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Abstract— Several strategic interactions over social networks

display both negative and positive externalities at the same

time. E.g., participation to a social media website with limited

resources is more appealing the more of your friends partici-

pate, while a large total number of participants may slow down

the website (because of congestion effects) thus making it less

appealing. Similarly, while there are often incentives to choose

the same telephone company as the friends and relatives with

whom you interact the most frequently, concentration of the

market share in the hands of a single firm typically leads to

higher costs because of the lack of competition.

In this work, we study evolutionary dynamics in network

games where the payoff of each player is influenced both by the

actions of her neighbors in the network, and by the aggregate

of the actions of all the players in the network. In particular,

we consider cases where the payoff increases in the number

of neighbors who choose the same action (local coordination

effect) and decreases in the total number of players choosing

the same action (global congestion effect). We study noisy best-

response dynamics in networks which are the union of two

complete graphs, and prove that the asymptotic behavior of

the invariant probability distribution is characterized by two

phase transitions with respect to a parameter measuring the

relative strength of the local coordination with respect to the

global congestion effects. Extensions to random networks with

strong community structure are studied through simulations.

Index Terms— network games, congestion games, coordina-

tion games, evolutionary dynamics.

I. INTRODUCTION

Many social interactions exhibit a variety of distinct levels
at which agents may influence each other. Typically, different
network architectures can be introduced to model interac-
tions happening through different social channels (friends,
trust and reviewing web mechanisms, media, markets) and
which may also be characterized by externalities of opposite
sign. An interesting family of such behaviors are resource
allocation problems where agents may have the need/wish to
coordinate with their friends or geographically close partners,
while, at the same time, they might be affected by congestion
effects driven by the behavior of the global population.
For example, participation to a social media website with
limited resources is more appealing the more of your friends
participate, while a large total number of participants may
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have a negative effect as congestion may determine an
unpleasant slow down of the social resource. The choice of a
company offering a given service is another instance of such
problems: while there are often incentives to choose the same
telephone company as the friends and relatives with whom
you interact the most frequently, concentration of the market
share in the hands of a single firm typically leads to higher
costs because of the lack of competition.

In this paper we will concentrate on a model whereby
a population of agents are simultaneously engaged in two
distinct games. At one level, agents are connected through
a given (friendship) network and are playing a classical
coordination game. At another level, they are influenced by
the choices of all agents (even those who are not directly
connected to through the graph) and this is modeled by a
congestion game (see [11]). In this paper we assume the
option space of each agent to be binary A = {0, 1} and
games to be semi-anonymous: each agent will be endowed
with two payoff functions, one depending only on number
of 0’s and 1’s in the agent neighborhood and one depending
only on the aggregate number of 0’s and 1’s in the global
population. Specifically, we consider cases where the local
payoff increases in the number of neighbors who choose the
same action (local coordination effect) while the global one
decreases in the total number of players choosing the same
action (global congestion effect).

Dynamics will be introduced in a classical way as a
continuous-time Markov chain on the configuration space
AN driven by an interaction kernel: we assume each agent
to be equipped with a Poisson clock whose click determines
a possible revision of the agent’s option. Revision is modeled
as a (generalized) noisy best response action depending on
a parameter ↵ 2 [0, 1] which interpolates between the pure
global congestion case ↵ = 0 and the pure local coordination
case ↵ = 1. This general revision model encompasses the
situation of a noisy best response with respect to a payoff
function which is the convex combination of the local and
global ones, as well the situation where with probabilities ↵
and 1�↵, respectively, the agent makes a best response with
respect to the global or to the local payoff function.

As the Markov chain is ergodic, its asymptotic behavior
can be conveniently studied by analyzing the corresponding
invariant probability distribution. A typical issue arising in
this context concerns the possible concentration phenomena
for such invariant probabilities in the large scale limit, i.e.,
when the number of agents n grows large, while the graph
maintains some specific structure. In this paper we focus on
the case when the network is the union of two complete



