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Abstract— We consider network flow over graphs between a
single origin-destination pair, where the network state consists
of flows and activation status of the links. The evolution of the
activation status of a link is given by an irreversible transition
that depends on the saturation status of that link and the
activation status of the downstream links. The flow dynamics
is determined by activation status of the links and node-wise
routing policies under the flow balance constraints at the nodes.
We formulate a deterministic discrete time dynamics for the
network state, where the time epochs correspond to a change
in the activation status of the links, and study network resilience
towards disturbances that reduce link-wise flow capacities,
under distributed routing policies. The margin of resilience
is defined as the minimum, among all possible disturbances,
of the link-wise sum of reductions in flow capacities, under
which the links outgoing from the origin node become inactive
in finite time. We propose a backward propagation algorithm
to compute an upper bound on the margin of resilience for
tree-like network topologies with breadth at most 2, and show
that this bound is tight for trees with the additional property
of having depth at most 2.

I. INTRODUCTION

Resilience is becoming a key consideration in the de-
sign and operation of critical infrastructure systems such
as transportation, power, water and data networks. Due to
their increasing scale and interconnectedness, these systems
pose several new challenges. For example, small local dis-
ruptions can cascade through the network to cause massive
failures, or local actions to mitigate disruptions can increase
vulnerability of the other parts of the network. In this
paper, we present an alternative framework to the traditional
probabilistic frameworks for studying cascading phenomena
in complex networks, and characterize network resilience
under such a framework.

Formally, we consider network flow over graphs between
a single origin-destination pair, where the network state
consists of flows and activation status of the links. The
evolution of the activation status of a link is given by an
irreversible transition that depends on the saturation status
of that link and the activation status of the downstream
links. The flow dynamics is determined by activation status
of the links and node-wise routing policies under flow bal-
ance constraints at the nodes. We formulate a deterministic
discrete time dynamics for the network state, where the time
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epochs correspond to a change in the activation status of the
links, and study network resilience towards disturbances that
reduce link-wise flow capacities, under distributed routing
policies. The margin of resilience is defined as the minimum,
among all possible disturbances, of the link-wise sum of
reductions in flow capacities, under which the links outgoing
from the origin become inactive in finite time. The objective
of this paper is to provide a tight characterization of margin
of resilience under such a setting in terms of network
parameters. The setting of this paper is to be contrasted with
the dynamical flow network in our previous work [1], [2]
where the state of a link is described by density, and whose
dynamics is driven by the difference between the inflow and
outflow on that link in such a way that the flow always
remains within its capacity.

Models for cascades in general complex networks are
given in [3], [4], [5], while domain-specific models are pro-
vided in [6] (power networks), [7] (financial networks),and
[8] (supply networks). There has also been work on under-
standing the role of human decisions on such cascading phe-
nomena, especially in the context of financial networks, e.g.,
see [9]. However, most of these models rely on a stochastic
model for initiation of failure and its propagation. In con-
trast, in this paper we propose a deterministic dynamical
framework for cascading failures that are particularly relevant
for transportation networks. Other relevant references include
[10] which considers optimal control of cascading failures in
power grid; [11] which considers cascading node failures in
the context of wireless networks; [12] for loading-dependent
probabilistic models for cascading failures in power net-
works. The adversarial disturbance setting for network flows
of this paper is also reminiscent of network interdiction
problems, e.g., see [13], with the difference being that in our
setting, we allow for control action in the form of routing
in response to disturbance, and that this control action is
distributed.

The contributions of the paper are as follows. First,
we propose a novel model for cascade dynamics in flow
networks under distributed routing policies, and formalize
the notion of margin of resilience of networks within such a
framework. Second, we propose an algorithm to compute an
upper bound on the margin of resilience for trees of breadth
at most 2, and illustrate by simple example, that the bounds
obtained by this algorithm are sharper than those obtained in
our previous work [14]. Our results are derived for networks
with tree-like topologies, i.e., where every intermediate node
lines on exactly one path from the origin to the destination.
While many real networks do not have a tree-like topology,
this assumption allows for an analytically tractable solution
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which shows fundamental insight into the problem. Finally,
we show that the upper bound computed by our algorithm is
tight at least for trees with the additional property of having
depth at most 2.

