Z8 , H(θ) ≥ 2
3R
}

, 0 ≤ t ≤ log 4 , (4.15)

δ2
(

1
3R
)

:= min
{

〈θ, δ〉
∣

∣ supp(θ) ⊆ 4Z8 , H(θ) ≥ 1
3R
}

, 0 ≤ t ≤ log 2 , (4.16)

are the GV distances associated to the subconstellations 4-PSK and 2-PSK respectively.
Notice that a standard continuity argument may be used to show that (4.14) is actually
an equality. Using a first order method based on (4.13) and inequality (4.14) it is
possible to prove the following almost sure lower bound on the asymptotical normalized
minimum distance of the GCE.

Theorem 34 For every R in (0, log 8), with probability one

lim inf
N∈N

1

N
dmin(T R

N ) ≥ min
{

δ8(R), δ4(
2
3R), δ2(

1
3R)

}

. (4.17)
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Proof Let us fix an arbitrary 0 < ε < R and define Bε := P(Z8) \AR−ε. For every N ,
from Markov inequality and (4.13) we have

P
(
⋃

θ∈Bε
{SN (θ) ≥ 1}

)

≤
∑

θ∈Bε∩PN (Z8)
E [SN (θ)]

≤
∑

θ∈Bε∩PN (Z8)
exp

(

N(H(θ)−R log l(θ)
log 8 )

)

≤ |PN (Z8)| exp(−Nε) .

Define f(t) := min
{

〈θ, δ〉
∣

∣ θ ∈ At
}

. It follows that

∑

N

P
(

dmin(T R
N ) < Nf(R− ε)

)

≤
∑

N

|PN (Z8)| exp(−Nε) < +∞ ,

and Borel Cantelli lemma implies that { 1
N dmin(T R

N ) < f(R− ε)} occurs only for finitely
many values of N . Then, for any ε > 0, lim inf 1

N dmin
(

T R
N

)

≥ f(R− ε) almost surely.
From the monotonicity and the semicontinuity of f it follows that

P
(

lim infN
1
N dmin

(

T R
N

)

≥ f(R)
)

= P
(

lim infN
1
N dmin

(

T R
N

)

≥ limk f(R− 1
k )
)

= P
(

∩k∈N

{

lim infN
1
N dmin

(

T R
N

)

≥ f(R− 1
k )
})

= lim
k∈N

P
(

lim infN
1
N dmin

(

T R
N

)

≥ f(R− 1
k )
)

= 1 .

Finally the claim follows from (4.14).

The final step of the present section consists in showing that the minimum on the
righthand side of (4.17) is in fact given by the 8-PSK GV distance δGV (R). This is
proved in the following.

Proposition 35 For every design rate R in (0, log 8)

δ2(
1
3R) = δ4(

2
3R) > δGV (R) , (4.18)

Proof Thanks to the convexity property of the entropy function we can rewrite the
Gilbert-Varshamov distance as

δ8(R) = 〈θλ, δ〉 , θλ :=
1

Z(λ)
e−λδ , Z(λ) :=

∑

x∈Z8

e−λδ(x) ,

where the Lagrangian multiplier λ > 0 solves the equation H (θλ) = R. Similarly, it is
possible to write

δ2
(

1
3R
)

=
δ(4)e−λ2δ(4)

Z2(λ2)
, Z2(λ2) := 1 + e−λ2δ(4) ,
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where λ2 > 0 solves H
(

Z2(λ2)−1e−λ2δ(4)
)

= 1
3R, while

δ4
(

2
3R
)

=
〈exp(−λ4δ4), δ4〉

Z4(λ4)
, Z4(λ4) :=

∑

x∈2Z8

e−λδ(x) .

where δ4 denotes the restriction of the Bhattacharyya weight δ to the subgroup 2Z8,
and λ4 > 0 solves H

(

Z4(λ4)−1e−λ4δ4
)

= 2
3R.

Simple geometrical considerations based on Pythagoras theorems allow to show that

δ(4) = 2δ(2) = 2δ(6) (4.19)

and

δ(1) = δ(7) , δ(3) = δ(5) , δ(1) = δ(4) − δ(3) <
1

4
δ(4) . (4.20)

It follows from (4.19) that

Z4(2s) =
(

1 + e−2sδ(2)
)2

=
(

1 + e−sδ(4)
)2

=
(

Z2 (s)
)2

, ∀ s ≥ 0 . (4.21)

Define α :=
e−λ2δ(4)

Z2(λ2)
. It follows from (4.19) and (4.21) that

e−2λ2δ(0)

Z4(2λ2)
=

1

(Z2(λ2))
2 = (1−α)2 ,

e−2λ2δ(2)

Z4(2λ2)
=

e−2λ2δ(6)

Z4(2λ2)
= α(1−α) ,

e−2λ2δ(4)

Z4(2λ2)
= α2 .

Then

H
(

(Z4(2λ2))
−1 e−2λ2δ4

)

= 2H (α) = 2H

(

e−λ2δ(4)

Z2(λ2)

)

,

so that 2λ2 = λ4. Therefore,

δ4
(

2
3R
)

=
〈exp(−λ4δ4), δ4〉

Z4(λ4)
= α2δ(4)+2α(1−α)δ(2) = αδ(4) =

δ(4)e−
λ4
2 δ(4)

Z2(λ4/2)
= δ1

(

1
3R
)

,

thus showing the equality in (4.18). It remains to show the inequality in (4.18). In order
to do that we introduce the Z8-type θ̂ defined by

θ̂(0) := (1− α)3 , θ̂(1) := θ̂(2) := θ̂(7) := α(1 − α)2 ,

θ̂(4) := α3 , θ̂(6) := θ̂(5) := θ̂(3) := α2(1− α) .

It is straightforward to verify that

H(θ̂) = 3H (α) = R .
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Moreover, it follows from (4.19) and (4.20) that

〈θ̂, δ〉 =
∑

x∈Z8

δ(x)θ̂(x)

= α3δ(4) + 2α2(1− α) (δ(4) − δ(1)) + α(1− α)1
2δ(4) + 2α(1 − α)2δ(1)

= αδ(4)1
2

(

−2α2 + 3α + 1
)

+ αδ(1)2
(

1 + 2α2 − 3α
)

= αδ(4) + αδ(4)
((

2δ(1) − 1
2δ(4)

) (

2α2 − 3α + 1
))

< α ,

last inequality following from (4.20) and the fact that 2α2− 3α + 1 > 0 for every α > 0.
It follows that

δGV (R) ≤ 〈θ̂, δ〉 < αδ(4) = δ2
(

1
3R
)

,

thus concluding the proof.

An immediate consequence of Theorem 34 and Proposition 35 is the following.

Corollary 36 For every design rate R in (0, log 8) we have

P
(

lim inf
N

1

N
dmin

(

T R
N

)

≥ δGV (R)

)

= 1 .

We observe that the geometry of the particular signal set 8-PSK plays a role only in the
proof of Proposition 35. The rest of the derivation remains true for any Z8-symmetric
channel and can in fact be generalized to Abelian group-code ensembles.

4.4.2 An upper bound on the typical asymptotic minimum distance

In this section we will prove the tightness the bound shown in Theorem 5. A second
moment method will be used, and the key point consists in estimating the variance of
the type spectra {TR

N (θ)}.
In order to do that, we need some preliminary considerations about the structure

of the product set (Z8)
N
θ × (Z8)

N
θ , θ in PN (Z8) being some Z8-type. Let m = l(θ) be

the order of the smallest subgroup of Z8 supporting θ, and consider two non necessarily
distinct N -tuples x and z both belonging to (Z8)

N
θ , i.e. having type θ. Let < x >,

< z > and < x,z > the subgroups of ZN
8 respectively generated by x, by z, and by

x and z. It is easy to realize that both < x > and < z > are isomorphic to 8
mZ8.

Moreover the following diagram commutes

< x >
j1
↪→ < x,z >

↓ i ↑ f
8
mZ8

j2
↪→ 8

mZ8 ⊕ 8
mZ8
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where:

• i :< x >→ 8
mZ8, i(αx) = α is an isomorphism;

• j1 :< x >→< x,z >, j1(αx) = αx, and j2 : 8
mZ8 → 8

mZ8 ⊕ 8
mZ8, j2(k) = (k, 0)

are the standard injections;

• f : 8
l(θ)Z8 ⊕ 8

l(θ)Z8 →< x,z >, f(a, b) = ax + bz, is surjective.

It follows that < x,z > contains a subgroup isomorphic to 8
mZ8 and is itself isomorphic

to a subgroup of 8
mZ8⊕ 8

mZ8. An immediate consequence is that < x,z > is isomorphic
to a group of type 8

mZ8 ⊕ 8
hZ8 for some h dividing m (possibly h = 1 when x = w). It

is then possible to partition the set of ordered pairs of N -tuples of type θ as follows:

(Z8)
N
θ × (Z8)

N
θ =

⋃

h|l(θ)

AN,θ,h , (4.22)

with AN,θ,h denoting the set of all pairs (x,z) in (Z8)
N
θ × (Z8)

N
θ such that the subgroup

< x,z > generated by x and z is isomorphic to 8
l(θ)Z8 ⊕ 8

hZ8. The following lemma
provides an estimation of the cardinality of AN,θ,h, with h ranging over the set of divisors
of l(θ). For a subset A of a finite set B and a probability measure µ in P(B) such that
µ(A) > 0, we use the notation µ|A for the conditional measure in P(A) defined by
µA(a) = θ(A)−1θ(a).

Lemma 37 For every N , θ in PN (Z8), and h dividing l(θ), we have

|AN,θ,h| ≤ 4

(

N

Nθ

)

∏

1≤i≤8/h:
θ(i+ 8

h Z8)>0

(

Ni

Niθ|i+ 8
h Z8

)

, (4.23)

where Ni := Nθ
(

i + 8
hZ8

)

is the number of entries from the coset i+ 8
hZ8 in any N -tuple

of type θ.

Proof Let x and z be in (Z8)
N
θ . A necessary condition for the subgroup < x,z > to

be isomorphic to 8
l(θ)Z8 ⊕ 8

hZ8 is the existence of some α in Z∗
8 such that

−hαx + hz = 0 . (4.24)

For (4.24) to hold, necessarily z has to belong to αx + 8
hZN

8 . Thus, whenever (4.24)
holds, the set of positions of the entries of x belonging to any coset i + 8

hZ8 and the set
of positions of the entries of z belonging to the coset αi + 8

hZ8 need to coincide, i.e.

x−1
(

i + 8
hZ8

)

= z−1
(

αi + 8
hZ8

)

, ∀ i ∈ Z8 . (4.25)
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Notice that since both x and z are assumed to be of type θ, (4.25) in particular implies

θ
(

i + 8
hZ8

)

= θ
(

αi + 8
hZ8

)

, ∀ i ∈ Z8 . (4.26)

For those α for which (4.26) is not satisfied there exists no pair (x,z) satisfying (4.24).
Thus, with no loss of generality we can restrict ourselves to considering values of α such
that (4.26) is satisfied (as it is the case always for α = 1).

Notice that a necessary and sufficient condition for x and z both to belong to (Z8)
N
θ

is the existence of an index permutation σ : {1, . . . ,N} → {1, . . . ,N} such that σx :=
x ◦ σ−1 = z. Equation (4.25) can be read as a constraint on the structure of σ, which
has necessarily to be of the form

σ = σ1 ◦ σ2 ◦ . . . ◦ σ8/h ◦ σ̃α,x . (4.27)

In (4.27) σ̃α,x is the index permutation mapping, for every coset i + 8
hZ8, the smallest

element of x−1
(

α−1i + 8
hZ8

)

in the smallest element of x−1
(

i + 8
hZ8

)

, the second small-
est element x−1

(

α−1i + 8
hZ8

)

in the second smallest element of z−1
(

i + 8
hZ8

)

, and so
on. For every coset i + 8

hZ8 instead, σi : {0, . . . ,N} → {0, . . . ,N} is any permutation
such that

σi(j) = j , ∀ j ∈ {1, . . . ,N} \ x−1

(

i +
8

h
Z8

)

. (4.28)

Thus, for a given x in (Z8)
N
θ and α in Z∗

8 such that (4.26) is satisfied, we have that

the number of z in (Z8)
N
θ satisfying (4.25) equals the cardinality of the orbit of σ̃α,xx

under the action of the group of index permutations

G(x) := {σ = σ1 ◦ σ2 ◦ . . . ◦ σ8/h : (4.28)∀ i = 1, . . . , 8
h} .

Clearly the order of this group is
∣

∣G(x)
∣

∣ =
∏8/h

i=1 Ni!, while the cardinality of the stabilizer

of σ̃α,xx in G(x) is
∣

∣Stab
(

σ̃α,xx, G(x)
)∣

∣ =
∏8

i=1 (Nθ(i))!, so that the orbit of σ̃α,xx in

G(x) has cardinality
∣

∣O
(

G(x), σ̃α,xx
)∣

∣ =
∏8/h

i=1 Ni!/
∏8

i=1 (Nθ(i))! =
∏8/h

i=1

( Ni
Niθ|i+ 8

h Z8

)

.

This allows us to estimate the cardinality of AN,θ,h by

|AN,θ,h| ≤ |Z∗
8|

∑

x∈(Z8)N
θ

∣

∣

∣
O
(

G(x), σ̃α,xx
)
∣

∣

∣
= 4

(

N

Nθ

) 8/h
∏

i=1

(

Ni

Niθ|i+ 8
h Z8

)

.
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Lemma 38 For every N in N and θ in PN (Z8)

Var
[

TR
N (θ)

]

≤ 4

(

N

Nθ

)(

1

l(θ)

)L
∑

h|l(θ)
h<l(θ)

(

1

h

)L 8/h
∏

i=1

(

Ni

Niθ|i+ 8
h Z8

)

, (4.29)

for Ni defined as in Lemma 37.

Proof Let x and z in (Z8)
N
θ be two N -tuples of type θ. We claim that if < x,z > is

isomorphic to 8
l(θ)Z8 ⊕ 8

hZ8, then the pair
(

ΦR
Nx, ΦR

Nz
)

is uniformly distributed over a

subgroup (Z2
8)

L which is isomorphic to
(

Z8 ⊕ 8
hZ8

)L
. To see this, notice that for every

1 ≤ j ≤ L the image of the evaluation homomorphism

Ψj : hom(ZN
8 , Z8) → Z2

8 , Ψj(Φ) = (Φx, Φz)

coincides with < (xi, zi) >1≤i≤N , i.e. the subgroup of Z2
8 generated by {(xi, zi)}1≤i≤N .

It thus follows from Lemma 10 of Chapter 3 that each pair
(

(ΦR
Nx)j, (ΦR

Nz)j
)

is uni-
formly distributed over < (xi, zi) >i=1,...,N . Moreover the r.v.s ((ΦNx)j , (ΦNz)j) for
j = 1, . . . , L are mutually independent. Notice that < (xi, zi) >i=1,...,N is isomorphic
to the subgroup < x,z > of ZL

8 generated by x and z, which, as previously observed,
is itself isomorphic to a group of type 8

l(θ)Z8 ⊕ 8
hZ8. Recalling the partition (4.22), we

have that, whenever the pair (x,z) belongs to AN,θ,h, the joint probability that both x
and z belong to ker ΦR

N is given by

P
(

ΦR
Nx = 0, ΦR

Nz = 0
)

=

(

1

hl(θ)

)L

(4.30)

It follows from (4.22), (4.23) and (4.30) that

Var
[

TR
N (θ)

]

=
∑

x,w∈(Z8)N
θ

Cov
[

{ΦR
Nx=0} {ΦR

N z=0}
]

=
∑

h|l(θ)

∑

(x,z)∈AN,θ,h

P
(

ΦR
Nx = 0, ΦR

Nz = 0
)

− P
(

ΦR
Nx = 0

)

P
(

ΦR
Nz = 0

)

=
∑

h|l(θ)
|AN,θ,h|

(

1
hLl(θ)L − 1

l(θ)2L

)

≤
∑

h|l(θ)
h<l(θ)

4
( N
Nθ

)

1
(hl(θ))L

8/h
∏

i=1

( Ni
Niθ|i+ 8

h Z8

)

.
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For every h dividing 8, consider the projection τh of Z8 onto the quotient group

Z8

/

8
hZ8, defined by

τh(x) = y + 8
hZ8 ⇔ x ∈ y + 8

hZ8 ,

and, for every θ in P(Z8) denote by τh
#θ in P

(

Z8

/

8
hZ8

)

the image measure under τh.

As an immediate consequence of Lemma 33 and Lemma 38 we have

lim sup
N∈N

1

N
log

(

Var
[

SN
θ

]

E
[

SN
θ

]2

)

≤ lim sup
N∈N

1

N
log

(

N

Nθ

)−1
∑

h|l(θ)
h<l(θ)

(

l(θ)

h

)L 8/h
∏

i=1

(

Ni

Niθ|i+ 8
h Z8

)

= max
h|l(θ)
h<l(θ)

log l(θ)/h
log 8 R−H(θ) +

8/h
∑

i=1
θ(i + 8

hZ8)H
(

θ|i+ 8
h Z8

)

= max
h|l(θ)
h<l(θ)

{

log l(θ)/h

log 8
R−H(τh(θ))

}

.