graphs of size n/2 each. Analysis is carried on based on
Kurtz’s Theorem (see Draief and Massoulié [2] and Wormald
[12]) which allows one to approximate the original Markov
chain by a system of two ODE’s in the variables ⇢1 and
⇢2 describing the fraction of 1’s in the two populations.
The two ODE’s are coupled through the congestion term.
A general result allows one to conclude that in the large
scale limit, the invariant probabilities of the original chain
concentrate into the Birkhoff center of the system of ODEs
(see Sandholm [10], section 12B). A careful analysis of the
Birkhoff center allows us to obtain the result presented in
this paper which is the fact that the large scale behavior
of the invariant probability distribution can encounter two
phase transitions with respect to the parameter ↵. For small
values of ↵ corresponding to predomination of the congestion
term, the system exhibits a globally attractive equilibrium
in (1/2, 1/2): 0’s and 1’s are uniformly distributed in the
two populations and no coordination takes place. While
↵ increases, if the first phase transition occurs, (1/2, 1/2)
becomes unstable and two new locally stable equilibria
symmetrically placed with respect to the line ⇢1 = ⇢2 show
up: the two populations show a bias towards coordination
maintaining the congestion as low as possible. Finally, if
also the second phase transition belongs to the domain where
↵ varies, when ↵ passes this second threshold the Birkhoff
center gets larger including two further diagonal points and
four nearby small rectangles: the congestion term has a small
impact and also configuration with a global bias of 0’s or of
1’s will appear in the long range behavior.

II. MODEL

A. Games on networks
We model networks as finite undirected graphs G =

(V, E), where nodes represent players. Throughout, n = |V|
will denote the population size, d

i

will stand for the degree
of a node i in G, and we will write i ⇠ j to mean that two
nodes i and j are neighbors in G, i.e., {i, j} is a link. In order
to avoid trivial cases, we will always assume that d

i

� 1 for
all i 2 V . In our study every player is endowed with two
games sharing the same binary action set A := {0, 1}. The
first one models the local coordination effect and its payoffs
are functions of the actions of the neighbors of the player;
the second one represents the global congestion trend with
payoffs depending on the aggregate of the actions of the
whole population of players.
We further restrict ourselves to the case where the depen-
dence of the payoff on the player’s neighbors’ actions is
only through their aggregate, and is homogeneous in the
population.

In order to formalize this setting, let us denote by a 2 AV

the action profile, whose i-th component a
i

stands for player
i’s action. Let

✓(a) :=
1

n

X

i2V
a
i

, ✓i(a) :=
1

d
i

X

j⇠i

a
j

, i 2 V ,

denote, respectively, the fractions of players in the whole
population, and the fraction of neighbors of node i, choosing

action 1. Finally, let

pl
a

: [0, 1] ! R , pg
a

: [0, 1] ! R , a 2 A ,

be, respectively, the local and global payoff functions associ-
ated to players choosing action a. Throughout, we will refer
to the game with players population V , action space AV , and
payoffs

P l

i

(a) = pl
ai
(✓i(a)) , i 2 V , a 2 AV ,

as the (semi-anonymous) local coordination game on G with
payoffs {pl

a

}
a2A. The game with players population V ,

action space AV , and payoffs

P g

i

(a) = pg
ai
(✓(a)) , i 2 V , a 2 AV ,

will be referred as the (semi-anonymous) global congestion
game on G with payoffs {pl

a

}
a2A.

In this work, we will focus on differentiable payoff func-
tions; the local coordination and global congestion effects
will be then modeled through the assumptions that

d

dx
l

pl0(xl

) < 0 ,
d

dx
l

pl1(xl

) > 0 , 0  x
l

 1 ,

(1)
and

d

dx
g

pg0(xg

) > 0 ,
d

dx
g

pg1(xg

) < 0 , 0  x
g

 1 .

(2)
Example 1: Consider gocal coordination payoff functions

pl1(xl

) = 1� pl0(xl

) = x
l

and global congestion payoff functions

pg1(xg

) = 1� pg0(xg

) = 1� x
g

.

B. The dynamics
We now pass to describing the dynamics. We will consider

continuous-time Markov chains A(t) with state space AV .
Here, the i-th component of A(t) denotes the action chosen
by player i at any time t � 0. Throughout, we will assume
that players are equipped with independent rate-1 Poisson
clocks. If her clock ticks at time t, player i updates her
action A

i

(t) to some A
i

(t+) with conditional probability
distribution

P(A
i

(t+) = 1|A(t)) = 1� P(A
i

(t+) = 0|A(t))