Before proceeding, we define some preliminary notation
to be used throughout the paper. Let R be the set of real
numbers, R+ := {x ∈ R : x ≥ 0} be the set of nonnegative
real numbers. When A and B are finite sets, |A| will denote
the cardinality of A, RA (respectively, RA+) will stay for the
space of real-valued (nonnegative-real-valued) vectors whose
components are indexed by elements of A. 1 and 0 stand
for the all-one and all-zero vectors respectively, whose size
will be clear from the context. A directed multigraph is the
pair (V, E) of a finite set V of nodes, and of a multiset E of
links consisting of ordered pairs of nodes (i.e., we allow for
parallel links between a pair of nodes). If e = (v, w) ∈ E is
a link, where v, w ∈ V , we shall write σe = v and τe = w
for its tail and head node, respectively. The sets of outgoing
and incoming links of a node v ∈ V will be denoted by
E+v := {e ∈ E : σe = v} and E−v := {e ∈ E : τe = v},
respectively. Moreover, we shall use the shorthand notation
Rv := RE

+
v

+ for the set of nonnegative-real-valued vectors
whose entries are indexed by elements of E+v ; for a given
µ ≥ 0, Sv(µ) := {x ∈ Rv :

∑
e∈E+v xe = µ}; and R := RE+

for the set of nonnegative-real-valued vectors whose entries
are indexed by the links in E . For x ∈ R, we shall use the
notation [x]+ to mean max{0, x}.

II. CASCADE DYNAMICS IN FLOW NETWORKS

The central object of study in this paper is a flow network
which is formally defined as follows.

Definition 1 (Flow network): A flow network N =
(T , C) is the pair of a topology, described by a finite directed
multigraph T = (V, E), where V = {0, 1, . . . , n} is the node
set and E is the link multiset, and a vector C ∈ RE+ describing
the maximum flow capacities on the links.

We shall use the notation Fv := Πe∈E+v [0, Ce) for the set
of admissible flow vectors on outgoing links from node v,
and F := Πe∈E [0, Ce) for the set of admissible flow vectors
for the network. Throughout this paper, we shall restrict
ourselves to network topologies satisfying the following:

Assumption 1: The topology T has a unique origin (i.e., a
node v ∈ V such that E−v is empty), and a unique destination
(i.e., a node v ∈ V such that E+v is empty). Throughout, the
origin node will be assigned the label 0, and the destination
node the label n. Moreover, there exists a path in T to the
destination node n from every other node 0 ≤ v < n.

Let us define the set of admissible flows
with inflow λ at the origin as F(λ) :=f∗ ∈ F :

∑
e∈E+0

f∗e = λ ,
∑
e∈E+v

f∗e =
∑
e∈E−v

f∗e , 0 < v < n

 .

Then, it follows from the max-flow min-cut theorem (see,
e.g., [15]), that F∗(λ) 6= ∅ whenever λ is less than the
min-cut capacity of N . That is, the min-cut capacity equals
the maximum flow that can pass from the origin to the

destination node while satisfying capacity constraints on the
links, and conservation of flow at the intermediate nodes.

We shall often restrict ourselves to a specific subclass of
topologies as characterized by the following assumption.

Assumption 2: For every v ∈ {1, . . . , n− 1}, there exists
one and only one directed path from the origin node 0 to
node v in T .
We shall often refer to topologies T that satisfy Assump-
tion 2 to be tree topologies. The depth of a tree-like
topology is defined as the length of the longest path from
the origin to the destination node. The breadth of a tree
is defined to be equal to the cardinality of ‖E+0 |. We now
describe a dynamical framework for studying evolution of
flow on N . For every link e ∈ E , we describe its state by
(ξe, fe) ∈ {0, 1} × Fe. The binary variable ξe is used to
denote the status of link e, i.e., link e is active if ξe = 1 and
inactive otherwise. The variable fe denotes the flow on link
e. We use the shorthand notations f = {fe : e ∈ E} and
fv = {fe : e ∈ E+v }. ξ and ξv are defined in a similar
fashion. We assume that ξ(0) = 1, and f(0) = f∗ for
some f∗ ∈ F∗. The network suffers a disturbance δ ∈ RE+
at time t = 0. The effect of the disturbance is to reduce
the link-wise maximum flow capacities. Formally, under the
application of disturbance δ, the maximum flow capacity on
link e decreases to Ce− δe. The set of feasible disturbances
is equal to the set of feasible flows F . The response of the
network to disturbance is through routing policies, one for
every node, that determine the splitting of the inflow at a
node among the links outgoing from that node. In this paper,
we focus on distributed routing policies that rely only on
local information around a node. The formal description is
as follows.