(4.31)
The following result shows the tightness of the almost sure lower bound of Theorem

34. Its proof relies on relies on an application of the second order method and the key
point consists in showing that the Z8-type θ giving the GV-distance can be approximated
by Z8-types θε such that H

(

τh
#θε

)

> log l(θε)/h
log 8 R for all h = 1, 2, 4.

Theorem 39 For every R in (0, log 8),

P
(

lim sup
N∈N

1

N
dmin

(

T R
N

)

≤ δGV (R)

)

= 1 .

Proof Let us fix an arbitrary ε in (0, R) and denote by θ = θ(R − ε) the Z8-type
achieving the GV distance δ8(R − ε), i.e. such that δ8(R − ε) = 〈θ, δ〉 and

H(θ) ≥ R + ε . (4.32)

We can express θ as θ =
(
∑

x∈Z8
e−λδ(x)

)−1
e−λδ where the Lagrangian multiplier λ is

the unique positive solution of the equation H (θ) = R + ε. Notice that supp(θ) = Z8,
so that in particular l(θ) = 8. Also, observe that (4.19) and (4.20) imply that θ has the
following ordering

θ(0) > θ(1) = θ(7) > θ(2) = θ(6) > θ(3) = θ(5) > θ(4) . (4.33)

Define
A0 := {0, 1, 7, 2} , B0 := {0, 1, 6, 3} , C0 := {0, 5, 6, 7} ,
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and let A1, B1 and C1 be the complements in Z8 respectively of A0, B0 and C0. It
follows from (4.33) that

θ(A0) ≥ θ(2Z8) , θ(A0) ≥ θ(2Z8 + 1) ,

θ(B0) ≥ θ(2Z8) , θ(B0) ≥ θ(2Z8 + 1) ,

θ(C0) ≥ θ(2Z8) , θ(C0) ≥ θ(2Z8 + 1) .

(4.34)

Moreover, it is easy to check that |Aa ∩Bb ∩ Cc| = 1, for every choice of (a, b, c) in
{0, 1}3. Thus, f : Z8 → {0, 1}3, where f(x) = (a, b, c) if and only if x is in Aa ∩Bb ∩Cc,
is a bijection. Then, from (7.3), (7.5) and (4.34), it thus follows that

H(θ) = H (f#θ) ≥ H (θ(A0)) + H (θ(B0)) + H (θ(C0)) ≥ 3H (θ(2Z8)) = 3H
(

τ4
#θ
)

.
(4.35)

Let us now introduce the sets D := {0, 2} and E := {1, 7}. We have from (4.33) that

θ(D) ≥ θ(4Z8) , θ(D) ≥ θ(4Z8 + 2) ,

θ(E) ≥ θ(4Z8 + 1) , θ(E) ≥ θ(4Z8 + 3) .

It thus follows that

H
(

τ2
#θ
)

= H
(

τ4
#θ
)

+ θ(2Z8)H
(

τ4
#θ4

)

+ θ(2Z8 + 1)H
(

τ4
#θ|2Z8+1

)

≥ H(θ(2Z8)) + θ(2Z8)H (θ4(D)) + θ(2Z8 + 1)H (θ|2Z8+1(E)) .
(4.36)

Observe that

θ4(D) =
θ(0)

θ(2Z8)
+

θ(2)

θ(2Z8)
= θ4(4Z8)θ|4Z8(0) + θ4(4Z8 + 2)θ|4Z8+2(2)

so that, by the concavity of the entropy function, we get

H (θ4(D)) ≥ θ4(4Z8)H (θ|4Z8(0)) + θ4(4Z8 + 2)H (θ|4Z8+2(2)) .

An analogous reasoning leads to

H (θ|2Z8+1(E)) ≥ θ|2Z8+1(4Z8 + 1)H (θ|4Z8+1(1)) + θ|2Z8+1(4Z8 + 3)H (θ|4Z8+3(3)) .

Upon substituting the two inequalities above in (4.36), we get

H
(

τ2
#θ
)

≥ H
(

τ4
#θ
)

+
∑3

i=0 θ(4Z8 + i)H (θ|4Z8+i(i))

= H
(

τ4
#θ
)

+ H(θ)−H
(

τ2
#θ
)

≥ 4
3 H(θ)−H

(

τ2
#θ
)

,
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last inequality following from (4.35). Then

H
(

τ2
#θ
)

≥ 2

3
H(θ) . (4.37)

Now let (θN ) ba a sequence of Z8-types converging to θ, with θN belonging to
PN (Z8) for every N . By successively applying Chabyshev inequality, (4.31), (4.35) and
(4.37), we get

lim supN
1
N log P

(

TR
N (θN ) = 0

)

≤ lim supN
1
N log

Var
[

TR
N (θN )

]

E[SN(θN )]2

≤ max
{

1
3R−H

(

τ 4
#θ
)

, 2
3R−H

(

τ 2
#θ
)

, R−H (θ)
}

≤ max
{

1
3

(

R−H (θ)
)

, 2
3

(

R−H (θ)
)

, R−H (θ)
}

≤ −1
3ε ,

last inequality following from (4.32). Thus
∑

N P(SN(θN ) = 0) < ∞ and an application
of Borel-Cantelli lemma implies

P
(

lim sup
N∈N

1

N
dmin

(

T R
N

)

> δGV (R − ε)

)

≤ P
({

TR
N (θN ) ≥ 1

}

i. o. N ∈ N
)

= 0 .

Finally, the claim follows from the arbitrariness of ε in (0, R) in the previous arguments
and the continuity of the Gilbert-Varshamov distance δGV (R) as a function of the rate
R.

4.5 Minimum distance of the typical binary affine code

In this section we analyze the asymptotics of the normalized minimum distance of the
binary affine code ensemble {UR

N} under an arbitrary labeling

η : Z3
2 → Z8 ,

which has to be consider fixed throughout the section.
A first observation is that, since Z2-affine codes are not geometrically uniform, their

minimum distance does not coincide with their minimum weight, as we have seen in the
previous section it is the case for Z8-codes. Rather, similarly to what we did in Section
4.3 for the random coding ensemble, it is necessary to look at all pairs of codewords
evaluate the minimum distance. We introduce the distance function

∆η : Z3
2 × Z3

2 → R+ , ∆η(x, y) =∆(η(y), η(y + x)) .
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It is easy to check that each column∆η(·, z) of ∆η is just a permutation of δ, i.e. there
exists a bijection σz : Z3

2 → Z8 such that

∆η(x, z) = δ(σz(x)) , x, y ∈ Z3
2 . (4.38)

Moreover, we recall that the isometry group of the 8-PSK is isometric to D8. As a
consequence there exist at least two non-identical columns of ∆η, i.e. ∆η(x, z1) ,=
∆η(x, z2) for some x, z1, z2 in Z3

2.
We introduce the following enumerating functions for the Z2-affine ensemble: for a

joint type ϑ in P
(

Z3
2 × Z3

2

)

and a blocklength N in N

UR
N (ϑ) :=

∣

∣

{

(x,y) ∈ (Z3
2)

N
ϑ : x ∈ ker ΨR

N , ΨR
Ny = ZN

}∣

∣ ,

denotes the number of pairs of Z3
2 N -tuples (x,y) of joint type ϑ such that both y and

x + y belong to UR
N . For a type θ in P(Z3

2) let

V R
N (θ) :=

∣

∣

{

x ∈ (Z3
2)

N
θ : x ∈ ker ΨR

N

}∣

∣

denote the number of type-θ N -tuples in the kernel of ΨR
N . It is straightforward to

check that the minimum Bhattacharyya-distance of the binary affine ensemble can be
rewritten as

dmin
(

UR
N

)

= N inf
{

〈ϑ,∆η〉 | ϑ ∈ P
(

Z3
2 × Z3

2

)

: π1
#ϑ ,= δ0, UR

N (ϑ) ≥ 1
}

,

where π1
# : Z3

2 × Z3
2 → Z3

2 denotes the marginal projection operator on the first compo-

nent. Notice that for every θ in P(Z3
2) we have

|UR
N |V R

N (θ) =
(

∑

y∈Z3N
2 {ΨR

N y=ZN}
)(

∑

x∈(Z3
2)

N

θ
{ΨR

Nx=0}
)

=
∑

ϑ∈PN (Z3
2):π1

#ϑ=θ

∑

(x,y)∈(Z3
2×Z3

2)
N

ϑ
{ΦN x=0} {ΦN y=ZN}

=
∑

ϑ∈PN (Z3
2):π1

#ϑ=θ UR
N (ϑ) ,

so that in particular the following holds:

V R
N (θ) = 0 ⇐⇒ UR

N (ϑ) = 0 , ∀ϑ ∈
(

π1
#

)−1
(θ) . (4.39)

4.5.1 A lower bound on the typical asymptotic minimum distance of
the binary affine code ensemble

We want to show that almost surely the sequence of the normalized minimum distance
of the binary affine ensemble

(

1
N dmin(UR

N )
)

has lim inf not smaller than

δη(R) := min
{

〈ϑ,∆η〉 , | ,ϑ ∈ P
(

Z3
2 × Z3

2

)

: H(ϑ) ≥ 2R, H
(

π1
#ϑ
)

≥ R
}

. (4.40)
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We start by evaluating the expected value of the enumerating functions UR
N (ϑ) and

V R
N (ϑ).

Lemma 40 For every ϑ in PN
(

Z3
2 × Z3

2

)

and θ in PN
(

Z3
2

)

such that

π1
#ϑ ,= δ0 , θ ,= δ0

we have

E
[

UR
N (ϑ)

]

=

(

N

Nϑ

)

1

82L
, E

[

V R
N (θ)

]

=

(

N

Nθ

)

1

8L
.

Proof For every x and y in Z3N
2 such that x ,= 0 we have that ΨR

Nx and ΨR
Ny − ZN

are independent and both uniformly distributed over Z3L
2 . It follows that

E
[

UR
N (ϑ)

]

= E
[

∑

(x,y)∈(Z3
2×Z3

2)
N

ϑ
{ΨR

Nx=0} {ΨR
N y=ZN}

]

=
∑

(x,y)∈(Z3
2×Z3

2)
N

ϑ

P
(

ΨR
Nx = 0 , ΨR

Ny −ZN = 0
)

=

(

N

Nϑ

)

1

82L
.

Analogously E
[

V R
N (θ)

]

=
∑

x∈(Z3
2)

N

θ

P
(

ΨR
Nx = 0

)

=
( N
Nϑ

)

1
8L .

For every t in [0, log 8], we define the set At

At :=
{

ϑ ∈ P
(

Z3
2 × Z3

2

)

: H(ϑ) ≥ 2t , H
(

π1
#ϑ
)

≥ t
}

, (4.41)

Then the function δη(R) defined in (4.40) can be rewritten as

δη(R) = min
{

〈ϑ,∆η〉
∣

∣ϑ ∈ AR

}

. (4.42)

A first-order method based on Lemma 40 allows to state that, for every joint type ϑ not
belonging to AR, UR

N (ϑ) = 0 definitively in N with probability one. More precisely we
have the following result.

Lemma 41 For every ε in (0, R), with probability one there exists N0 in N such that

UR
N (ϑ) = 0 , ∀ϑ ∈ P

(

Z3
2 × Z3

2

)

\ AR−ε , ∀N ≥ N0 . (4.43)

Proof From Lemma 40, using the standard exponential bounds on the multinomials,
we have that for every type ϑ in FN := PN

(

Z3
2 × Z3

2

)

\ AR−ε at least one between

E
[

UR
N (ϑ)

]

=

(

N

Nϑ

)

1

82L
≤ exp

(

N
(

H(ϑ)− 2R
))

≤ exp(−2Nε) , (4.44)
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and

E
[

V R
N

(

π1
#ϑ
)]

=

(

N

Nπ1
#ϑ

)

1

8L
≤ exp

(

N
(

H
(

π1
#ϑ
)

−R
))

≤ exp(−Nε) (4.45)

holds true. Then, successively using a union bound estimation, recalling (4.39), and
applying Markov inequality, we have

P
(

⋃

ϑ∈FN

{

UR
N (ϑ) ≥ 1

}

)

≤ P
(

⋃

ϑ∈FN

{

UR
N (ϑ) ≥ 1

}

∩
{

V R
N

(

π1
#ϑ
)

≥ 1
})

≤
∑

ϑ∈FN
P
(

{

UR
N (ϑ) ≥ 1

}

∩
{

V R
N (π1

#ϑ) ≥ 1
})

≤
∑

ϑ∈FN
min

{

P (SN (ϑ) ≥ 1) , P
(

V R
N (π1

#ϑ) ≥ 1
)}

≤
∑

ϑ∈FN
min

{

E [SN (ϑ)] , E
[

V R
N (ϑ)

]}

≤
∣

∣PN
(

Z3
2 × Z3

2

)∣

∣ exp(−Nε) .

Thus
∑

N P
(

⋃

ϑ∈FN

{

UR
N (ϑ) ≥ 1

}

)

≤
∑

N

∣

∣PN
(

Z3
2 × Z3

2

)
∣

∣ exp(−Nε) < ∞ , and by

Borel-Cantelli lemma we obtain P
(

⋃

ϑ∈FN

{

UR
N (ϑ) ≥ 1

}

i. o. N ∈ N
)

= 0, which is

equivalent to the claim.

The following lower bound on the typical asymptotic minimum distance of the Z2-
affine ensemble follows from Lemma 41 and the continuity of δη(R) as a function of the
design rate R.

Theorem 42 For every design rate R in (0, log 8), with probability one

lim inf
N∈N

1

N
dmin

(

UR
N

)

≥ δη(R) .

Proof Let us fix an arbitrary ε > 0. From the definition of δη, it follows that a sufficient

condition for 1
N dmin

(

UR
N

)

to be not below δη(R + ε) is that UR
N (ϑ) = 0 for every joint

type ϑ in PN
(

Z3
2 × Z3

2

)

not belonging to AR−ε. Then, from Lemma 41 we have

P
(

lim inf
N∈N

1

N
dmin

(

UR
N

)

≥ δη(R + ε)

)

≥ P
(

∃N0 ∈ N : (4.43)
)

= 1 .
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Therefore, by the continuity of the function δη we get

P
(

lim inf
N∈N

1
N dmin

(

UR
N

)

≥ δη(R)

)

= P
(

lim inf
N∈N

1
N dmin

(

UR
N

)

≥ lim
k∈N

δη

(

R + 1
k

)

)

= P
(

⋂

k∈N

{

lim inf
N∈N

1
N dmin

(

UR
N

)

≥ δη

(

R + 1
k

)

})

= lim
k∈N

P
(

lim inf
N∈N

1
N dmin

(

UR
N

)

≥ δη

(

R + 1
k

)

)

= 1 ,

showing the claim.

4.5.2 An upper bound on the typical asymptotic minimum distance of
the binary affine code ensemble

We now want to show that the typical asymptotic normalized minimum distance of the
binary affine code ensemble is upper-bounded by

δη(R) := min
{

〈ϑ,∆η〉 , | ,ϑ ∈ P
(

Z3
2 × Z3

2

)

: H(ϑ)−H
(

π1
#ϑ
)

≥ R, H(π1
#ϑ) ≥ R

}

.
(4.46)

In order to do that we shall use a second moment method. As a first step we need to
estimate the variance of the type spectrum {UR

N (ϑ)}.

Lemma 43 Given N in N, and a joint type ϑ in PN
(

Z3
2 × Z3

2

)

such that π1
#ϑ ,= δ0,

Var
[

UR
N (ϑ)

]

≤
(

N

Nϑ

)(

N

Nπ1
#ϑ

)

16

83L
+

(

N

Nϑ

)2( N

Nπ1
#ϑ

)−1 1

83L
+

(

N

Nϑ

)

8

82L
, (4.47)

Proof We have

Var
[

UR
N (ϑ)

]

= Var
[

∑

(x,y)∈(Z3
2×Z3

2)
N

ϑ
{ΨR

N x=0} {ΨR
N y=ZN}

]

=
∑

(x1,y1),(x2,y2)∈(Z3
2×Z3

2)
N

ϑ

c
(

x1,x2,y1,y2
)

,

where

c
(

x1,x2,y1,y2
)

:= Cov
[

{ΨR
Nx1=0} {ΨR

Ny1=ZN} , {ΨR
N x2=0} {ΨR

N y2=ZN}
]

.

We are now going to estimate the terms c
(

x1,x2,y1,y2
)

, separately considering four
possible different linear dependency structures among x1, x2, y1, and y2. Observe that,
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since π1
#ϑ ,= δ0, x1 and x2 need to be nonzero in order for the pairs (x1,y1) and (x2,y2)

to have type ϑ.

Suppose first (x1,y1), (x2,y2) in
(

Z3
2 × Z3

2

)N
ϑ

are such that x1,x2,y1 and y2 are

linear independent. Then the random variables ΨR
Nx1, ΨR

Nx2, ΨR
Ny1 and ΨR

Ny2 are in-
dependent so that

c
(

x1,x2,y1,y2
)

= 0 .

Second, consider the case when x1 and x2 are linear independent but x1,x2,y1

and y2 are not linear independent. In this case we have that the random variables
ΨR

Nx1, ΨR
Nx2 and ΨR

Ny1 −ZN are independent, so that

c
(

x1,x2,y1,y2
)

≤ P
(

ΨR
Nx1 = 0, ΨR

Nx2 = 0, ΨR
Ny2 = ZN

)

=
1

83L
.