Definition 2: (Distributed routing policy) A distributed
routing policy for a network N is a family of functions
G := {Gv : {0, 1}E+v × Fv × R+ → Rv; (ξv, δv, λv) 7→
Gv(ξv, δv, λv) ∈ Sv(λv) ∪ 0}0≤v<n describing the splitting
of the incoming flow from each non-destination node v
among its outgoing link set E+v , as a function of the observed
status and the magnitude of disturbances on the outgoing
links, and the incoming flow. We also implicitly assume that
every Gv , v ∈ {0, . . . , n−1}, has a priori information about
the vector of link flow capacities C. Moreover, we will adopt
the conventions that, for all v ∈ {0, . . . , n−1}, δv ∈ Fv , and
λv ≥ 0: for all e ∈ E+v , if ξe = 0 then Gve(ξ

v, δv, λv) = 0,
and Gv(ξv, δv, λv) = 0 if and only if ξv = 0.

Remark 1: The two conventions established at the end of
Definition 2 imply that the routing policy does not send
any flow to an outgoing link once it becomes inactive, and
respectively, in the case when all the outgoing links become
inactive, the routing policy does not transmit any of the
incoming flow.

We are now ready to define the dynamics of flow on the
network. For a flow network as per Definition 1, a distributed
routing policy as per Definition 2, a constant outflow at the
origin λ > 0, a feasible disturbance δ ∈ F and an admissible
flow vector f∗ ∈ F(λ), we consider the following discrete-
time dynamics in this paper.
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For all e ∈ E , t ≥ 0 ,

fe(t+ 1) = Gσe
e

(
ξσe(t), δσe , λσe(t)

)
,

ξe(t+ 1) = χe(t+ 1) · ψτe(t) · ξe(t),
(1)

where χe(t) := 1fe(t)≤Ce−δe for t ≥ 1 is a binary variable
that defines the saturation status of link e,

ψv(t) := 1−Πe∈E+v (1− ξe(t)), t ≥ 0

is a binary variable that describes the active status of node
v, and

λv(t) :=

{
λ if v = 0∑
e∈E−v fe(t) if v > 0 ,

(2)

is the incoming flow at node v ∈ V , and the initial conditions
are ξ(0) = 1 and f(0) = f∗. Note that, from the definition
of χe(t), the flow capacity is modeled to be Ce − δe.
With a slight abuse of terminology with respect to standard
literature, e.g., [15], we shall refer to the system defined by
(1) and (2) as a flow network under a routing policy G, an
initial flow f∗ ∈ F(λ), and a constant total outflow at the
origin node λ > 0. We are interested in the dynamics of the
link-wise flows under feasible disturbances δ ∈ F(λ).

Remark 2 (Cascading failure): The dynamics in (1) can
be given the following interpretation: at each time instant
t ≥ 0, each non destination node 0 ≤ v < n splits its
inflow among its outgoing links according to the routing
function. Such routing function takes into account only local
information, and in particular the current inflow to node v, as
well as the current activation status of the outgoing inks of
v, and their current maximum flow capacity. Such a model
potentially originates cascaded failures in the following way:
if, at time t a link e is fed with flow exceeding its max-
imum flow capacity Ce, it saturates, i.e., χe(t) = 0 and
consequently becomes inactive, i.e., ξe(t) = 0 and remains
inactive thereafter due to the irreversible transition of ξe
from 1 to 0. When a node v has all its outgoing links
inactive, it also becomes inactive, i.e., its status becomes
ψv(t) = 0, and this causes all of its incoming links to
become inactive in turn. Such failures are irreversible, and
can propagate both downstream, since the inactivation of a
link forces its tail node to route more flow towards other
links, potentially overloading either them, or the portion
of the network downstream to them, and upstream, since
the failure of a node implies the inactivation of all of its
incoming links with effects on the portion of the network
upstream to such links. This discrete-time dynamics is related
to the continuous-time switched system proposed in [14], and
in particular to the sequence of states at the switching time
of it. However, we will not attempt to make this connection
rigorous here.

The effect of cascading failures is that the network flow
vector f(t) may not remain feasible for all t ≥ 0. We for-
malize the corresponding dichotomy in the network behavior
by the notion of transfer efficiency as follows.

Definition 3 (Transfer efficiency of the network): Let N
be a dynamical flow network with a distributed routing policy
G, an initial flow f∗ ∈ F(λ), and λ > 0 a constant total

outflow at the origin node. The network is called transferring
under disturbance δ if there exists T ≥ 0 such that λn(t) = λ
for all t ≥ T .

The following simple proposition, which we state without
proof, shows that the network being transferring is equivalent
to the origin node being active all the time.

Proposition 1: Consider a dynamical flow network with
a distributed routing policy G, and λ > 0 a constant total
outflow at the origin node. The network is transferring under
disturbance δ if and only if ψ0(t) = 1 for all t ≥ 0.

We define the magnitude of a disturbance δ ∈ F to be
its 1-norm, i.e., ‖δ‖1 =

∑
e∈E δe. With a slight abuse of

notation, we shall use δ to refer to the vector of link-wise
disturbance as well as its 1-norm, with the meaning being
clear from the context.

Definition 4 (Margin of resilience of the network): Let
N be a flow network satisfying Assumption 1, with a
distributed routing policy G, an initial flow f∗ ∈ F(λ),
and λ > 0 a constant total outflow at the origin node.
The margin of resilience of the network is defined as the
infimum of the magnitude of disturbances under which the
network is not transferring.

Our objective in this paper is to compute the margin of
resilience of flow networks satisfying Assumption 1 and
operating under distributed routing policies.

III. MAIN RESULTS

Algorithm 1: Backward Propagation Algorithm
1: Rn(µ) := +∞ for all µ ≥ 0 {destination node}
2: for v = n− 1, n− 2, . . . , 0 do {construct a series of

intermediate functions for every node starting with
n− 1, and going backward up to the origin}

3: put S∅(γ, µ) ≡ 0 and iteratively compute for
J ⊆ E+v of increasing size:

SJ (γ, µ) = 0 if
∑
j∈J

(Cj − γj) ≤ µ , (3)

and, if
∑
j∈J (Cj − γj) > µ,

SJ (γ, µ) := max
x

min
e∈J

{
Rτe (xe) + SJ\{e} (γ, µ)

}
(4)

where the max is over x ∈
∏
j∈J [0, Cj − γj ] such

that
∑
j∈J xj = µ.

4:

Rv(µ) := inf
γ∈Fv

∑
e∈E+v

γe + SE+v (γ, µ)

 . (5)

5: end for

For a network N = (T , C) satisfying Assumption 1, we
associate Rv : R+ → R+ to every node v ∈ {0, . . . , n} that
is representative (following subsequent technical results in
the paper) of the maximum disturbance that the tree rooted
at node v can suffer when the inflow at node v is µ, before
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it looses its transferring property. The construction of such
functions is formally described by the following algorithm,
called the Backward Propagation Algorithm.

In the remainder of this paper, the quantity R0(λ) will
be related to the margin of resilience for dynamical flow
networks with tree like topologies. We first state R0(λ) as
an upper bound on the margin of resilience.

Theorem 1: Consider a flow network N = (T , C) with
tree topology satisfying assumptions 1 and 2, and having
breadth at most 2, a distributed routing policy G, an initial
flow f∗ ∈ F(λ), and λ > 0 a constant total outflow at the
origin node. Then its margin of resilience does not exceed
R0(λ).