Since there are at most 16
( N
Nϑ

)( N
Nπ1

#ϑ

)

possible choices of such pairs (x1,y1), (x2,y2) in
(

Z3
2 × Z3

2

)N
ϑ

, they contribute to the first addend in the righthand side of (4.47).
As a third case we consider pairs (x1,y1), (x2,y2), such that x1 = x2, and x1, y1

and y2 are linear independent. In this situation the random variables ΨR
Nx1, ΨR

Ny1 and
ΨR

Ny2 are independent so that

c
(

x1,x2,y1,y2
)

≤ P
(

ΨR
Nx1 = 0, ΨR

Ny1 = ZN , ΨR
Ny2 = ZN

)

=
1

83L
.

Since there are at most
( N
Nϑ

)2( N
Nπ1

#ϑ

)−1
possible choices of such pairs (x1,y1), (x2,y2)

in
(

Z3
2 × Z3

2

)N
ϑ

, they contribute to the second addend in the righthand side of (4.47).
Finally, it remains to be considered the case when x1 = x2, and x1, y1 and y2 are

linear dependent. There are at most
( N
Nϑ

)

8 possible choices of pairs (x1,y1) and (x2,y2)

in
(

Z3
2 × Z3

2

)N
ϑ

satisfying these requirements and for each of them

c
(

x1,x2,y1,y2
)

≤ P
(

ΨR
Nx1 = 0, ΨR

Ny1 = ZN
)

=
1

82L
.

Therefore, they contribute to the third addend in the righthand side of (4.47).

Let us define, for every t ∈ [0, log 8] the set

Bt :=
{

ϑ ∈ P
(

Z3
2 × Z3

2

)

: H(ϑ)−H
(

π1
#ϑ
)

≥ t , H
(

π1
#ϑ
)

≥ t
}

. (4.48)

Clearly, we can rewrite δη(R) defined in (4.46) as

δη(R) := min
{

〈ϑ,∆η〉
∣

∣ϑ ∈ BR

}

(4.49)
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A second moment method based on Lemma 40 and Lemma 43 allows to show that,
given a joint type ϑ in the interior of BR, almost surely UR

N (ϑ) ≥ 1 definitively in N
in Nϑ. This idea is exploited in proving the following almost sure upper bound on the
asymptotic behaviour of the normalized minimum distance sequence.

Theorem 44 For every design rate R in (0, log 8)

P
(

lim sup
N∈N

dmin(UR
N ) ≤ δη(R)

)

= 1

Proof Let us fix an arbitrary ε > 0, and let ϑε in BR+ε be such that

δη(R− ε) = 〈ϑε,∆η〉 .

Consider a sequence (ϑN )N∈N
converging to ϑε, with ϑN in PN

(

Z3
2 × Z3

2

)

for every N
(which exists since PN

(

Z3
2 × Z3

2

)

is dense in P
(

Z3
2 × Z3

2

)

). We can now apply Chebyshev
inequality and use Lemma 40 and Lemma 43 obtaining

P
(

UR
N (ϑN ) = 0

)

≤
Var

[

UR
N (ϑN )

]

(

E
[

UR
N (ϑN )

])2 ≤ 16

( N
Nπ1

#ϑN

)

( N
NϑN

) 8L +
1

( N
Nπ1

#ϑ

)8L + 8
1

( N
NϑN

)82L .

It follows that

lim sup
N∈N

log P(UR
N (ϑN )=0)
N ≤ R + max

{

H(π1
#ϑε)−H(ϑε),−H(π1

#ϑε), R − 2H(ϑε)
}

≤ −ε < 0 ,

so that
∑

N P
(

UR
N (ϑN ) = 0

)

< +∞, and by Borel-Cantelli lemma we have

P
({

UR
N (ϑN ) = 0

}

i. o. N ∈ N
)

= 0 .

Therefore,

P
(

lim sup
N∈N

1

N
dmin

(

UR
N

)

> δ(R− ε)

)

≤ P
({

UR
N (ϑN ) = 0

}

i. o. N ∈ N
)

= 0 ,

so that by the monotonicity and the continuity of δη(R) we have the claim.
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4.5.3 Comparing

We now want to compare the distance bounds δη(R) and δη(R), defined in (4.40) and

(4.46) respectively, with the GV distance δGV (R). First, observe that any joint type
ϑ in P

(

Z3
2 × Z3

2

)

such that H(ϑ) − H
(

π1
#ϑ
)

≥ R and H
(

π1
#ϑ
)

≥ R clearly satisfies

H(ϑ) ≥ 2R. From this it immediately follows that δη(R) ≥ δη(R). Notice also that the
inequality above holds as an equality whenever δη(R) = 〈ϑ,∆η〉 for some joint type ϑ

in P
(

Z3
2 × Z3

2

)

such that H
(

π1
#ϑ
)

= R. It can be shown that this is the case for every

binary labeling η : Z3
2 → Z8 for large enough values of R, so that actually in most cases

δη(R) and δη(R) do coincide.

However, we will now concentrate on comparing δη(R) with the GV distance δGV (R),
in particular showing that the former is strictly below the latter. In order to do that,
we start by considering some θ in P(Z8) giving the GV distance, i.e. such that δ8(R) =
〈θ, δ〉 and H(θ) ≥ R. Since the map θ 2→ 〈θ, δ〉 is linear and the entropy function is
concave, with no loss of generality we can assume that H(θ) = R log 8. Then, we can
use Lagrangian multipliers in order to express θ as

θ(x) =
e−λδ(x)

Z(λ)
, Z(λ) :=

∑

x∈Z8

e−λδ(x) , (4.50)

where λ in (0,+∞) is the unique solution of the equation H
(

Z(λ)−1e−λδ
)

= R log 8.
From θ we now construct a joint type ϑ∗ in P

(

Z3
2 × Z3

2

)

, defined by

ϑ∗(x, z) :=
1

8
θ (σz(x)) , x, z ∈ Z3

2 , (4.51)

where the bijections σz : Z3
2 → Z8 have been defined in (4.38), and let θ∗ := π1

#ϑ∗ in

P(Z3
2) be its marginal measure. Notice that from (4.50) we have

ϑ∗(x, z) > 0 , θ∗(x) > 0 , ∀x, z ∈ Z3
2 . (4.52)

We have

〈ϑ∗,∆η〉 =
∑

x,z∈Z3
2

ϑ∗(x, z)∆η(x, z) =
∑

z∈Z3
2

1

8
θ (σz(x)) δ (σz(x)) = 〈θ, δ〉 = δ8(R) .

(4.53)
From (4.51) we have

∑

x ϑ∗(x, z) = 1
8

∑

x θ(σz(x)) = 1
8 so that the marginal π2

#ϑ∗ is

the uniform measure over Z3
2. Again from (4.51) we have that the conditioned measures

satisfy ϑ|Z3
2×{z} = θ ◦ σz for every z in Z3

2. Then, by applying (7.3) we have

H(ϑ∗) = H
(

π2
#ϑ∗)+

∑

x∈Z3
2

ϑ∗ (Z3
2 × {x}

)

H
(

ϑ∗|Z3
2×{x}

)

= log 8 + H(θ) = log 8 + R .

(4.54)
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Moreover, θ∗ = π1
#ϑ∗ = 1

8

∑

x θ ◦ σx is a convex combination of permutations of the

vector θ. As already observed, for every labeling η : Z3
2 → Z8 there exists at least a pair

of nonequal columns of the matrix ∆η, say ∆η(·, z1) ,=∆η(·, z2). As a consequence, we
have δ ◦σz1 ,= δ ◦σz2 which, together with (4.50), implies θ ◦σz1 ,= ϑ ◦σz2 . Hence, from
the strict concavity and the permutation invariance of the entropy function H it follows
that

H(θ∗) = H
(

1
8

∑

x θ ◦ σx

)

> 1
8

∑

x H(θ ◦ σx) = H(θ) = R . (4.55)

An immediate consequence is

δη(R) = min
{

f(υ) |υ ∈ P(Z3
2) : H(υ) ≥ R

}

≤ f(θ∗) , (4.56)

where, for υ in Z3
2, we define

f(υ) := min
{

〈ϑ,∆η〉|ϑ ∈ P
(

Z3
2 × Z3

2

)

: π1
#ϑ = υ , H(ϑ)−H(υ) ≥ R

}

.

We now present a lemma characterizing some properties of the function f(υ) defined
above. For every x in Z3

2, define the minimum of the x-th row of the distance function
∆η as mx := min{∆η(x, z)| z ∈ Z3

2}, the set of elements achieving such a minimum as
Mx := {z ∈ Z3

2 :∆η(x, z) = mx} and its cardinality by nx := |Mx|. Since ∆η(0, z) = 0
for every binary labeling η and every z in Z3

2, we have that m0 = 0 and n0 = 8. However,
since no binary labeling η is isometric, there must exist x and z in Z3

2 such that

mx <∆η(x, z) . (4.57)

Lemma 45 Let υ in P(Z3
2) and R in (0, log 8). Then:

1. if
∑

x υ(x) log nx ≥ R, then f(υ) =
∑

x υ(x)mx .

2. if
∑

x υ(x) log nx < R and ϑ in P
(

Z3
2 × Z3

2

)

is such that π1
#ϑ = υ, H(ϑ) ≥

H(υ) + R, and 〈ϑ,∆η〉 = f(υ), then H(ϑ) = H(υ) + R.

Proof In order to prove point 1, notice that for every joint type ϑ such that π1
#ϑ = υ

〈ϑ,∆η〉 =
∑

x,z

ϑ(x, z)∆η(x, z) ≥
∑

x,z

ϑ(x, z)mx =
∑

x

υ(x)mx .

Moreover, the joint type τ (x, z) := 1
nx

υ(x) Mx(z) is such that 〈τ ,∆η〉 =
∑

x υ(x)mx,

while π1
#τ = υ and H(τ ) = H(υ)+

∑

x υ(x) log nx. Then, whenever
∑

x υ(x) log nx ≥ R,

∑

x

υ(x)mx ≥ min
{

〈ϑ,∆η〉|π1
#ϑ = υ , H(ϑ)−H(υ) ≥ R

}

≥ 〈τ ,∆η〉 =
∑

x

υ(x)mx .
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To prove point 2, let us assume without loss of generality that f(υ) = 〈ϑ,∆η〉 for some
joint type ϑ in P

(

Z3
2 × Z3

2

)

such that π1
#ϑ = υ and H(ϑ) ≥ H(υ) + R. Notice that, if

∑

x υ(x) log nx < R, then necessarily ϑ(x, z) > 0 for some x in Z3
2 and z not belonging

to Mx, for otherwise

H(ϑ)−H(υ) =
∑

x

υ(x)H(ϑ|{x}×Z3
2
) <

∑

x

υ(x) log |Mx| < R .

It follows that 〈ϑ,∆η〉 >
∑

x υ(x)mx.
Suppose that H(ϑ) > R + H(υ). For every t in [0, 1] define a new joint type ϑt :=

(1− t)ϑ+ tτ interpolating ϑ and τ . By the linearity of the marginal projection we have
π1

#ϑt = (1− t)π1
#ϑ + tπ1

#τ = υ. Since the entropy function is continuous, there exists

some ε > 0 such that H(ϑt) ≥ R + H(υ) for every t in (0, ε). Once fixed any such a t,
we have

〈ϑt,∆η〉 ≥ f(υ) = 〈ϑ,∆η〉 > (1− t)〈ϑ,∆η〉+ t〈τ ,∆η〉 = 〈ϑt,∆η〉 ,

which is a contradiction. Then we have shown that necessarily H(ϑ) = R + H(υ).

We are now ready to prove the following:

Theorem 46 For any labeling η : Z3
2 → Z8 and for every R in (0, log 8) we have

δη(R) < δ8(R) .

Proof Thanks to (4.56) it is sufficient to show that f(θ∗) < δGV (ϑ). We shall separately
deal with the two alternatives

∑

x θ∗(x) log nx ≥ R , (4.58)

and
∑

x θ∗(x) log nx < R . (4.59)

First suppose (4.58) holds. It follows from Lemma 45, (4.52), (4.57) and (4.53) that

f(θ∗) =
∑

x mxθ
∗(x)

=
∑

x

∑

z
1
8ϑ(σz(x))mx

=
∑

x

∑

z
1
8ϑ(σz(x))minw∆η(x,w)

<
∑

x

∑

z
1
8ϑ(σz(x))∆η(x, z)

= δGV (R) ,

thus proving the claim.
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Now suppose (4.59) holds. For any x ,= 0 in Z3
2, we have

θ∗(0) =
∑

z∈Z3
2

ϑ∗(0, z) =
1

Z(λ)
>
∑

z∈Z3
2

e−λδ(σz(x))

8Z(λ)
=
∑

z∈Z3
2

ϑ∗(x, z) = θ∗(x) .

Hence, θ∗ is not the uniform measure over Z3
2 and, as a consequence H (θ∗) < log 8.

Therefore, from (4.54) and (4.55),

H(ϑ∗) = log 8 + R > H(θ∗) + R .

Then, we can apply Lemma 45, obtaining that 〈ϑ∗,∆η〉 > f(θ∗). The claim now follows
by applying (4.56) and (4.53).

A consequence of Theorem 44 and Theorem 46 is the following.

Corollary 47 For every labeling η and for every design rate R in (0, log 8), with proba-
bility one the Z2-affine ensemble does not asymptotically achieve the Gilbert-Varshamov
bound.

4.6 Conclusions

In this chapter we have analyzed the asymptotic behavior of the minimal Bhattacharyya
distance of Abelian group codes over symmetric channels. We have focused the 8-PSK
AWGN channel. We have proven that typical Z8-codes achieve the GV bound, while
a typical code sampled from the random coding ensemble does not. Finally, we have
shown that the binary-affine ensemble does not achieve the GV bound with probability
one. A lot more needs to be understood about this problem. As a first goal, we are
currently trying to extend our final result to all pr − PSK constellations (where p is
a prime number). We believe that this type of analysis is a first fundamental step to
understand the behavior of more structured ensembles of codes, for instance LDPC or
turbo group codes over non-binary symmetric channels.
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Chapter 5

Average spectra and minimum
distances of LDPC codes over
Abelian groups

5.1 Introduction

Low-density parity-check (LDPC) codes have received a huge amount of attention in
the last years. It is indeed the family of high-performance codes for which the deepest
theoretical insight has been achieved. Their definition is quite simple: they are those
binary linear codes which can be described as kernels of matrices over the binary field Z2

with a ’small’ number of non-zero elements. Since the pioneering work [30], two streams
of research are easily recognizable in the literature on LDPC codes. On the one hand,
structural properties of such codes have been investigated: distance-spectra, minimum
distances and also capacity estimations under maximum-likelihood (ML) decoding, [48,
50, 42, 59, 42, 43, 11, 16, 54]. On the other hand, they have been studied coupled with
the well-known iterative decoding schemes [55, 56, 69, 51, 72, 40, 57, 15].

LDPC codes over non-binary Abelian groups were already introduced and studied
in Gallager’s seminal work [30]. More recently, after the rediscovery of Gallager codes
in the ’90s, non-binary LDPC codes have received a considerable amount of attention
by researchers, and have been studied both for binary and non-binary channels. In the
former case they allow to introduce a new design parameter, the choice of the non-zero
entries in the parity matrix, to be optimized jointly with the degree profile. In the latter
case they alow to design high-performance bandwidth-efficient coding schemes.

An interesting difference with respect to the binary case is the way to choose the
non-zero elements of parity matrix. In this chapter we will consider many different
possibilities. Among them, the so-called unlabelled ensemble where non-zero elements are
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all equal to the identity, and the uniformly labelled ensemble where non-zero elements are
instead, each one independently, chosen to be any possible automorphism of the group
G with uniform probability. We will see that the latter ensemble will outperform the
former. Of course our results could be extended to irregular LDPC ensembles, where the
fraction of rows and columns with different amounts of non-zero entries (degree profile)
is fixed, although this extension will not be considered here.

In [30] regular ensembles of LDPC Zm-codes were considered with all the non-zero
entries equal to 1 (unlabelled ensembles in our terminology); he studied their Ham-
ming distance-spectra and provided bounds for their error probabilities under maximum-
likelihood and suboptimal iterative decoding over some highly symmetric channels. In
[14], the authors show empirical evidence that, appropriately choosing the values of the
non-zero entries in the parity check matrix, LDPC codes over the Galois field F2r per-
form better than the corresponding binary LDPC codes, when used over binary-input
output-symmetric channels. LDPC codes over F2r for binary-input output-symmetric
channels have also been studied in [53] following a density-evolution approach. The
works [6, 7, 19] contain quite a complete theoretical analysis of LDPC codes over finite
fields for non-binary channels considering both ML and belief-propagation decoding.
Average type-spectra of regular LDPC ensembles over Zp in the special case when p
is prime, and more in general over Fpr , have been studied in [19, 6]. In this case the
structural theory of binary LDPC codes generalizes in an almost straightforward way.
In particular it has been shown, using expurgation techniques and results from [62],
that average type-spectra provide lower bounds to the typical error exponent of these
ensembles, and that this exponent can be made arbitrarily close to the random-coding
one by allowing the density of the parity matrix to grow while keeping the rate constant.