We next show that R0(λ) is in fact equal to the mar-
gin of resilience for tree topologies of depth 2 under a
specific distributed routing policy which mimics the local
optimization step (4) involved in the Backward Propagation
Algorithm. Formally, for a given ξv ∈ {0, 1}E+v and µ ≥ 0,
v ∈ {1, . . . , n − 1}, if we let Hv := {e ∈ E+v | ξe = 1},
and Xv := {x ∈ Sv(µ) | xe = 0 ∀e ∈ E+v \ Hv},
then we shall consider a distributed routing policy that
satisfies the following for all ξv ∈ {0, 1}E+v , δv ∈ FE+v ,
v ∈ {1, . . . , n− 1}: if

∑
j∈Hv

(Cj − δj) > λv , then

GvHv
(ξv, δv, λv) ∈
argmax

x∈
∏

j∈Hv
[0,Cj−δj ]

min
e∈Hv

{
Rτe (xe) + SHv\{e} (δ, λv)

}
,

(6)

where GvHv
is the restriction of Gv to Hv .

Theorem 2: Consider a flow network N = (T , C) satis-
fying assumptions 1 and 2, and having depth of at most 2,
a distributed routing policy G satisfying (6), an initial flow
f∗ ∈ F(λ), and λ > 0 a constant total outflow at the origin
node. Then its margin of resilience is at least equal to R0(λ).

Theorems 1 and 2 imply that R0(λ) is a tight characteriza-
tion of the margin of resilience for tree topologies of breadth
and depth at most 2, and the routing policy satisfying (6) is
maximally resilient within the class of distributed routing
policies for such tree topologies. The proof of Theorems 1
and 2 are provided in Sections IV and V respectively. It
is worth to compare the quantity R0(λ) computed by the
backward propagation algorithm above with the upper bound
Γ(N , f∗) derived in [14] for the resilience of a network N
with initial equilibrium flow f∗ ∈ F(λ). The comparison is
best appreciated in the following simple example.
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Fig. 1. A tree with breadth 2 and depth 2.

Example 1: Consider a network N = (T , C) whose
topology is the one depicted in Figure 1. Assume that
Cei = 1 for all i ∈ {1, 2, 3, 4}. Then, for every λ ≥ 0,

one has

R0(λ) =

{
2− 3λ/2 if λ ∈ [0, 1]

[1− λ/2]
+ if λ ≥ 1 ,

while Γ(N , f∗) = 2 − λ for every initial equilibrium flow
f∗ ∈ F(λ). This shows that the new bound R0(λ) is stronger
than Γ(N , f∗) derived in [14].

The following example illustrates that it is not possible to
extend Theorem 2 to trees of depth more than 2.
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Fig. 2. A tree with breadth 2 and depth 3.

Example 2: Consider the graph topology illustrated in
Figure 2. Let the maximum flow capacities be Ce1 = 0.15,
Ce2 = 10, Ce3 = 0.2, Ce4 = 1, Ce5 = 0.5, Ce6 = Ce7 = 2.
Consider a constant inflow λ = 0.55 and a disturbance
supported only on links e3 and e6, of magnitude δe3 = 0.15
and δe6 = 1.8. We will show that, in spite of the fact that
R0(λ) > δ = 1.95, the network will not be transferring
under the routing policy satisfying (6).

First observe that R3(µ) = R4(µ) = [2− µ]+ for all µ ≥
0. For brevity in notation, let x∗4(µ) := G2

E+2 ,e4
(1, δ2, µ) and

x∗5(λ) = µ−x∗4(µ) be the flow on links 4 and 5 respectively,
under a routing policy satisfying (6) for all 0 ≤ µ ≤ 1.5.
One can verify that, for 0 ≤ µ < 0.5,

x∗4(µ)

= argmax
z∈[0,µ]

min {(2− z) + (2− µ), (2 + z − µ) + (2− µ)}

= argmax
z∈[0,µ]

min {4− µ− z, 4− 2µ+ z} = µ/2,

for µ ∈ (0.5, 1],

x∗4(µ) = argmax
z∈[µ−0.5,µ]

min {2− z, (2− µ+ z) + (2− µ)}

= argmax
z∈[µ−0.5,µ]

min {2− z, 4− 2µ+ z} = µ− 0.5,

and for µ ∈ (1, 1.5],

x∗4(µ) = argmax
z∈[µ−0.5,1]

min {2− z, 2− µ+ z} = µ− 0.5.

One can also verify that the computations in the Backward
Propagation Algorithm give

R2(µ) =

{
2.5− µ if µ ∈ [0, 1.5]
0 if µ > 1.5 .

(7)

Observe that x∗4(µ) and x∗5(µ) are continuous and monoton-
ically non-decreasing over [0, 1.5) except at µ = 0.5, where
x∗4(µ) (resp, x∗5(µ)) is discontinuous and has a negative
(resp, positive) jump. R2(µ) is discontinuous at µ = 1.5,
but monotonically decreasing for µ ≥ 0. Since Ce2 = 10,
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(4) implies that Se2(0, λ) = R2(λ) = 1.95. On the other
hand, since λ > Ce1 , we get R1(µ) = [0.2 − µ]+ and (4)
implies that Se1(0, λ) = 0. One can verify that, for R0(λ),
the infimum in (5) is achieved at γ = 0. Therefore,

R0(λ)

= max min {R1(λ− x) + Se2(0, λ), R2(x) + Se1(0, λ)}
= 2.05,

where the max is over x ∈ [λ − 0.15, λ] = [0.4, 0.55], and
is achieved at x = 0.45. Moreover, these calculations also
show that G0

e2(1,0, λ) = 0.45, i.e., the flow on link e2 at
time 1, fe2(1) = 0.45 < 10 = Ce2−δe2 , and hence fe1(1) =
λ − fe2(1) = 0.1 < 0.15 = Ce1 − δe1 . Similarly, based
on the above calculations, one sees that fe3(1) = 0.1 >
0.05 = Ce3 − δe3 , fe4(1) = G2

e4(1, δ2, 0.45) = x∗4(0.45) =
0.225 < 1 = Ce4 − δe4 , fe5(1) = 0.225 < 0.5 = Ce5 −
δe5 , fe6(1) = 0.225 > 0.2 = Ce6 − δe6 , and fe7(1) =
0.225 < 2 = Ce7 − δe7 . Hence, under the dynamics in (1),
for all s ≥ 1, ξei(s) = χei(s) = 1 for all i ∈ {1, 2, 4, 5, 7}
and ξei(s) = χei(s) = 0 for i ∈ {3, 6}. This implies that
ξe1(s) = ξe4(s) = 0 for all s ≥ 2. At t = 2, the routing
policy at origin has to route all of λ towards e2, so that
fe2(3) = 0.55 Since ξe4(4) = 0, at t = 4, the routing at
node 2 has to route all the incoming flow of 0.55 to link
e5. This implies that fe5(4) = 0.55 > 0.5 = Ce5 , so that
ξe5(s) = 0 for all s ≥ 4, and hence ξe2(s) = 0 for all
s ≥ 5. This combined with the earlier established fact that
ξe1(s) = 0 for all s ≥ 2 implies that ψ0(t) = 0 for all t ≥ 5,
and hence the network is not transferring by Proposition 1.

It is interesting to note the reason for the non-transferring
of the network in light of Theorem 2. The ultimate cause
for the non-transferring property of the network is the non-
transferring nature of the sub-network rooted at node 2. The
maximum inflow to the sub-network, which is a tree of depth
2, is 0.55. Note that (7) implies that R2(0.55) = 1.95 which
is greater than the total disturbance on the sub-network,
δe6 = 1.8. Therefore the non-transferring of the sub-network
gives an impression of an inconsistency with Theorem 2
applied to the sub-network rooted at node 2. It is important
however to note that Theorem 2 is valid for a constant inflow,
and in our example the inflow at the sub-network is 0.4
for t ≤ 2 and 0.55 thereafter. This phenomenon of non-
transferring property of the sub-network under a dynamic
inflow versus transferring property under a constant inflow
that upper bounds the dynamic inflow is attributed to the non-
monotonicity of the routing policy at node 2. In summary, it
is the non-monotonicity property of routing policy satisfying
(6) that prevents generalization of Theorem 2 to trees with
depth greater than 2.