However, in the case of algebraic structures which are not fields (e.g. Zm with non-
prime m), the available theoretical results are very few. In [6], average type-spectra of
unlabelled ensembles of LDPC Zm-codes have also been studied in the case when m is not
prime, but there is no results on minimum Euclidean distances. In the papers [66, 2, 73]
the case when m is not prime has been considered, but mainly from an iterative-decoding
perspective. Computer simulation have been reported in [66, 73] showing that, when
mapped over the m-PSK constellation, LDPC Zm-codes guarantee better performance
than their binary counterparts.

In this chapter we will study in detail average type-spectra and minimum Bhatta-
charyya-distances of regular LDPC ensembles over any finite Abelian group G, in which
the non-zero entries of the parity-check operator are randomly sampled, independently
and uniformly, from an arbitrary group F of authomorphisms of G (briefly F -labelled
ensembles), generalizing all the results in [30, 14, 19, 6]. This extension passes through
the use of mathematical tools which do not show up in the binary case: group charac-
ters, arithmetic concepts (Möbius inversion formula, Ramanujan sums), combinatorial
techniques (Cayley graphs) and convex-analytical techniques.
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As a first result, we will find exact expressions in terms of combinatorial formulas
for the average type-spectra of regular F -labelled ensembles of LDPC codes over G: see
Theorem 53. For the unlabelled ensemble of LDPC codes over Zm, we will show that our
results for average type-spectra coincide with those obtained in [30, 6] , while for LDPC
codes over finite fields the results of [14, 19, 6] will be recovered. Theorem 53 is instead
completely original, to the best of our knowledge, for the uniformly labelled ensemble
of LDPC codes over Zm, for which the average type-spectrum has an elegant expression
in terms of Ramanujan sums. Coupling this analysis with an ad hoc analysis for the
low-weight average type-enumerating functions, we will finally propose upper bounds
to the repartition function of the minimum Bhattacharyya distance. This will allow us
to show that minimum distances grow linearly in N with probability one (see Theorem
62): in the coding terminology this means that such codes are asymptotically good with
probability one. More precisely, we obtain almost sure lower bounds on the asymptotic
normalized minimum distance of the LDPC ensembles. These bounds are defined as
solution of (|G|− 1)-dimensional optimization problems. Proving the tightness of these
bounds would require second-moment estimations for the type-enumerating functions,
and is a problem left for future research. However, concentration results available in the
literature for the Hamming distance-spectra of regular ensembles of binary LDPC codes
(see [54]) make us optimistic about the tightness of our bounds for regular ensembles of
LDPC G-codes as well. Finally, we will present some numerical results for the average
distance-spectra showing how strongly the choice of the label group F affects the value
of the typical minimum distance. In particular, we will show that, for the 8-PSK AWGN
channel, the distance properties of the uniformly labelled ensemble of LDPC Z8-codes
are significantly better than those of the unlabelled ensemble. This is confirmed by
Monte-Carlo simulations of these codes which we have run, and it is coherent with some
of the simulation results reported in [6].

The remainder of this chapter is organized as follows. In Section 2 we introduce
LDPC code ensembles over Abelian groups. In Section 3 we study the average type-
enumerating functions of these ensembles and we determine their exact growth-rate,
namely the so-called average type-spectrum: the main result is Theorem 53. Section 4
is a technical one devoted to a detailed probabilistic analysis of low-weight codewords:
the main result is Theorem 59. Using the results of Sections 3 and 4 we are finally
able to prove, in Section 5, a probabilistic lower bound on the growth of minimum
Euclidean distances for the LDPC ensembles when the block-length N goes to infinity:
see Theorems 62 and 63. Finally, in Section 6 we report some numerical simulations
showing that the uniformly labelled ensemble of LDPC Z8-codes definitely outperforms
the unlabelled one on the 8-PSK AWGN channel, and we draw some final conclusions.
An appendix completes the paper, containing some of the more technical proofs and a
technical lemma on semicontinuous functions.
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5.1.1 Low-density parity-check codes over Abelian groups

For any finite Abelian group G, we now describe the ensembles of LDPC G-codes which
will be considered in this paper. For every given degree pair (c, d) in N2, we consider the
set of admissible block-lengths N(c,d) := {N ∈ Ns.t. d | Nc}, and for every N in N(c,d)

define L = Nc/d. Consider the c-repetition operator

RepN
c : GN → GNc , (RepN

c x)i = x.i/c/ , (5.1)

where /x0 denotes the lowest integer not below x, and the d-check summation operator

SumN
d : GNc → GL , (SumN

d x)i =
∑id

k=i(d−1)+1 xk . (5.2)

Consider the group of permutations on Nc elements, SNc, and let Π′
N be a random

variable uniformly distributed over SNc. Moreover, consider a subgroup F of Aut(G),
the automorphism group of G, and let (Λj)1≤j≤Nc be a family of independent random
variables identically distributed uniformly on F , independent of Π′

N . Define the random
diagonal automorphism Π′′

N ∈ Aut(GNc) by (Π′′
Nx)j := Λjxj for 1 ≤ j ≤ Nc. Finally,

for every N ∈ N(c,d) define the random syndrome homomorphism

ΦN : GN → GL , ΦN := SumN
d Π′

N Π′′
N RepN

c , (5.3)

and the associated random G-code CN := ker ΦN . This is called the (c, d)-regular F -
labelled ensemble. F will be called the label group. The two extreme cases F = {1} and
F = Aut(G) will be referred to respectively as the unlabelled and the uniformly labelled
(c, d)-regular ensembles.

The reason for considering only automorphisms as possible labels, avoiding the use
of non-invertible labels, is clarified by the following proposition. For any group H, we
denote the set of endomorphisms of H by End(H) .

Proposition 48 Assume that, for all N ∈ N(c,d), ΦN : GN → GL is defined as in (5.3)

with Π′
N uniformly distributed over SNc and Π′′

N ∈ End(GNc) is defined by (Π′′
Nx)j :=

Λjxj for 1 ≤ j ≤ Nc where (Λj) are i.i.d. according to some probability distribution
µ ∈ P(End(G)) such that supp(µ) ! Aut(G). Then, for al k ∈ G\{0} such that Λk = 0
for some Λ ∈ supp(µ)

P(dmin(ker ΦN ) ≤ δ(k)) ≥ 1− (1− µ(Λ)c)N
N→∞−→ 1.

Proof Consider Λ ∈ supp(µ) \ Aut(G), and k ∈ ker Λ \ {0}. For 1 ≤ s ≤ N , let
ek
s ∈ GN be the N -tuple with all-zero entries but the s-th one which is equal to k. If
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Λj = Λ for all (s − 1)c + 1 ≤ j ≤ sc, then Π′′
N RepN

c ek
s = 0, so that ΦNek

s = 0, and
dmin(ker ΦN ) ≤ δ(k). Since the events

EN
s :=

⋂

(s−1)c+1≤j≤sc

{Λj = Λ}

are independent for 1 ≤ s ≤ N and all have probability 1− µ(Λ)c, it follows that

P(dmin(ker ΦN ) ≤ δ(k)) ≥ P
(

⋃

1≤s≤N EN
s

)

= 1−
(

1− P
(

EN
s

))N
= (1− µ(Λ)c)N .

We wish to underline the fact that the proof of Proposition 48 strongly relied on
the independence assumption we made for the labels Λj . Indeed, by introducing proper
dependance structures for the random labels which allow to avoid certain configurations,
it is possible to consider ensembles of LDPC G-codes with non-invertible labels as well.
This possibility will not considered in the present paper, but will be explored in a future
work.

As LDPC G-codes are special G-codes admitting sparse kernel representation, they
suffer from all the limitations in performance of G-codes. In particular, the capacity
they can achieve on a G-symmetric channel is upper bounded by the G-capacity of that
channel. This explains why the authors of [6] had to restrict themselves to prime values
of m while studying LDPC Zm-codes, albeit the average type-spectra they obtained for
the unlabelled ensemble did not need such an assumption. In fact, they noticed that
for non-prime m ’expurgation is impossible’ and LDPC Zm-codes result ’bounded away
from the random-coding spectrum’. The same restriction to prime values of m (or more
in general to groups G admitting Galois field structure) was required both in [6] and
[19] in order to study the uniformly labelled ensemble.

In this chapter regular ensembles of F -labelled LDPC G-codes will be studied for
any finite Abelian group G. In particular we will find estimations for their average type-
enumerating functions WCN (θ) and explicit combinatorial formulas for their average
type-spectra defined as the limit of N−1 log WCN (θ). Coupling this analysis with an ad
hoc analysis of the type-enumerator functions for small weight codewords, we will finally
propose upper bounds to the repartition function of the minimum normalized distance
1
N dmin(CN ). This will allow to show that, if c > 2, minimum distances grow linearly in
N with high probability. We will also show that the typical minimum distance (more
precisely the lower bound on it -conjecture to be tight- provided by the average type-
spectra) of the uniformly-labelled LDPC ensemble is significantly larger than the typical
minimum distance of the corresponding unlabelled ensemble.
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5.2 Average type-spectra of LDPC G-codes

In this section we first present some considerations about semidirect-product group
actions. Then, in Sect.3.2 we introduce LDPC codes in a slightly more general setting
and we show how regular F -labelled ensembles of LDPC G-codes introduced in Sect.
2.4 can be cast in this framework. In Sect.3.3 we prove the main result, Theorem
53, characterizing the average type-spectra of regular F -labelled ensembles. Finally, in
Sect.3.4 we show how previous results in the literature can be recovered as particular
cases of Theorem 53 and we provide an explicit formula for the average type-spectrum
of the uniformly labelled ensemble over the cyclic group, which is instead an original
result.

5.2.1 Group actions

We recall here some basic facts about semidirect group actions; the reader is referred
to the standard textbook [37] for further details. Assume that a group F acts on a set
A. A subset B ⊆ A is said to be F -invariant if fb ∈ B for every b ∈ B and f ∈ F .
Clearly, if B is F -invariant, F acts on B as well. For every a in A, the relative orbit
Fa := {b ∈ As.t. b = fa for some f ∈ F} is F -invariant and its action on it is transitive.
The set of the orbits is denoted by A/F and called the quotient of A by the action of F .
There is a canonical surjection πF : A → A/F which associates an element a with the
orbit it belongs to. Given a ∈ A, we define its stabilizer as StabF (a) := {f ∈ F s.t. fa =
a}. The well-known class formula gives: |F | = |Fa| · |StabF (a)|.

If A and B are sets and the group F acts on A, a map φ : A → B is said to be
F -invariant if φ(fa) = φ(a) for every a ∈ A and f ∈ F . As an example, the canonical
surjection πF : A → A/F is a F -invariant map. Suppose we have a F -invariant map
φ : A→ B, then it is immediate to see that we can define a map φ̃ : A/F → B such that
φ = φ̃ ◦ πF . Notice that if it happens that φ is onto and moreover φ(a) = φ(a′) if and
only if Fa = Fa′, then the map φ̃ is a bijection and thus A/F and B are in one-to-one
correspondence. We will often use this fact in order to characterize quotient spaces.

We now introduce an example which will play a fundamental role in our future
derivations. Given any set A, the permutation group SN acts naturally on AN : given
a ∈ AN and σ in SN , we define σa ∈ AN by (σa)j = aσ−1(j). Orbits can easily described

using types. Given a, b ∈ AN , it is immediate to see that

∃ σ ∈ SN : σa = b ⇔ θA(a) = θA(b) .

This says that the subsets AN
θ of type-θ N -tuples are exactly the orbits for the action

of the permutation group SN on AN , and we have a natural bijection AN/SN # PN (A)
(obtained through the mapping a 2→ θ(a).
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Suppose now we are given an action of a group F on the set A. This extends to an
action of FN on AN with the orbit set AN/FN # (A/F )N . We would like to combine
this action, with the action of the permutation group on AN and the way to do this is
as follows: we consider the semidirect product

SN " FN , (σ1,g1)(σ2,g2) = (σ1σ2, (σ
−1
2 g1)g2) ,

and the action on AN given by (σ,g)a = σ(ga).
We now want to characterize the set of orbits of this semidirect action. Notice

that the map πF : A → A/F induces a natural map π.
F : P(A) → P(A/F ) where

[π.
F θ](Fa) =

∑

b∈Fa θ(b). It is easy to see that the following diagram commutes

AN πF N
→ (A/F )N

↓ θA ↓ θA/F

PN (A) π)F
→ PN (A/F )

(5.4)

(i.e. θA/F ◦ πF N = π.
F ◦ θA).

In the sequel we will use the notation υA,F = θA/F ◦ πF N and call υA,F (a) the
(A,F )-type of a. Clearly, The (A,F )-type is exactly what is needed to describe orbits
with respect to the action of the semidirect group SN " FN . Indeed, it is immediate to
check that PN (A/F ) is in bijection with the quotient AN/(SN " FN ): given a, b ∈ AN

we have that

∃(σ,g) ∈ SN " FN s.t. (σ,g)a = b ⇔ υA,F (a) = υA,F (b) .

If υ ∈ PN (A/F ) we will use the notation AN
υ := {a ∈ AN | υA,F (a) = υ}. Using the

fact that υA,F = θA/F ◦ πF N we obtain that

|AN
υ | =

( N
Nυ

)
∏

α∈A/F |π−1
F (α)|Nυ(α) . (5.5)

Define now ON
υ :=

{

θ ∈ PN (A)s.t. π.
F (θ) = υ

}

. For every given υ ∈ P(A/F ), and N

in N, we have
AN

υ =
⋃

θ∈ON
υ

AN
θ , (5.6)

the union being disjoint. Notice that we also have
∣

∣ON
υ

∣

∣ =
∏

α∈A/F |π−1
F (α)|Nυ(α).

5.2.2 A general framework for LDPC ensembles over Abelian groups

Fix an infinite subset N ⊆ N, a group U , two sequences of finite Abelian groups Z(N)

and Y (N) (with N ∈ N ), and two sequences of homomorphisms

ΞN
o : UN → Z(N) , ΞN

i : Z(N) → Y (N) .
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Consider moreover a sequence IN of subgroups of Aut(Z(N)), and assume that the
actions of IN on Z(N) satisfy the following property: there exists a fixed finite set A
and a sequence of invariant maps ΘN : Z(N) → P(A) such that x, y ∈ Z(N) are in the
same orbit if and only if ΘN (x) = ΘN (y). In this way the quotient space Z(N)/IN can
be naturally identified with the image of ΘN inside P(A).

Let now ΠN be a sequence of random variables uniformly distributed over IN . For
every N ∈ N define

ΦN := ΞN
i ΠN ΞN

o , (5.7)

The triple (ΞN
o , ΞN

i , IN ) is called an interconnected ensemble while (ker ΦN ) will be
the random code sequence associated to the ensemble. The set A will be called the
interconnection type alphabet of the ensemble.

Consider now the type-enumerating function WN (θ) for the ensemble. By taking
the expectation with respect to our probability space, we get

WN (θ) = E
[

∑

x∈UN
θ

{0}(ΦNx)
]

=
∑

x∈UN
θ

P(ΦNx = 0) . (5.8)

Put Z(N)
υ := Θ−1

N (υ) and define the following sets: for every υ ∈ P(A), θ ∈ P(U)

Zi,N
υ :=

{

w ∈ Z(N)
υ | ΞN

i w = 0
}

, Uo,N
θ,υ := {x ∈ UN | θU (x) = θ , ΘN (ΞN

o x) = υ} .

(5.9)
We have the following simple result.

Proposition 49 For every θ in PN (U)

WN (θ) =
∑

υ∈P(A)

|Uo,N
θ,υ ||Zi,N

υ |

|Z(N)
υ |

. (5.10)

Proof If x ∈ Uo,N
θ,υ , using the fact that IN acts transitively on Z(N)

υ and the class
formula, we obtain

P(ΦNx = 0) = P(ΠNΞN
o x ∈ Zi,N

υ ) =
|Zi,N

υ ||StabIN (ΞN
o (x))|

|IN |
=

|Zi,N
υ |

|Z(N)
υ |

.

Using now (5.8), (5.10) follows immediately.

We now frame the LDPC ensembles introduced in Section 2 into this more general
setting. We use the notation introduced in Section 5.1.1. Given (c, d) ∈ N2 and N ∈
N(c,d), consider L = Nc/d. Take U = G, Z(N) = GNc, Y (N) = GL. Also, take ΞN

o =
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RepN
c , ΞN

i = SumN
d , IN = SNc " FNc. The ensemble (RepN

c ,SumN
d , SNc " FNc) is the

(c, d)-regular F -labelled ensemble. The type alphabet in this case is simply A = G/F .
Irregular ensembles can be framed into this setting by simply replacing the repetition

operator. Also other interesting cases can be obtained by considering the interconnec-
tions among the inner and outer encoder done through some vector structured channels
and allowing only independent permutations on the various channels. However, will
now focus on the evaluation of the type-spectra of the regular F -labelled LDPC G-code
ensembles. This will be done in the following subsection by explicitly calculating the
three terms entering in the formula (5.10).