IV. PROOF OF THEOREM 1

First consider a depth-1 tree of arbitrary breadth |E+0 | ≥
1, and in particular for breadth at most 2. Then, for all
e ∈ E+0 , Rτe(xe) = ∞ for all xe ∈ [0, Ce], so that
R0(λ) = [

∑
e∈E+0

Ce − λ]+. The claim then follows simply

by choosing1 δe ∈ [0, Ce] for all e ∈ E such that
∑
e∈E δe =

[
∑
e∈E+0

Ce − λ]+.

Now assume the claim is true for all trees of depth less
than or equal to some n ≥ 1 and breadth at most 2. Consider
a depth-(n + 1) tree of breadth |E+0 | = 1. Then R0(λ) =
min{[Ce − λ]+, Rτe(λ)} where e is the unique element of
E+0 . If R0(λ) = [Ce − λ]+, then choose a disturbance with
δe = [Ce − λ]+, and δj = 0 for all j ∈ E \ {e}; otherwise,
choose a disturbance such that δe = 0, and δ coincides on
E \ {e} with an (optimal) disturbance of size Rτe(λ) which
makes the depth-n subtree rooted in τe with inflow λτe = λ
(whose existence is guaranteed by the induction hypothesis)
not transferring. This proves that the claim is true for all
trees of depth n+ 1 and |E+0 | = 1.

Now, consider a tree T of depth-(n + 1) and breadth
|E+0 | = 2. If R0(λ) = [

∑
e∈E+0

Ce − λ]+, then just choosing
a disturbance δ such that δe ∈ [0, Ce] for all e ∈ E+0 with∑
e∈E+0

δe = [
∑
e∈E+0

Ce−λ]+, and δe = 0 for all e ∈ E\E+0 ,
suffices to make the network not transferring under any
routing policy at node 0. Otherwise, consider a minimizing
sequence {γ} ⊆

∏
e∈E+0

[0, Ce] for the infimization problem
in the right-hand side of (5) for v = 0. For all γ in the
sequence, let the disturbance δγ coincide with γ on E+0 , and
let y∗ := G0(1, γ, λ) for an arbitrary distributed routing
policy {Gv}v∈V . Let j ∈ E+0 be such that S0(γ, λ) ≥
Rτj (y∗j )+Si(γ, λ), where i is the unique element in E+0 \{j}.
Let Tj be the depth-n subtree rooted in τj , and Ti be the
depth-n subtree rooted at τi. Note that this implies that
E = E+0 ∪Ti∪Tj . Complete the perturbation δγ by choosing
its restriction on Tj to have magnitude Rτj (y∗j ) and to make
this subtree non-transferring when its inflow is y∗j (whose
existence is guaranteed by the induction hypothesis on n);
and, on Ti, it has magnitude Si(γ, λ) and makes the union of
these subtrees non-transferring when its inflow is λ (whose
existence is guaranteed by the inductive hypothesis on k).
Under this disturbance, the routing policy at node 0 will
not change the way it splits its flow λ until the inactivation
of some link e ∈ E+0 . If the first link in E+0 to become
inactive is i, the inflow on link j after that is λ ≥ y∗j .
Since the restriction of δγ on Tj has been chosen to make
Tj non-transferring when its inflow is y∗j , it will also be
non-transferring when the inflow on it is λ ≥ y∗j by the
monotonicity of Rτj (x). If i does not become inactive before
j, then j necessarily becomes inactive because of the choice
of δγ restricted to Tj . Thereafter, the flow on link i is λ, and
it fails because the choice of δγ restricted to Ti is such that
Ti is non-transferring when the inflow to it is λ. This makes
T non-transferring. The claim now follows by observing that
lim supγ ||δγ ||1 ≤ R0(λ) .

1Rigorously speaking, we need to choose δe to be arbitrarily larger than
the specified value in order to cause link inactivation. This changes the
value of margin of resilience by an arbitrarily small amount. Hence, for
conciseness in presentation, we do not deal with this issue explicitly and
rather implicitly assume that the disturbances are chosen to be arbitrarily
larger than the specified values in this proof.
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V. PROOF OF THEOREM 2

In the following, we prove that for any δ < R0(λ), a flow
network over a tree of depth at most 2 is transferring under a
routing policy satisfying (6). This combined with Theorem 1
establishes Theorem 2.