5.2.3 The average type-spectrum of the (c, d)-regular F -labelled en-
semble

In order to prove the main result of this section we will use some generating functions
techniques. For a finite set A, consider the ring of complex-coefficients multivariable
polynomials (briefly multinomials) C[A]. Given p ∈ C[A] and k ∈ ZA

+ we denote by
Bp(z)Ck the coefficient of the term zk in p(z), i.e. p(z) =

∑

k∈ZA
+
Bp(z)Ck zk. In partic-

ular, we will consider type-enumerating multinomials, i.e. homogeneous-degree multi-
nomials of the form p(z) =

∑

θ∈PN (A) Bp(z)CNθ zNθ, where each coefficient Bp(z)CNθ

equals the number of N -tupes a ∈ AN of A-type θ, satisfying certain properties. The
easiest case is provided by the multinomial (

∑

a∈A za)N =
∑

θ∈PN (A)

( N
Nθ

)

zNθ, simply
enumerating the N -tuples of different A-types. The following result, proved in [11],
characterizes the asymptotic growth-rate of the coefficients of powers of enumerating
multinomials.

Theorem 50 Let A be a finite set, and p(z) ∈ R+[A] be a homogeneous-degree, non-
negative real-coefficients multinomial. For all θ ∈ PN(A) and z ∈ P(A) such that
supp(z) = supp(θ), we have

⌊

p(z)N
⌋

Nθ
≤ p(z)N

zNθ
, lim

N∈Nθ

1

N
log
⌊

p(z)N
⌋

Nθ
= inf

z∈P(A):
supp(z)=supp(θ)

log
p(z)

zθ
.

(5.11)
Moreover the left-hand side of (5.11) is a concave (and thus upper semicontinuous)
[−∞,+∞)-valued function on P(A).

The first type-enumerating multinomial which we will need in our derivations is the
one enumerating the 0-sum d-tuples over a finite Abelian group G:

βd(z) ∈ C[zg, g ∈ G] , βd(z) :=
∑

g1,...,gd

{0}

(

∑d
k=1 gk

)

∏

1≤k≤d
zgk .
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By introducing the group Ĝ of characters of G, i.e. homomorphisms of G in the mul-
tiplicative group C∗ of non-zero complex numbers, it is possible to find an explicit
expression for βd(z) as stated in the following lemma.

Lemma 51 For every finite Abelian group G and d ∈ N

βd(z) =
1

|G|
∑

χ∈Ĝ

(

∑

g∈G

zgχ(g)

)d

.

Proof The inversion formula for the discrete Fourier transform (see [67, pag. 168])
f(g) = 1

|G|

∑

χ〈f,χ〉χ(g), applied to f = δ0 ∈ L2(G), gives 1
G

∑

χ χ(g) = {0}(g). Then,

βd(z) =
∑

g1,...,gd

{0}

(

∑

1≤k≤d gk

)

∏

1≤k≤d
zgk

=
∑

g1,...,gd

1
|G|

∑

χ
χ
(

∑

1≤k≤d gk

)

∏

1≤k≤d
zgk

= 1
|G|

∑

χ

∑

g1,...,gd

∏

1≤k≤d
χ (gk) zgk

= 1
|G|

∑

χ

(

∑

g
zgχ(g)

)d
.

Recall that, given any subgroup F of Aut(G) and a degree pair (c, d) in N2, the (c, d)-
regular F -labelled ensemble of LDPC G-codes is described by the triple

(

RepN
c ,SumN

d , SNc " FNc
)

.

Let πF : G → G/F be the canonical projection on the quotient, and π.
F : P(G) →

P(G/F ) be the associated action on probabilities. Also, define

ϕ : G/F → N , ϕ(q) =
∣

∣π−1
F (q)

∣

∣ , (5.12)

to be the map giving the cardinalities of the orbits of G under the action of F .

Consider some admissible block-length N in N(c,d). Formula (5.5) shows that |Z(N)
υ | =

( Nc
Ncυ

)

ϕNcυ for every υ ∈ PNc(G/F ). Moreover, in this case |Uo,N
θ,υ | =

( N
Nθ

)

{π)F θ}(υ).

Substituting in (5.10), and defining υ := π.
F θ, we obtain

WN (θ) =

(

N

Nθ

)(

Nc

Ncυ

)−1

ϕ−Ncυ|Zi,N
υ | . (5.13)

It remains to evaluate the enumerating weights |Zi,N
υ | relative to the check summation

operator. In order to do that, we inroduce the multinomial

αF,d(t) ∈ C[tq, q ∈ G/F ] , αF,d(t) :=
1

|G|
∑

χ∈Ĝ





∑

q∈G/F

1

ϕ(q)

∑

g∈q

χ(g)tq





d

, (5.14)
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and present the following result, stating that the L-th power of αF,d(t) is the type-

enumerating multinomial of the normalized weights |Zi,N
υ |/ϕNcυ.

Lemma 52 For every N ∈ N(c,d)

∑

υ∈PNc(G/F )

|Zi,N
υ |

ϕNcυ
tNcυ = (αF,d(t))

L . (5.15)

Proof First consider the type-enumerating multinomial B(z) ∈ C[zg, g ∈ G] for the
kernel of the inner homomorphism ΞN

i = SumN
d . Since any x in GNc belongs to ker SumN

d
iff it is the concatenation of L 0-sum d-tuples, from Lemma 51 we have B(z) = (βd(z))L.
Consider now the map

Ψ : C[zg, g ∈ G] → C[tq , q ∈ G/F ] Ψ : p(z) → p(tπF (g), g ∈ G) .

It follows from (5.6) that, for all υ in P(G/F ), we have

|Zi,N
υ |

ϕNcυ
=

∑

θ∈ONc
υ

BB(z)CNcθ

ϕNcυ
=

∑

υ∈PNc(G/F )

BΨB (t)CNcυ

ϕNcυ
=

∑

υ∈PNc(G/F )

⌊

ΨB

(

t

ϕ

)⌋

Ncυ

.

(5.16)
Then, the claim follows by observing that ΨB (t/ϕ) = (Ψβd (t/ϕ))L = αF,d(t)L .

We are now ready to prove the main result of this section, stating that the average
type-spectrum of the (c, d)-regular F -labelled ensemble of LDPC G-codes is given by

Γ(F,c,d)(θ) := H(θ) +
c

d
inf

t∈P(G/F ):

supp(t)=supp(π)
F θ)

{

log αF,d(t) + dD
(

π.
F θ||t

)

}

. (5.17)

From Theorem 50 it follows that the spectrum Γ(F,c,d)(θ) is an upper semicontinuous

function on the probability simplex P(G). Notice that, by choosing t = π.
F θ, we

immediately obtain the estimation

Γ(F,c,d)(θ) ≤ c

d
log αF,d

(

π.
F θ
)

+ H(θ) .

Theorem 53 For the (c, d)-regular F -labelled ensemble of LDPC G-codes

WN (θ) ≤ exp(NΓ(F,c,d)(θ)) , lim
N∈Nθ∩N(c,d)

1

N
log WN (θ) = Γ(F,c,d)(θ) .
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Proof From (5.13), by recalling that Nc = Ld, we get

1

N
log WN (θ) =

1

N
log

(

N

Nθ

)

+
c

d

1

L
log

|Zi,N
υ |

( Ld
Ldυ

)

ϕLdυ
.

We have lim 1
N log

( N
Nθ

)

= H(θ). Then we can apply first Lemma 52 and then Theorem
50 (notice that (5.15) with L = 1 implies that αF,d(t) has non-negative real coefficients
and homogeneous degree), obtaining

lim
N

1

L
log

|Zi,N
υ |

( Ld
Ldυ

)

ϕLdυ
= lim

N

1

L
log

⌊

αF,d(t)L
⌋

Ldυ
( Ld
Ldυ

)

ϕLdυ
= inf

t∈P(G/F ):
supp(t)=supp(υ)

{

log
αF,d (t)

tdυ
− dH(υ)

}

Similarly, the inequality is proven.

5.2.4 Special cases of Theorem 53

Now, we particularize Theorem 53 to some important special cases, showing as all the
previous results in the literature of non-binary LDPC codes can be reobtained, and other
interesting cases can be studied as well.

LDPC codes over Galois fields

Suppose G # Zr
p for some prime number p and positive integer r. First let F coincide

with the whole automorphism group Aut(Zr
p), which is isomorphic to the general linear

group of r × r invertible matrices on Zp. In this case the probability that an N -tuple
x in GN belongs to the random LDPC code CN = ker

(

SumN
d ΠN RepN

c

)

only depends
on the Hamming weight (i.e. number of non-zero entries) of x. Indeed, it is easily seen
that the action of Aut(Zr

p) on Zr
p has only two orbits: one containing the zero element

only, and one containing all the non-zero elements of Zr
p. Thus, the quotient space is

G/F = {q0, q1}, with ϕ(q0) = 1, ϕ(q1) = pr−1. Moreover, since all nontrivial characters
are orthogonal to the trivial one χ0 ≡ 1, it follows that

∑

g∈q1
χ(g) = −χ(0) = −1 for

all χ ∈ Ĝ \ {χ0}. Then, the average type-spectra of the (c, d)-regular Aut(Zr
p)-labelled

ensemble of LDPC Zr
p-codes is given by

Γ(c,d,Aut(Zr
p))(θ) = H(θ) + c

d inf
t∈(0,1)

{

log

(

1
pr + pr−1

pr

(

1− pr

pr−1t
)d
)

+ dD(λ||t)
}

, (5.18)

where λ := 1− θ(0) and D(λ||t) := λ log λ
t + (1− λ) log 1−λ

1−t .
Consider now the case G # Zr

p again, but now with label group F # F∗
pr , the

multiplicative group of non-zero elements of the Galois field Fpr . Observe that F∗
pr
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can always be identified with a subgroup (proper if r > 1) of Aut(Zr
p). Nevertheless,

the action of F∗
pr on Zr

p has the same two orbits as the action of the whole Aut(Zpr)
on Zr

p. This shows that the (c, d)-regular F ∗
pr -labelled ensemble has the same average

type-spectrum of the Aut(Zr
p)-labelled ensemble, i.e.

Γ(F∗
pr ,c,d)(θ) = Γ(c,d,Aut(Zr

p))(θ) , ∀ θ ∈ P(Zr
p) . (5.19)

The expression (5.18) coincides with the spectrum of the F∗
pr -labelled ensemble ob-

tained in [6, 19]. We observe that in [53] it was numerically observed that the density-
evolution dynamical system [55] exhibits the same threshold value for the F∗

pr-labelled
and the Aut(Zr

p)-labelled ensembles over the binary erasure channel. Formula (5.19)
shows that these ensembles have identical average type-spectra.

Unlabelled LDPC ensembles over cyclic groups

We now consider the case when G # Zm and F = {1}. In this case, the characters of

Zm are given by χk(h) := e
2π
m hki for h, k ∈ Zm, while, trivially, the quotient space Zm/F

coincides with Zm itself and ϕ ≡ 1 (see (5.12)). It follows that

α{1},d(t) = βd(t) = 1
m

∑

1≤k≤m

(

∑

1≤h≤m
e

2π
m hkizh

)d

.

Then, the average type-spectrum takes the following form

Γ({1},c,d)(θ) = H(θ) +
c

d
inf

z∈P(Zm)
supp(z)=supp(θ)

{

log

(

1
m

∑

k

(

∑

h
e

2π
m hkizh

)d
)

+ dD
(

θ||z
)

}

.

(5.20)
The above spectrum coincides with the one obtained in [6].

Uniformly labelled ensembles over cyclic groups

Finally, consider the case when G # Zm again, but this time with F isomorphic to Z∗
m,

the multiplicative group of units of Zm. Notice that Z∗
m acts by multiplication on the

ring Zm. It is immediate to see that two a, b ∈ Zm are in the same orbit with respect
to this group action, if and only if (m,a) = (m, b), where (k, h) denotes the greatest
common divisor of two naturals k and h. The quotient space Zm/Z∗

m can be identified
with the set of divisors of m Dm := {l ∈ Ns.t. l | m}. We have |Z∗

m| = ϕ(m), where
ϕ : N → N, ϕ(n) =

∣

∣

{

m ∈ Ns.t. m ≤ n , (n,m) = 1
}
∣

∣, is the Euler ϕ-function. The
projection map is

πZ∗
m

: Zm → Dm , πZ∗
m

(a) =
m

(m,a)
.
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Notice that, for every l ∈ Dm, the orbit π−1
Z∗

m
(l) coincides with m

l Z∗
m and it is in bijection

with Z∗
l through the map h 2→ m

l h. Then, ϕ(l) = |π−1
Z∗

m
(l)| = |Z∗

l | = ϕ(l).

In order to evaluate the average-type spectra of the (c, d)-regular Z∗
m-labelled en-

semble of LDPC Zm-codes, it is convenient to introduce the so-called Ramanujan sums

rl(k) :=
∑

j∈Z∗
l
e

2π
l jki , l, k ∈ N .

The Ramanujan sums are well-known in number theory and can be explicitly evaluated
in terms of both the Euler ϕ-function and Möbius function

µ : N → Z , µ(n) =







1 if n = 1
0 if p2 | n for some prime p
(−1)k if m = p1p2 . . . pk for distinct primes pi .

For every l, k ∈ N it holds [35, pag. 237]

rl(k) = µ

(

l

(l, k)

)

ϕ(l)

ϕ
(

l
(l,k)

) . (5.21)

We now can now explicitly evaluate the multinomial αZ∗
m,d(t), obtaining

αZ∗
m,d(t) = 1

m

∑

1≤k≤m

(

∑

l|m

1
ϕ(l)

∑

j∈Z∗
l

e
2π
l jkitl

)d

= 1
m

∑

1≤k≤m

(

∑

l|m

1
ϕ(l)rl(k)tl

)d

= 1
m

∑

k|m
ϕ
(

m
k

)

(

∑

l|m

µ
“

l
(l,k)

”

ϕ
“

l
(l,k)

”tl

)d

.

It follows that the average type-spectrum of the (c, d)-regular Z∗
m-labelled LDPC en-

semble of Zm-codes is given by

Γ(Z∗
m,c,d)(θ) = H(θ) +

c

d
inf
t







log





1
m

∑

k|m
ϕ
(

m
k

)

(

∑

l|m

µ
“

l
(l,k)

”

ϕ
“

l
(l,k)

”tl

)d


+ dD
(

πZ∗
m

θ||z
)







,

(5.22)
where the above infimum has to be considered with respect to all t in P(Dm) such that
supp(t) = supp(πZ∗

m
θ). Of course, when m is prime, formula (5.22) above reduces to

(5.18). In particular, when m = 2, (5.18), (5.20), and (5.22) coincide. For non-prime m
instead, (5.22) is novel, to the best of our knowledge.
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5.3 On low-weight type-spectra

In this section we will deal with estimations of the average type-spectra of the regular
F -labelled LDPC G-code ensembles for G-types very close to the all-zero type δ0. We
will consider the variational distance on P(G), ||θ − θ′|| := supB⊆G{θ(B)− θ′(B)}.

Recall that, since we are dealing with LDPC G-codes, the all-zero N -tuple is always
a codeword. Then, WN (δ0) = 1 deterministically, i.e. for any realization of of ΠN in
the interconnection group SNc " FNc. Hence clearly Γ(F,c,d)(δ0) = 0. The main result
of this section is that there exists a punctured neighborhood of δ0 in P(G), over which
the spectra Γ(F,c,d)(θ) are strictly negative. Actually, much more precise results will be
derived, characterizing the exact rate of decay (asymptotically in N) of the sum of the
average enumerating coefficients over all G-types θ such that 0 < ||θ − δ0|| < 2

d .
Throughout this section we will often use the following notation: for a, t in N we

define the discrete intervals Ia
t := [(t− 1)a + 1, ta] ∩N. Notice that, given a degree pair

(c, d), for every admissible blocklength N in N(c,d) we have
{

1, 2, . . . ,Nc
}

=
⋃

1≤t≤L Id
t =

⋃

1≤s≤N Ic
s .

5.3.1 An upper bound to low-weight spectra

We start by deriving an upper bound to low-weight type-enumerating coefficients for

the inner encoder
∣

∣

∣
Zi,N

θ

∣

∣

∣
:=
∣

∣GNc
θ ∩ ker SumN

d

∣

∣.

Lemma 54 Let (c, d) be a degree pair, and let N ∈ N(c,d). For every θ in PNc(G) such
that

||θ − δ0|| ≤ 1− 2

d
, (5.23)

we have
∣

∣

∣Z
i,N
θ

∣

∣

∣ ≤
(

L

Bw/2C

)(

Bw/2C d

w

)(

w

ω

)

, (5.24)

where ω ∈ NG\{0} is defined by ω(k) := Ncθ(k), and w :=
∑m−1

k=1 ω(k) is the number
of non-zero entries in an Nc-tuple of type θ.

Proof Let y in GNc
θ be any Nc-tuple of type θ. A necessary condition for y to be

in ker SumN
d is that each of the first L intervals Id

t contains either none or at least two
non-zero entries of y. Clearly,

∣

∣

{

t ≤ L :
∣

∣supp(y) ∩ Id
t

∣

∣ ≥ 2
}∣

∣ ≤ Bw/2C while, for any
choice of a dissection 1 ≤ t1 < . . . < t+w/2, ≤ L, (notice that (5.23) implies w/2 ≤ L)
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we have
∣

∣

∣

{

y ∈ GNc
θ : supp(y) ⊆

⋃+w/2,
j=1 Id

tj

}∣

∣

∣
≤
(d+w/2,

w

)(w
ω

)

. It follows that

|Zi,N
θ | ≤

∣

∣

∣

⋃

1≤t≤L

{

y ∈ GNc
θ :

∣

∣supp(y) ∩ Id
t

∣

∣ ,= 1
}

∣

∣

∣

≤
∣

∣

∣

⋃

1≤t1<...<t'w/2(≤L

{

y ∈ GNc
θ : supp(y) ⊆

⋃+w/2,
j=1 Itj

}∣

∣

∣

≤
(

L

Bw/2C

)(

d Bw/2C
w

)(

w

ω

)

.

We now obtain an estimation for the average low-weight type-enumerators.

Lemma 55 Let (c, d) be a degree pair, F ≤ Aut(G) and N ∈ N(c,d). For every θ ∈
PN (G) satisfying (5.23) the average type-enumerator function of the (c, d)-regular F -
labelled ensemble satisfies

WN (θ) ≤
(

N

Nθ

)(

L

Bw/2C

)

( w

2L

)w
, (5.25)

where w := Nc(1− θ(0)).

Proof Consider the projection map πF : G → G/F and the associated map for

types π.
F : G → G/F . Define υ := π.

F θ, and u ∈ ZG/F\{0}
+ by u(k) = Ncυ(k).

Also, for every θ′ in P(G), define ω′ in ZG\{0}
+ by ω′(k) := Ncθ′(k). Notice that

∑

θ′∈ONc
υ

(w
ω′

)

=
( w
Nc u

)

ϕNc υ. From (5.13), (5.16) and (5.24) we get

WN (θ) =

(

N

Nθ

)(

Nc

Ncυ

)−1

ϕ−Nc υ
∑

θ′∈ONc
υ

|Zi,N
θ′ |

≤
(

N

Nθ

)(

Nc

w

)−1 ( L

Bw/2C

)(

Bw/2C d

w

)(

w

Ncu

)−1

ϕ−Nc υ
∑

θ′∈ONc
υ

(

w

ω′

)

=

(

N

Nθ

)(

L

Bw/2C

)(

Nc

w

)−1(Bw/2C d

w

)

=

(

N

Nθ

)(

L

Bw/2C

)

Bw/2Cd(Bw/2Cd − 1) . . . (Bw/2Cd − w + 1)

Ld(Ld− 1) . . . (Ld− w + 1)

≤
(

N

Nθ

)(

L

Bw/2C

)

( w

2L

)w
.

A first consequence of Lemma 55 is the following upper bound on the average type-
spectra of the F -labelled LDPC ensembles.
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Proposition 56 For every degree pair (c, d) such that c ≥ 3 we have

Γ(F,c,d)(θ) ≤ fc,d (x) , ∀ θ : ||θ − δ0|| ≤
2

d
,

where x := 1− θ(0), and

fc,d(x) := H(x) + x log(|G| − 1) + c
d H

(

d
2x
)

+ cx log
(

d
2x
)

,

with H(x) := −x log x− (1− x) log(1− x) denoting the binary entropy.

Proof From (5.25) it follows that for every ||θ − δ0|| < 2
d , for the F -labelled (c, d)-

regular ensemble we have

1

N
log WN (θ) ≤ 1

N
log

(

N

Nθ

)

+
1

N
log

(

L
⌊

xN c
2

⌋

)

+
1

N
log

(

cNx

2L

)cNx

N∈N(c,d)−→ H(θ) +
c

d
H

(

d

2
x

)

+ +cx log

(

d

2
x

)

≤ H(x) + x log(|G| − 1) + cx log

(

d

2
x

)

.

It is easy to see that, whenever c > 2, d
dxfc,d

∣

∣

x=0
= −∞. Therefore, Proposition 56

implies that the spectra Γ(F,c,d)(θ) are strictly negative in a sufficiently small punctured
neighborhood of δ0 in P(G). In Section 5.4 this fact will be used in order to show that
the minimum ∆-distance grows linearly with N with high probability. Here we derive
more precise estimations for the average type-enumerating functions.

Proposition 57 Let F be any subgroup of Aut(G), (c, d) a degree pair and N ∈ N(c,d).
There exists a positive constant K such that the type-enumerator function of the (c, d)-
regular F -labelled ensemble satisfies

∑

2
N ≤||δ0−θ||≤ 2

d

WN (θ) ≤ KN2−c .

Proof For every N in N(c,d) we define the quantities

gw(N) :=
∑

||δ0−θ||= w
N

WN (θ) , w ∈ N .

For θ in PN (G) define ω as in Lemma 54. For all w = 2, . . . ,
⌊

2
dN
⌋

, (5.25) implies

gw(N) ≤
∑

θ(0)=N−w
N

(

N

Nθ

)(

L
⌊

cw
2

⌋

)

(wc

2L

)wc
=

(

L
⌊

cw
2

⌋

)

(wc

2L

)wc
(

N

w

)

(|G| − 1)w =: g′w(N) .
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We have, for every 2 ≤ w ≤ B2dNC,

g′w+2(N)

g′w(N)
≤ (|G| − 1)2

(

N − w

w

)2
(

L−
⌊

cw
2

⌋

⌊

cw
2

⌋

2L

)c
(

1 +
2

w

)(w+2)c

≤ (|G|− 1)2(3e)2cN2−c .

It follows that if c ≥ 3, then there exists N0 in N such that, for all N in N(c,d) such that

N ≥ N0,
g′w+2(N)
g′w(N) ≤ 1

2 for all 1 ≤ w ≤
⌊

2
dN
⌋

. Then, we have

∑

2
N ≤||δ0−θ||≤ 2

d

WN (θ) ≤ g′2(N)

B 2
d NC
∑

w=2

2−w + g′3(N)

B 2
dNC
∑

w=2

2−w ≤ 2g′2(N) + 2g′3(N) ≤ KN2−c

for some positive constants K ′,K ′′,K, all independent of N .

5.3.2 On weight-one codewords

We now derive a more precise estimation of the average enumerating functions for G-
types of N -tuples with all but one entries equal to zero. Fixed any N in N, k in G we
define the G-type

τk :=

(

1− 1

N

)

δ0 +
1

N
δk ∈ PN (G) ,

and we look for upper bounds on the average spectra WN (τk) for the (c, d)-regular F -
labelled LDPC ensembles. We will show how these estimations depend on the choice of
F among the subgroups of the automorphism group Aut(G).

We start with a few elementary considerations about closed paths and cycles in
directed graphs. A closed path of length n in a directed graph G = (V,E) (where V is
a finite set and E ⊆ V 2) is a Zn-labelled string of vertices v ∈ V Zn such that any two
consecutive vertices are adjacent, i.e. (vk, vk+1) ∈ E for all k ∈ Zn. A cycle of length
n is a closed path v ∈ V Zn such that vk ,= vj for all k ,= j ∈ Zn. A self-loop is a cycle
of length 1. Every closed path v of length n is the concatenation of k cycles v1, . . . ,vk

such that the sum of the lengths of v1, . . . ,vk equals n. Observe that in general k ≤ n,
while k ≤ Bn/2C provided that the directed graph G contains no self-loops.

Given a finite Abelian group G, and a subset S of G we denote by G(G,S) the
directed Cayley graph with vertex set G and edge set {(g, g + s)| g ∈ G, s ∈ S}. It is
straightforward that closed paths v of length n in an Abelian Cayley graph G(G,S) start-
ing in any fixed vertex g ∈ G (i.e. such that v0 = g) are in one-to-one correspondence
with 0-sum n-tuples x in Sn.

For a subset S ⊆ G and a positive integer n, consider a closed path v of leght n in
G. By the the previous considerations, v is the concatenation of k(v) cycles. We put
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b(S, n) equal to the maximum of k(v) over all possible closed paths v of length n in
G(G,S), with the agreement that b(S, n) = 0 whenever no closed path in G(G,S) has
length n. The reason for this notation becomes evident with the following result.

Lemma 58 Let F be any subgroup of Aut(G), (c, d) a degree pair and N ∈ N(c,d). Then,
for all k in G, the type-enumerator function of the (c, d)-regular F -labelled ensemble
satisfies

WN (τk) ≤ N

(

L

b(Fk, c)

)[

b(Fk, c)

L

]c

. (5.26)

Proof Define υ := π.
F τk ∈ P(G/F ). Let y be any element of GNc

υ . Then, for
SumN

d y = 0 in GL it is necessary that
∑

1≤j≤Nc yj = 0 in G. Since y ∈ GNc
υ has exactly

c non-zero entries all belonging to Fk, it follows that
∣

∣Zi,N
υ

∣

∣ = 0 iff there are no closed
paths of length c in the Cayley graph G(G,Fk). Then, (5.26) immediately follows in
the case b(Fk, c) = 0.

Now, assume that there exist closed paths of length c in G(G,Fk). By the previous
considerations, each such a path decomposes in at most b(Fk, c) cycles. If we consider
the intervals Id

t , for 1 ≤ t ≤ L, and put supp(y) ∩ Id
t := {jt

1, j
t
2, . . . , j

t
nt
}, we have

(

SumN
d y

)

t
=
∑

j∈Id
t

yj =
∑

1≤i≤nt

yjt
i
, ∀ 1 ≤ t ≤ L .

Therefore, if SumN
d y = 0, then it is necessary that v ∈ GZnt , vl :=

∑

1≤i≤l yjt
i

is a

closed path in G(G,Fk) for all t such that supp(y) ∩ Id
t is non-empty. It follows that

supp(y) ∩ Id
t is non-empty for at most b(Fk, c) values of t. Therefore, by taking into

account the
( L
b(Fk,c)

)

possible choices of b(Fk, c) intervals out of L possible ones, the
(b(Fk,c)

c

)

choices of c positions out of b(Fk, c)d available ones, and the ϕ(Fk)c choices of
an ordered c-tuple with entries from the orbit Fk, we get

∣

∣Zi,N
υ

∣

∣ =
∣

∣ker SumN
d ∩GNc

υ

∣

∣ ≤
(

L

b(Fk, c)

)(

b(Fk, c)d

c

)

ϕ(Fk)c .

Then, from (5.13) it follows that

WN (τk) =
N
∣

∣Zi,N
υ

∣

∣

(Nc
c

)

ϕ(Fk)c
≤ N
(Nc

c

)

(

L

b(Fk, c)

)(

b(Fk, c)d

c

)

≤ N

(

L

b(Fk, c)

)[

b(Fk, c)

L

]c
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5.3.3 Main result

Building on the results of Sect.5.3.1 and 5.3.2, we are now ready to present the main
result of this section. For a subgroup F of Aut(G), and a positive integer c we define

a(F, c) := 1− c + max ({1} ∪ {b(Fk, c)| k ∈ G \ {0}}) , (5.27)

where we recall that b(S, c) was defined in Sect.5.3.2 as the minimum number of cycles
in G(G,S) of total length c, with the agreement that b(S, c) = 0 when no closed path in
G(G,S) has length c.

Before stating the main result, we need a simple property of a(F, c). For every
k ,= 0, Fk does not contain 0, so that there are no self-loops in G(G,Fk) and then
b(Fk, c) ≤ Bc/2C. It immediately follows that

2− c ≤ a(F, c) ≤ 1− /c/20 . (5.28)

Theorem 59 For every degree pair (c, d) such that c ≥ 3, and every subgroup F of
Aut(G), there exists a positive constant K such that for the (c, d)-regular F -labelled
ensemble it holds

∑

0<||δ0−θ||≤ 2
d

WN (θ) ≤ KNa(F,c) , N ∈ N(c,d) .

Proof First, we consider weight-one types. From (5.26) we have

∑

θ(0)=N−1
N

WN (θ) ≤
∑

k∈G\{0}

N

(

L

b(Fk, c)

)

b(Fk, c)c

Lc
≤ K ′

∑

k∈G\{0}

N1+b(Fk,c)−c ≤ K ′|G|Na(F,c)

for some positive constant K ′. The claim then follows by combining Proposition 57 with
the previous estimation, and observing that a(F, c) ≤ 2− c ≤ −1.

Now, we explicitly evaluate a(F, c) for the three examples studied in the previous
section.

Example 14 Consider the case when G # Zr
p and either F # Aut(Zr

p) or F # F∗
pr. In

both cases Fk = Zr
p \ {0} for all k ∈ Zr

p \ {0}. Then G(Zr
p, Fk) = G(Zr

p, Z
r
p \ {0}) is the

complete graph with pr vertices. It follows that G(Zr
p, Z

r
p \ {0}) contains closed paths of

any length n ≥ 2 whenever pr ,= 2, while G(Z2, {1}) contains closed paths of even length
only. Therefore, for G # Zr

p with pr ,= 2, a(F, c) = 1− /c/20 for all c, while for G # Z2

a(F, c) = 1− c/2 for even c and 2− c for odd c.
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Example 15 Consider the unlabelled ensemble over the cyclic group, i.e. G # Zm with
F = {1}. If (m, c) = 1, then m|ck if and only if m|k. Then, for all k ∈ Zm \ {0},
the Cayley graph G(Zm, Fk) = G(Zm, {k}) has no closed paths of length c. In this case
clearly a({1}, c) = 2− c.

Then, consider the case when (m, c) > 1 and let lpcf(c,m) be the smallest prime
common factor between c and m. Consider any k in Zm \ {0} such that G(Zm, {k}) has
a closed path of length c, i.e. such that m | ck. The length of the shortest such a path

is given by m
(m,k) = (m,ck)

(m,k) =
(

m
(m,k) , c

)

. Thus, m
(m,k) | c, while clearly m

(m,k) | m. But

(m,k) < m, so that necessarily the shortest cycle in G(Zm, {k}) m
(m,k) is not less than

lpcf(m, c), with equality if and only if k ∈ m
lpcf(m,c)Zm \ {0}. Thus, b({k}, c) = c

lpcf(m,c)

for k ∈ m
lpcf(m,c)Zm\{0}, and b({k}, c) < c

lpcf(m,c) for k ∈ Zm\ m
lpcf(m,c)Zm. It immediately

follows that, whenever (m, c) > 1, a({1}, c) = 1− c + c
lpcf(m,c) .

Example 16 Consider the uniformly-labelled ensemble over the cyclic group, i.e. G #
Zm with F # Z∗

m. First we claim that, for n ≥ 2:

• if n is even all closed paths in G(Zn, Z∗
n) have even length and there exists a 2-cycle;

• if n is odd, then there exist both a 2-cycle and a 3-cycle.

To see this, first, since 1,−1 ∈ Z∗
n, (0, 1) is a 2-cycle in G(Zn, Z∗

n), both for even and
odd n. Then, consider the case when n is even: clearly all k ∈ Z∗

n are odd, so that the
modulo-n sum of an odd number of elements of Z∗

n cannot be equal to 0 modulo n. Thus
every closed path in G(Zn, Z∗

n) must be of even length. On the other hand, if n is odd,
then 2 ∈ Z∗

n, so that (0, 2, 1) is a 3-cycle in G(Zn, Z∗
n).

Let us now consider some k ∈ Zm \ {0}. Then, by applying the previous observation
with n = m

(m,k) , one gets that, if c is odd and m
(m,k) is even, there are no closed paths of

length c in G(Zm, Z∗
mk) so that b(Z∗

mk, c) = 0, while otherwise, if c is even or m
(m,k) is

odd, b(Z∗
mk, c) = Bc/2C. It thus follows that a(Z∗

m, c) = 1− /c/20 unless c is odd and m
is an integer power of 2; in the latter case a(Z∗

m, c) = 2− c.

5.3.4 Lower bounds on low-weight type-enumertors

In this section we present some results, of independent interest, which show that the
estimations given by Theorem 59 are tight. All the proofs are deferred to the appendix.

First we deal with weight-one type-enumerators.

Proposition 60 Let (c, d) be a degree pair such that c ≥ 3, and let F be any subgroup
of Aut(G). Then, there exists a constant K > 0 such that for all k in G \ {0} such that
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a(F, c) = 1 − c + b(Fk, c) the type-enumerator function of the (c, d)-regular F -labelled
LDPC ensemble satisfies

P (WN (τk) ≥ 1) ≥ KNa(F,c) . N ∈ N(c,d) . (5.29)

Finally, we propose a lower bound on weight-two type-enumerators. For every k in
G, define

τ̂k :=
1

N
δk +

1

N
δ−k +

N − 2

N
δ0 ∈ P(G) .

Proposition 61 For every degree pair (c, d) there exists a constant K > 0 such that for
every k in G \ {0} the type-enumerator function of the (c, d)-regular F -labelled LDPC
ensemble satisfies

P (WN (τ̂k) ≥ 1) ≥ KN2−c , ∀N ∈ N(c,d) . (5.30)

5.4 Asymptotic lower bounds on the typical minimum dis-

tance

Throughout this section we will assume we have fixed a G-symmetric MC (X ,Y, P ) with
associated Bhattacharyya distance ∆ and weight δ, and we study the asymptotics of
the minimum ∆-distance of regular LDPC G-code ensembles.