The proof for trees of depth 1 is trivial. For trees with
depth 2, we proceed by induction on number of links in
|E+0 |. Assume that the claim is true for all trees of depth 2
with |E+0 | ≤ k, for some k ≥ 1. Consider a tree of depth 2
with |E+0 | = k+1. For 1 ≤ j ≤ k+1, let ej be the outgoing
links from 0, and vj := τej be the head nodes of those links.

Consider a disturbance δ ∈ F(λ) such that δ < R0(λ).
(5) then implies that

δ <
∑

1≤j≤k+1

γj + SE+0
(γ, λ) , (8)

for all γ ∈ F0. Following this observation, for the rest of
the proof, we shall use (8) for a fixed γj := δej and let
δj :=

∑
e∈E+vj

δe and δ
j

:=
∑
i6=j
∑
e∈E+vi

δe. In particular,
(8) implies that

∑
1≤j≤k+1 γj <

∑
1≤j≤k+1 Cej − λ. For

1 ≤ j ≤ k+ 1, the tree rooted at vj is of depth 1, and hence

Rvj (µ) =
[∑

e∈E+vj
Ce − µ

]+
, and under a routing policy

satisfying (6) at vj ,

δj < Rvj (fej (t)) ∀t ≥ 0 =⇒ ξvj (t) = 1 ∀t ≥ 0 . (9)

When the routing policy at 0, G0(1, δ0, λ), also satisfies (6),
then (4), (8), and (6) imply that

δj+δ
j

= δ−
∑
i

γi < Rvj

(
G0
ej (1, δ0, λ)

)
+SE+0 \{ej}

(γ, λ) ,

(10)
for all 1 ≤ j ≤ k + 1, and the summation is over 1 ≤ i ≤
k+1. First, consider the case when δj < Rvj

(
G0
ej (1, δ0, λ)

)
for all 1 ≤ j ≤ k + 1. Then, it follows from (9) that, for
all 1 ≤ j ≤ k + 1, ξej (t) = 1 for all t ≥ 0 and hence
the network is transferring. On the other hand, assume that
δi ≥ Rvi

(
G0
ej (1, δ0, λ)

)
for some i ∈ {1, 2, . . . , k + 1},

while (10) holds true for j ∈ {1, 2, . . . , k + 1} \ {i}. In this
case, (10) implies that

δ
i
< SE+0 \{ei}

(γ, λ) . (11)

Then, (9) implies that no link ej ∈ E+0 \ {ei} becomes
inactive before ei possibly becomes inactive, while (11) and
the induction hypothesis on k = |E+0 \ {ei}| guarantee that,
even when possibly ei becomes inactive, the rest of the
network will continue to remain transferring under constant
inflow λ. The case when {j : δj ≥ Rvj (G0(δ0, E+0 , λ))}
has cardinality 2 or more can be handled in a similar way,
thus showing that, under routing policies satisfying (6), the
network is transferring under any disturbance δ < R0(λ).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered deterministic cascade dynam-
ics for flow networks over tree topologies between a single
origin-destination pair under distributed routing policies,

where the network state consists of flows and activation
status of the links. We studied resilience of such network
dynamics to disturbances that reduce link-wise capacities.
The margin of resilience is defined as the minimum, among
all possible disturbances, of the link-wise sum of reductions
in flow capacities, under which the links outgoing from
the origin become inactive in finite time. We proposed an
algorithm to compute an upper bound on the margin of
resilience for tree topologies of breadth at most 2, and show
that the resultant value is tight for trees with the additional
property of having depth at most 2.

In future, we plan to consider alternate routing policies
and algorithms for tighter characterization of margins of
resilience on arbitrary tree topologies and then extending it to
general network topologies, multi-commodity flows, stochas-
ticity in the cascade dynamics and probabilistic disturbances.
We also plan to extend the formulation here to continuous
time framework in the context of dynamical flow networks
as pursued in our previous and current work [1], [2], [16].
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