Given a degree pair (c, d), a natural candidate for the typical normalized minimum
∆-distance of the (c, d)-regular F -labelled ensemble is the quantity

γ(F,c,d) := inf
{

〈δ,θ〉
∣

∣ θ ∈ P(G) \ {δ0}s.t. Γ(F,c,d)(θ) ≥ 0
}

. (5.31)

It turns out that γ(F,c,d) actually is a lower bound on the asymptotic normalized mini-
mum distance for the (c, d)-regular F -labelled ensemble. This does not follow directly
from Theorem 53 since lim

θ→δ0
Γ(F,c,d)(θ) = 0. However, using both Theorem 53 and 59

the following result.

Theorem 62 Let (c, d) be a degree pair such that a(F, c) < −1. Then, for the (c, d)-
regular F -labelled LDPC ensemble the following holds

P
(

lim inf
N∈N(c,d)

1
N dmin (ker ΦN ) ≥ γ(c,d)

)

= 1 .
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Proof By (2.10) we have that

1

N
dmin (ker ΦN ) = inf

{

〈δ,θ〉
∣

∣ θ ∈ P(G) \ {δ0}s.t. WN (θ) ≥ 1
}

= min
{

κ′
N ,κ′′

N

}

,

where for every N in N(c,d) we define

κ′
N := inf

{

〈δ,θ〉
∣

∣ 0 < ||θ − δ0|| < 2
d : WN (θ) ≥ 1

}

,
κ′′

N := inf
{

〈δ,θ〉
∣

∣ ||θ − δ0|| ≥ 2
d : WN (θ) ≥ 1

}

.

Clearly lim infN
1
N dmin (ker ΦN ) = min {ρ′, ρ′′}, where we put ρ′ := lim infN κ′

N and
ρ′′ := lim infN κ′′

N .
We start by establishing a lower bound on ρ′′. Define Ω :=

{

θ : ||θ − δ0|| ≥ 2
d

}

, and,
for each x in R, the set

Ωx :=
{

θ ∈ Ω ∩ PN(G)s.t. Γ(F,c,d)(θ) < x
}

. (5.32)

Consider now the quantity η(x) := inf
{

〈δ,θ〉
∣

∣ θ ∈ Ω \ Ωx
}

. Since Γ(F,c,d)(θ) is an upper
semicontinuous function of θ and Ω is a closed subset of P(G), standard analytical
arguments (see Lemma 64 in the appendix) allow us to conclude that η is a nondecreasing
and lower semicontinuous function.

Let us now fix some arbitrary ε > 0. By successively applying a union bound
estimation, Markov inequality, Theorem 53 and (5.32), we get

P

(

⋃

θ∈Ω−ε

{WN (θ) ≥ 1}
)

≤
∑

θ∈Ω−ε

P (WN (θ) ≥ 1) ≤
∑

θ∈Ω−ε

WN (θ) ≤
(N+|G|−1

|G|−1

)

exp(−Nε).

It follows that
∑

N P
(
⋃

θ∈Ω−ε
{WN (θ) ≥ 1}

)

< +∞, and thus Borel-Cantelli lemma
implies that with probability one the event

⋃

θ∈Ω−ε
{WN (θ) ≥ 1} occurs only for finitely

many N in N(c,d). Hence,

P
(

ρ′′ < η(−ε)
)

≤ P
({

⋃

θ∈Ω−ε
{WN (θ) > 0}

}

i. o. N ∈ N(c,d)

)

= 0 , ∀ ε > 0 .

Notice that γ(F,c,d) = η(0). Hence, monotonicity and lower semicontinuity of the function
η allow us to conclude that

P
(

ρ′′ < γ(F,c,d)

)

= P
(

ρ′′ < η(0)
)

≤ P
(

ρ′′ < lim
k

η
(

− 1
k

)

)

= lim
k

P
(

ρ′′ < η
(

− 1
k

))

= 0 .

(5.33)
Now let us consider the term ρ′. By sequentially applying a union bound estimation,

Markov inequality and Theorem 59, we get for every N in N(c,d)

P
(

⋃

0<||θ−δ0||< 2
d
{WN (θ) ≥ 1}

)

≤
∑

0<||θ−δ0||< 2
d

WN (θ) ≤ KNa(F,c) , (5.34)
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where K is a positive constant independent of N . Since a(F, c) < −1, we get

∑

N
P
(

⋃

0<||θ−δ0||< 2
d

{

WN (θ) ≥ 1
}

)

≤ K
∑

N
Na(F,c) < +∞ .

By Borel-Cantelli lemma we get that the event
⋃

0<||θ−δ0||< 2
d
{WN (θ) ≥ 1} occurs only

for finitely many N in N(c,d) with probability one. This yields P (ρ′ = +∞) = 1, which,
together with (5.33), implies the claim.

We have proved the previous theorem under the assumption a(F, c) < −1. In fact,
for c = 2 it is known, since Gallager’s work [30], that deterministically the minimum
distance cannot grow faster than logarithmically with the blocklength N . From (5.28)
it follows that if c ≥ 5 then a(F, c) < −1 for any F , if c = 3 then a(F, c) = −1 for any
F , while, when c = 4, a(F, c) < −1 for some choices of F . However, one can weaken the
assumption a(F, c) < −1 requiring only that a(F, c) < 0 (thus including the cases c = 3,
and c = 4 for some F ). In these cases, γ(F,c,d) still gives an asymptotic lower bound for

the normalized minimum distances 1
N dmin (ker ΦN ), in a weaker probabilistic sense. In

fact, a more detailed analysis enlightens a non-concentration phenomenon. In order to
describe it, first, for every degree pair (c, d) and every subgroup F of Aut(G), we define
the following quantity

ζ(F,c) :=

{

min{δ(k)| k ∈ G \ {0} : a(F, c) = 1− c + b(Fk, c)} if a(F, c) ,= 2− c

min{(2− b(Fk, c))δ(k)| k ∈ G \ {0}} if a(F, c) = 2− c .
(5.35)

We have the following result:

Theorem 63 Let (c, d) be a degree pair such that a(F, c) = −1. Then,

lim
N∈N(c,d)

P
(

1

N
dmin (ker ΦN ) ≥ γ(F,c,d)

)

= 1 .

Moreover, if the random variables ΠN defining the (c, d)-regular unlabelled LDPC en-
semble are mutually independent, we have

P
(

lim inf
N∈N(c,d)

dmin (ker ΦN ) = ζ(F,c)

)

= 1 .

Theorem 63 is proven in the appendix. The probabilistic interpretation is as follows. In
the case a(F, c) = −1, with probability one, the sequence of the unnormalized minimum
distances (dmin (ker ΦN )) contains a subsequence converging to ζ(F,c). Thus, while with
increasing probability the minimum∆-distance is growing linearly with the blocklength
N , almost surely a subsequence with constant minimum distance shows up. We ob-
serve that, for irregular binary LDPC ensembles, even more evident non-concentration
phenomena are known to arise: see [16, 51].
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5.5 Numerical results

In this section we present some numerical results for the minimum distances of the LDPC
ensembles which have been studied in this paper. We focus on a particular channel, the
Z8-symmetric 8-PSK AWGN channel, and we compare the average distance-spectra of
the regular unlabelled and uniformly labelled LDPC Z8-code ensembles. Our results
indicate a strong superiority of the uniformly labelled (i.e. the one with label group
F # Z∗

8) ensemble with respect to the unlabelled one (i.e. F = {1}). Then, we compare
these results with some contradicting analysis of the average error probability of these
ensembles, and discuss how this seeming paradox can be explained by invoking so-called
expurgation arguments.

5.5.1 Numerical results for the average distance-spectra

Let us start with some general considerations. Suppose we are given any ensemble of G-
codes with average type-spectrum Γ(θ). Let γ := inf {〈θ, δ〉|θ ∈ P(G) \ {δ0}s.t. Γ(θ) ≥ 0}
be its designated typical normalized minimum distance which we are interested in com-
puting. Notice that Γ is a map defined over the (|G|−1)-dimensional simplex P (G) and
therefore in general of difficult visualization whenever |G| > 2. It is then convenient and
natural to introduce the average distance-spectra as a one dimensional projection of Γ:

Υ : [0,max{δ(x)|x ∈ G}] → [−∞,+∞) , Υ(t) := sup
{

Γ(θ)
∣

∣ θ ∈ P(G) : 〈δ,θ〉 = t
}

.
(5.36)

It is immediate to verify that γ = inf {t ∈ [0,max{δ(x)|x ∈ G}] : Υ(t) ≥ 0}. Notice
also that, for |G| = 2 and |G| = 3, all Bhattacharyya distances are proportional to
the Hamming distance, so that the average distance spectrum Υ is independent (up to
a rescaling factor) of the chosen G-symmetric channel. For |G| ≥ 4 instead, Υ really
depends on the choice of the Bhattacharyya distance ∆.

In Fig.1 the average distance-spectra of two regular LDPC Z8-code ensembles are
reported. We considered the Bhattacharyya distance ∆ of the 8-PSK AWGN channel,
normalized it in such a way that max{δ(x)|x ∈ Z8} = ∆(0, 4) = 1. In each picture a
degree pair (c, d) is fixed. The dash-dotted curve is the graph of the distance-spectrum
Υ({1},c,d)(t) of the (c, d)-regular unlabelled LDPC ensemble, while the solid curve is the
graph of the distance-spectrum Υ(Z∗

8,c,d)(t) of the (c, d)-regular uniformly labelled LDPC
ensemble.

As a reference two dotted curves are also plotted in each picture. The one taking the
value 0 for t = 0 is the distance spectrum of the binary (c, d)-regular LDPC ensemble
Υ2

(c,d)(t). It is straightforward to check that it is a lower bound for the distance spectrum

of any Z8-LDPC ensemble: it suffices to restrict the optimization in (5.36) to Z8-types
θ supported on the binary subgroup 4Z8.
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Figure 5.1: Distance spectra of (c, d)-regular LDPC ensembles over Z8 for 8-PSK: the
solid curve corresponds to the uniformly-labelled ensemble, the dash-dotted one to the
unlabelled ensemble, the two dotted curves correspond respectively to the Z8-linear
ensemble and to the binary LDPC ensemble.
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The second dotted curve instead, taking value 1
2 log 1

2 for t = 0, corresponds to the
distance-spectra of the Z8-code ensemble (with no sparsity constraints) of the same rate
R = 1

2 log 8. This ensemble is defined as a sequence of kernels of random homomorphisms

(ker ΦN ), each ΦN being uniformly distributed over Hom(ZN
8 , ZN/2

8 ), the group of all

homomorphisms from ZN
8 to ZN/2

8 , with no sparsity constraint. In Chapter 4 their
average type-spectra have been characterized; for the Z8-code ensemble of rate 1

2 log 8
this is given by

ΓZ8(θ) := H(θ)− 1

2
log l8(θ) , l8(θ) :=

8

gcd (supp (θ))
.

Notice that ΓZ8(θ) is an upper semicontinuous function over the simplex P(Z8), and its
discontinuities correspond to types supported on the subgroups 2Z8 and 4Z8. In fact a
salient point is easily recognizable in the graphs reported around the abscissa t = 0.05,
corresponding to the intersection between the average spectrum of the binary subchannel
and that of the Z8-subchannel. This salient point occurs before the curve crosses the
t-axis, which is coherent with the fact, proved in Chapter 4, that the typical normalized
minimum distance of the Z8-code ensemble equals the corresponding Gilbert-Varshamov
bound. In other words, while for low values of t the distance spectrum of the Z8-code
ensemble is dominated by the term corresponding to the smallest non-trivial subgroup
(a phenomenon generally observable for Abelian group code ensembles), the value of the
typical minimum distance is determined by types which are not supported in any proper
subgroup of Z8 (this is instead related to the particular constellation chosen, although
conjectured to be true for many constellation of interest).

Analogous considerations can be made about the LDPC distance-spectra based on
the simulations reported. In particular, for distances close to 0, the average distance-
spectra of both the unlabelled and the uniformly labelled Z8-LDPC ensembles are dom-
inated by the binary subgroup supported types. However, these components do affect
the value of the typical normalized minimum distances (γ({1},c,d) and γ(Z∗

8 ,c,d) respec-
tively) only for low values of the degrees (c = 3, 4). For all the other values of the
parameters, the typical minimum distance is instead determined by types which are not
supported in any proper subgroup of Z8. Another observation which can be made is
that, not surprisingly, as the values of the degrees (c, d) are increased while keeping their
ratio constant, the distance-spectra of both the unlabelled and the uniformly labelled
ensembles approach the one of the Z8-linear ensemble.

However, the most important conclusion which can be drawn from the graphics
reported concerns the different behaviors of the unlabelled and the uniformly labelled
ensembles. Indeed, it appears evident that the latter drastically outperforms the former
at the distance level. In particular, already for relatively low values of the degrees (c = 8,
d = 16) the uniformly labelled ensemble typical minimum distance γ(Z∗

8 ,c,d) is very close

124



(practically equal) to the Gilbert-Varshamov bound. For the same values of the degrees
instead, the unlabelled ensemble suffers from a remarkable gap; this gap seems to be
slowly filled up as the values of the degrees are increased, but it still remains significant
for relatively high values of c and d. This indicates that structural properties of these
two ensembles are remarkably different. Some prudence is nevertheless justified by the
fact that ours are only lower bounds on the typical asymptotic normalized minimum
distance, while, as already mentioned in the introduction, a concentration result for the
type-spectra is needed in order to prove their tightness. However, while this phenomenon
appears here only at the distance level, computer simulations of the performance of
these codes reveal that a drastic superiority of the labelled ensemble with respect to the
unlabelled one is evident also under belief-propagation decoding. We observe that this
is coherent with Monte-Carlo simulations reported in [6], where the labelled ensemble
was shown to be closer to capacity than the unlabelled ensemble.

5.5.2 The average word error probability of the LDPC codes ensembles

In our analysis of the minimum distance properties of LDPC G-code ensembles, the
quantities ζ(F,c) show up as an almost sure lim inf for the unnormalized minimum dis-
tance only when a(F, c) = −1. However, these quantities characterize the asymptotic
maximum-likelihood average performance of these ensembles for all values of a(F, c).

For instance, let us consider in some detail the case G # Zpr for some prime p
and some positive integer r. Let us fix an admissible degree pair (c, d) and denote

by pe(CN )
(F,c,d)

the average maximum-likelihood error probability of the (c, d)-regular
F -labelled ensemble of LDPC Zpr -codes over an arbitrary Zpr -symmetric memoryless
channel. Then, it is possible to show that there exist a threshold (1 − c

d) log pr <
C(F,c,d) < log pr) such that, for every Zpr -symmetric channel whose Zpr -capacity exceeds

to C(F,c,d), the average error probability pe(CN )
(F,c,d)

goes to zero in the limits of large
N . Moreover, if one considers an increasing sequence of degree pairs (cn, dn) with a given
designed rate (1− cn

dn
) log pr converging to R, then the corresponding LDPC thresholds

C(cn,dn,F ) converge to R.
More precisely, it is possible to show that over any Zpr -symmetric channel whose

Zpr -capacity exceeds C(F,c,d) we have

K1N
a(F,c) ≤ pe(CN )

(F,c,d) ≤ K2N
a(F,c) , (5.37)

for some positive constants K1,K2, both independent of N . Moreover, it can be proven
that

lim sup
N∈N(c,d)

pe(CN )
(F,c,d)

Na(F,c)
≤ K3 exp(ζ(F,c)) , (5.38)
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for some positive constants K3, independent of the channel (and thus from ∆). The
results (5.37) are known in the binary case (see [50]). Proofs of (5.37), (5.38) in their
full generality can be gathered coupling the estimations of Section 5.3 with the standard
bounding techniques used in [48, 62, 50, 6], and will be given elsewhere.

Observe that if F ≤ F ′ ≤ Aut(G)

a(F, c) ≤ a(F ′, c) , ζ(F,c) ≥ ζ(F ′,c) . (5.39)

Thus, from the point of view of the average performance, the smaller the label group is,
the better parameters are. This stands in contrast with the numerical results presented
in the previous paragraph, indicating that at the distance level the uniformly labelled
ensembles perform much better than their unlabelled counterparts. An explanation for
this seeming paradox can be obtained using so-called expurgation techniques. Indeed,
it can be proved that, while the average error probability of the LDPC ensembles is
affected by a vanishingly small fraction of codes with low minimum distance and decays
to zero only as a negative power of N , almost surely a sequence of codes sampled from
the same ensemble has error probability decreasing to zero exponentially fast with N .
It is this typical exponential behavior that has to be considered representative of the
ensemble, rather than the one of the average error probability. It is also worth to mention
that the typical error exponent can be estimated in terms of the average type-spectra,
using techniques presented in [62]. This phenomenon is well-known in the LDPC codes
literature [30, 50]; proofs for LDPC codes over Galois fields can be found in [19, 6].

5.6 Conclusions

The following issues are left for future research:

• proving concentration results for the spectra of the LDPC ensembles for instance
using a second order method (see [54]);

• giving an analytical explanation of the different behavior of the labelled and un-
labelled ensembles;

• generalizing the analysis to irregular ensembles following the approach of [16, 51];

• considering generalizations of the so-called stopping sets and pseudoweight distri-
butions which in the binary case characterize the iterative decoding performance
of LDPC codes (see [51, 72, 40]); while the distribution of stopping sets has been
studied for binary LDPC ensembles, the distribution of pseudocodewords is un-
known even in the binary case.
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Chapter 6

Conclusions

In this thesis we have developed a theoretical analysis of the performance of Abelian
group codes over symmetric channels.

We have characterized the capacity achievable by Abelian group codes over symmet-
ric channels. We have shown that in many important cases, like the AWGN channel with
m-PSK modulation as input, this capacity coincides with the Shannon capacity. This
generalizes a well-known result of classical information theory, namely that binary-linear
codes allow to achieve capacity of binary-input output-symmetric channels.

For the AWGN channel with 8-PSK as input we have shown that the typical cyclic
group code asymptotically meets the Gilbert-Varshamov bound, while a random binary-
affine code is bounded away from it with probability one. The results obtained can be
extended to Abelian group codes over symmetric channels, and similar results can be
inferred for the typical error exponent.

We have analyzed two ensembles of regular LDPC codes over the cyclic group Zm,
establishing precise combinatorial results for the exponential growth rate of their type-
enumerating functions with respect to the code-length. We have shown that in both
cases minimum distances grow linearly with probability one, and we have obtained
lower bounds for their typical normalized minimum distance.

Some of the main problems left for future research are:

• extending the theory to non-Abelian group codes;

• proving concentration results for the spectra of the LDPC ensembles using a second
order method;

• analyzing LDPC codes over Abelian groups under iterative decoding, generalizing
some of the tools used for binary LDPC codes: density evolution, stopping sets
and pseudo-weight distribution.
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Chapter 7

Appendix

7.1 A few properties of the discrete entropy function

Consider the set P(A) of probability measures over A, which can be identified with
the set of nonnegative real valued functions µ on A satisfying the linear constraint
∑

a∈A µ(a) = 1. If θ is in P(A) and B ⊆ A is such that θ(B) :=
∑

b∈B θ(b) > 0, the
conditioned measure of θ on B is defined as

θ|B ∈ P(B) θ|B(b) := θ(B)−1θ(b) , ∀ b ∈ B . (7.1)

Recall the definition of the entropy H(θ) := −
∑

a∈supp(θ) θ(a) log θ(a). A straightfor-
ward property of the entropy function is its strict concavity.

To any function π : A → B between two nonempty finite sets A and B we can
associate a map π# : P(A) → P(B) sending the probability measure θ in P(A) to its
image measure through π defined by

π#θ ∈ P(B) [π#θ] (b) := θ
(

f−1(b)
)

=
∑

a:f(a)=b

θ(a) , ∀ b ∈ B . (7.2)

The entropy of a measure θ and that of its image measure π#θ are related by the
following equality

H (θ) = H (π#θ) +
∑

b∈supp(π#θ)

[π#θ] (b)H
(

θ|f−1(b)

)

. (7.3)

It follows from (7.3) that H (θ) = H (π#θ) if and only if the restriction of π to supp(θ)
is injective. In particular, this is the case for any θ in P(A) when π : A → B is a
bijection. From this and the concavity of the entropy function, a standard argument
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shows that the maximum of H over P(A) is achieved by the uniform measure over A,
uA(a) = |A|−1.

When A = B1 × B2 for some finite sets B1 and B2, we introduce the marginal
projection operators

πj : A→ Bj , πj(b1, b2) = bj , ∀ bj ∈ Bj , j = 1, 2 . (7.4)

It follows from (7.3) and the concavity of the entropy function that

H(θ) = H
(

π1
#θ
)

+
∑

b1∈supp(π1
#θ)

[

π1
#θ
]

(b1)H
(

θ|(π1)−1(b1)

)

≥ H
(

π1
#θ
)

+ H
(

∑

b1∈supp(π1
#θ)

[

π1
#θ
]

(b1)θ|(π1)−1(b1)

)

= H
(

π1
#θ
)

+ H
(

π2
#θ
)

,

with equality if and only if θ = π1
#θ ⊗ π2

#θ, i.e. θ equals the tensor product of its
marginals. A simple inductive argument can then be used to generalize this property as
follows. For every positive integer n, if A = B1 × . . . Bn and θ is in P(A), then

H (θ) ≥
n
∑

i=1

H(πi
#θ) , (7.5)

where πi : A→ Bi denotes the marginal projection on the i-th component.

7.2 Continuity lemmas

Let Ω be a compact metric space. It is a standard fact that any lower semicontinuous
function achieves its minimum on every closed nonempty subset C ⊆ Ω,

f : Ω → R , f l.s.c. ; =⇒ ∃ x ∈ Cs.t. f(x) = inf {f(x) |x ∈ C} . (7.6)

Consider two functions g : Ω → R and h : Ω → R, and define

f : R → R , f(y) := inf
{

g(x)
∣

∣

∣
x ∈ Ωs.t. h(x) ≤ y

}

. (7.7)

It is immediate to verify that f is nonincreasing. We are interested in the continuity
properties of f .

Lemma 64 If g and h are both lower semicontinuous, then f defined in (7.7) is lower
semicontinuous.
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Proof Suppose we are given a sequence (yn)n∈N
⊂ R converging to some y ∈ R. We

want to show that
lim inf

n∈N
f(yn) ≥ f(y) . (7.8)

Observe that with no loss of generality we can restrict to the case when yn ≥ min {h(x) |x ∈ Ω}
since otherwise the set {x ∈ Ωs.t. h(x) ≤ yn} is empty and f(yn) = +∞. From the lower
semicontinuity of h it follows that the sets {x ∈ Ωs.t. h(x) ≤ yn} are closed in Ω. Since
they are nonempty by the previous observation, and the function g is lower semicontin-
uous, from (7.6) we have that

∀n ∈ N , ∃xn ∈ Ω s.t. f(yn) = g(xn) , h(xn) ≤ yn .

Since the space Ω is compact, from the sequence (xn)n∈N we can extract a subsequence
(xnk)k∈N

converging to some x in Ω. From the lower semicontinuity of h we get

h(x) ≤ lim inf
k∈N

h (xnk) ≤ lim inf
k∈N

ynk = y .

It immediately follows that
g(x) ≥ f(y) .

Finally, from the lower semicontinuity of g we get

lim inf
n∈N

f(yn) = lim inf
k∈N

g (xnk) ≥ g(x) ,

which, together with the previous inequality, implies (7.8).

Lemma 65 If g : Ω → R is continuous and h : Ω → R is lower semicontinuous and
such that every local minimum of h is also a global minimum, then f defined in (7.7) is
continuous on [h∗,+∞) where h∗ := min {h(x) |x ∈ Ω}.

Proof Since f is nonincreasing and l.s.c. by Lemma 64, it remains to show that

lim
n∈N

f(yn) ≤ f(y) (7.9)

for every increasing sequence (yn) ⊂ [h∗,+∞) converging to some y > g∗. Notice that
the existence of the limit in the righthand side of (7.9) is guaranteed by the monotonicity
of f . From the semicontinuity of g and h, and (7.6), there exists some x in Ω such that
f(y) = g(x) and h(x) ≤ y. If h(x) < y, then h(x) ≤ yn for sufficiently large n, so
that f(yn) ≤ g(x) = f(y) definitively in n and (7.9) follows. Thus we can assume that
h(x) = y. Since y > y∗ the point x is not a global minimum for h. Hence it is not even a
local minimum for h. It follows that every neighborhood of x in Ω contains some x such
that h(x) < h(x). It is then possible to construct a sequence (xn) in Ω converging to
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x and such that h(xn) < y for every n. From (xn) we can extract a subsequence (xnk)
such that h(xnk) ≤ yk for every k. Therefore we have f(yk) ≤ g(xnk) and so

lim
n∈N

f(yn) ≤ lim sup
k∈N

g(xnk) ≤ g(x) = f(y) .

We use Lemma 65 with Ω = P(A) for some nonempty finite set A and h given by
minus the entropy function H. Since −H is strictly convex, its only local maximum is
the uniform measure over A, uA, which is also a global maximum.

7.2.1 Proofs for Section 5.3.4

Recall that the interconnection group For the F -labelled ensemble is SNc " FNc. We
will write the r.v. ΠN = (Π′

N , Λ) where Π′
N is uniformly distributed over SNc and Λ is

uniformly distributed over FNc. For all s = 1, . . . ,N , and k ∈ G, let ek
s in GN be the

vector whose components are all zero but for the s-th which is equal to k.

Proof of Proposition 60

Let k in G \ {0} be such that a(F, c) = 1 − c + b(Fk, c), and define the event EN
s :=

{ek
s ∈ ker ΦN}. We have WN (τk) =

∑N
s=1 kerΦN (ek

s ) =
∑N

s=1 EN
s

.

For 1 ≤ t ≤ L, define the r.v. Nt := |Π′
N (Ic

s) ∩ Id
t |. Define the event

ẼN
s :=

⋂

1≤t≤L

{Nt = 0} ∪ {Nt > 0 and ∃ closed path of length Nt in G(G,Fk)} .

It is not hard to check that ẼN
s ⊇ EN

s . Moreover, P(EN
s |ẼN

s ) ≥ |F |−c, since, given ẼN
s ,

there exists at least one realization of the c entries Λ(s−1)c+1, . . . , Λsc in F such that

ΦNek
s = 0.

Observe that ΠN (Ic
s) is uniformly distributed over the class of all subsets of {1, . . . ,Nc}

of cardinality c, and that there exist at least
( L
b(Fk,c)

)

possible realizations of ΠN (Ic
s) such

that, for all 1 ≤ t ≤ L, Nt is either 0 or equals the length of a closed path in G(G,Fk).
It follows that

P(EN
s ) ≥ 1

|F |c
P
(

ẼN
s

)

≥ 1

|F |c

(

Nc

c

)−1( L

b(Fk, c)

)

≥ K ′N b(Fk,c)−c , (7.10)

for some K ′ > 0 independent of N .
We now estimate the probability of the intersections EN

s ∩ EN
r for 1 ≤ r ,= s ≤ N .

We have that, given that EN
r occurred, Π′

N (Ic
s) is uniformly distributed over the class
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of subsets of of cardinality c of {1, . . . ,Nc} \ Π′
N (Ic

r). It follows that

P(EN
s |EN

r ) ≤ P(ẼN
s |EN

r ) ≤
(

(N − 1)c

c

)−1( L

b(Fk, c)

)(

b(Fk, c)d

c

)

≤ K ′′N b(Fk,c)−c ,

(7.11)
for some K ′′ > 0 independent of N . By applying a union-intersection bound, and using
(7.10) and (7.11), we get

P (WN (τk) ≥ 1) ≥
∑

s
P
(

EN
s

)

−
∑

r *=s
P
(

EN
s ∩ EN

r

)

≥ K ′Na(F,c)−K ′′N2a(F,c) ≥ KNa(Fk,c)

last equality holding true for some constant K > 0 and N large enough, since a(F, c) < 0.
!

Proof of Proposition 61

For 1 ≤ s ,= r ≤ N and 1 ≤ t ≤ L, define the event

EN
r,s :=

⋂L
t=1

{∣

∣ΠN (Ic
r) ∩ Id

t

∣

∣ =
∣

∣ΠN (Ic
s) ∩ Id

t

∣

∣

}

.

In the unlabelled (c,d)-regular ensemble EN
r,s is sufficient for the N -tuple ek

r −ek
s , (whose

G-type is τ̂k) to be in ker ΦN . Indeed in this case each check ends up summing an equal
amount of entries equal to k and −k. For the F -labelled ensemble it easy to see that
P
(

ek
r − ek

s ∈ ker ΦN

∣

∣EN
r,s

)

≥ |F |−2c, since, given that EN
r,s occurred, for ΦN (ek

r − ek
s) to

be 0 it is sufficient that the 2c corresponding labels equal the identity automorphism.
Thus,

P (WN (τ̂k) ≥ 1) ≥ P
(
∑

s>r kerΦN (ek
r − eK

s ) ≥ 1
)

≥ |F |−2cP
(

⋃N
s>r EN

r,s

)

.

Now we introduce the events FN
r :=

⋃L
t=1

{
∣

∣ΠN (Ic
r) ∩ Id

t

∣

∣ > d
2

}

. We have

P
(

FN
r

)

≤ L
c
∑

a=+d/2,+1

(

c

a

)(

d

a

)(

dL

a

)−1

≤ AN−+d/2, ,

for some positive A independent of N and r. Clearly we have that FN
r implies EN

r,s, so

that P
(

EN
r,s

∣

∣FN
r

)

= 0. Instead, we have P
(

EN
r,s

∣

∣FN
r

)

≥
((N−1)c

c

)−1
≥ (cN)−c. Thus,

there exists some positive N0 and K ′ such that, for every N ≥ N0,

P
(

EN
r,s

)

≥ P
(

EN
r,s

∣

∣FN
r

)

P
(

FN
r

)

≥ (cN)−c
(

1−AN−+d/2,
)

≥ K ′N−c .

For every unordered triple {q, r, s} ⊆ {1, . . . ,N} we consider the event

EN
q,r,s :=

⋂L
t=1

{ ∣

∣ΠN (Ic
q ) ∩ Id

t

∣

∣ =
∣

∣ΠN (Ic
r) ∩ Id

t

∣

∣ =
∣

∣ΠN (Ic
s) ∩ Id

t

∣

∣

}

.
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We have that

P
(

EN
q,r,s

)

≤ (d− 1)cc!
((N−1)c

c

)−1
(d− 2)cc!

((N−2)c
c

)−1
≤ K ′′N−2c ,

for some positive K ′′ independent of N . For every unordered 4-tuple {p, q, r, s} define

EN
p,q,r,s :=

⋂L
t=1

{ ∣

∣ΠN (Ic
p) ∩ Id

t

∣

∣ =
∣

∣ΠN (Ic
q) ∩ Id

t

∣

∣ =
∣

∣ΠN (Ic
r ) ∩ Id

t

∣

∣ =
∣

∣ΠN (Ic
s) ∩ Id

t

∣

∣

}

.

We have that

P
(

EN
p,q,r,s

)

≤ (d− 1)cc!
((N−1)c

c

)−1
(d− 2)cc!

((N−2)c
c

)−1
(d− 3)cc!

((N−3)c
c

)−1
≤ K ′′′N−3c ,

for some positive K ′′ independent of N . It follows that

P (WN (τ̂k) ≥ 1) ≥ |F |−2cP
(
⋃

s>r EN
r,s

)

≥
∑

r<s
P
(

EN
r,s

)

−
∑

q<r<s
P
(

EN
q,r,s

)

−
∑

p<q<r<s
P
(

EN
p,q,r,s

)

≥
(N

2

)

K ′N−c −
(N

3

)

K ′′N−2c −
(N

4

)

K ′′′N−3c

≥ KN2−c ,

for some positive K independent of N and N ∈ N(c,d) large enough. !

7.2.2 Proof of Theorem 63

In order to show the first part of the claim one follows the steps of the proof of Theorem
62 until obtaining (5.33) and (5.34). Then (5.33) implies that limN P

(

κ′′
N < γ(c,d)

)

= 0,

while from (5.34), since a(F, c) ≤ −1, one gets limN P
(

κ′
N < γ(F,c,d)

)

≤ KNa(F,c) = 0.
For the second part of the claim, we first show that

P
(

lim inf
N

dmin (ker ΦN ) ≤ ζ(F,c)

)

= 1 . (7.12)

Indeed, let us first consider the case a(F, c) = −1 > 2−c. From Proposition 60 it follows
that, for every k ∈ G \ {0} such that b(Fk, c) = a(F, c) − 1 + c = c− 2,

∑

N∈N(c,d)

P(WN (τk) ≥ 1) ≥
∑

N∈N(c,d)

KNa(F,c) = K
∑

N∈N(c,d)

N−1 = +∞ .

We now recall that by assumption (ΠN ) is a sequence of independent random variables,
so that the events {WN (τ̂k) ≥ 1}, for N in N(c,d), are independent. We can thus apply
the converse part of Borel-Cantelli lemma [10] to conclude that with probability one
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the event {WN (τ̂k) ≥ 1} occurs for infinitely many N ∈ N(c,d). It follows that, for all
K ∈ G \ {0} such that b(Fk, c) = c− 2

P
(

lim infN dmin(ker ΦN ) ≤ δ(k)
)

≥ P
(

{WN (τ̂k) ≥ 1} i. o. N ∈ N(c,d)

)

= 1 , (7.13)

so that (7.12) follows. The case when c = 3 can be treated similarly using Proposition
60 and 61 and the converse part of Borel-Cantelli lemma.

It remains to prove that lim infN dmin (ker ΦN ) ≥ ζ(F,c) with probability one. First
consider the case c = 3. For every k such that b(Fk, c) = 0 we have WN (τk) = 0
for every realization of ΠN in the interconnection group SNc " FNc. It follows that
deterministically

dmin(ker ΦN ) ≥ min
{

(2− {1}(b(Fk, c)))δ(k)
∣

∣k ∈ G \ {0}
}

= ζ(F,c) .

When c ≥ 4, for every k in G \ {0} such that b(Fk, c) < 2 − c, Lemma 58 and Borel-
Cantelli lemma imply that with probability one {WN (τk) = 0} occurs only finitely often.
Then, using an argument similar to that in the proof of Proposition 57 it is possible to
show that

∑

1
N <||θ−δ0||< 2

d
WN (θ) ≤ KN−2, and then

∑

1
N <||θ−δ0||< 2

d
WN (θ) = 0 for all

but a finitely many N . This implies (7.12). !
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