= �(✓i(A(t)), ✓(A(t))) ,
(3)

where
� : [0, 1]2 ! [0, 1] ,

is referred to as the interaction kernel. Throughout this paper,
we will refer to the continuous-time Markov chain described
above as the network dynamics associated to the network
G and the interaction kernel �. To study the different
dynamical behaviors the emerge when varying the power
balance between coordination and congestion we let the
interaction kernel � depend in a regular way on a parameter
↵ 2 [0, 1] that measures the relative weight of coordination



with respect to congestion. In particular we assume that
↵ = 0 models a situation where no coordination is present;
on the other hand, ↵ = 1 represents a pure coordination case.
This translates into the two conditions

@

@x
l

�0
�

(x
l

, x
g

) = 0 , 8x
l

, x
g

2 [0, 1] , (4)

@

@x
g

�1
�

(x
l

, x
g

) = 0 , 8x
l

, x
g

2 [0, 1] . (5)

Since we are interested in situations where both local
coordination and global congestion are present, we will limit
our results to the case ↵ 2 (0, 1) and we will assume that,
when ↵ varies in this domain,
@

@x
l

�↵

�

(x
l

, x
g

) > 0 ,
@

@x
g

�↵

�

(x
l

, x
g

) < 0 , x
l

, x
g

2 [0, 1] .

(6)
We still have to define the way ↵ empowers the coordina-
tion with respect to the congestion. This is modeled with
reference to the two examples presented hereafter.

Example 2: Consider the payoff functions

p
a

(x
l

, x
g

) = p↵
a

(x
l

, x
g

) := ↵pl
a

(x
l

)+(1�↵)pg
a

(x
g

) , a 2 A .

Throughout, we will refer to the game with players popula-
tion V , action space AV , and payoffs

P
i

(a) = p
ai(✓

i(a), ✓(a)) , i 2 V , a 2 AV ,

as the (semi-anonymous) local coordination-global conges-
tion game on G with payoffs {p

a

}
a2A.

Notice that, in the case where our local coordination-global
congestion game is a pure congestion game (↵ = 0), Nash
equilibria a⇤ 2 AV can be proved to satisfy ✓(a⇤) =
x⇤ +O(1/n), where

x⇤ := argmin {|pg1(xg

)� pg0(xg

)| : x
g

2 [0, 1]} .

On the other hand, when our local coordination-global con-
gestion game is a pure coordination game (↵ = 1), Nash
equilibria a⇤ 2 AV includes all the action profiles a⇤ 2 AV

such that i and j belong to the same connected component
of G and a⇤

i

= a⇤
j

(see Jackson and Zenou [6], section 3.3.2).
For some � > 0, put

�(x
l

, x
g

) = �↵

�

(x
l

, x
g

) :=
e�p

↵
1 (xl,xg)

e�p
↵
1 (xl,xg) + e�p

↵
0 (xl,xg)

.

The network dynamics associated to a network G and the
interaction kernel �

�

as above is known as the noisy best
response dynamics. Here, 1/� is a measure of noise. In fact,
observe that

lim
�!1

�↵

�

(x
l

, x
g

) =

8
<

:

0 if p↵0 (xl

, x
g

) > p↵1 (xl

, x
g

)
1/2 if p↵0 (xl

, x
g

) = p↵1 (xl

, x
g

)
1 if p↵0 (xl

, x
g

) < p↵1 (xl

, x
g

) ,

i.e., in the large �, i.e., small noise, limit the best response
function is recovered.

Example 3: For some � > 0, put

�(x
l

, x
g

) =
↵e�p

l
1(xl)

e�p
l
1(xl) + e�p

l
0(xl)

+
(1� ↵)e�p

g
1(xg)

e�p
g
1(xg) + e�p

g
0(xg)

.

The interaction kernel above can be interpreted as the result
of the superposition of a noisy best response to the local pay-
offs, and one to the global payoffs, with relative frequency
↵ and (1� ↵), respectively.

If we consider the local and global payoffs of Example 1,
we then obtain that the interaction kernels of Examples 2
and 3 satisfy the following symmetry property:

�↵

�

(1� x
l

, 1� x
g

) = 1� �↵

�

(x
l

, x
g

) , (7)

fo rall x
l

, x
g

2 [0, 1], ↵ 2 [0, 1). In this particular situ-
ation, the way ↵ empowers the coordination with respect
to the congestion can be represented through the following
assumption

@

@↵
�↵

�

(x
l

, x
g

)  0 , 8x
l

, x
g

2 [0, 1/2], 8↵ 2 [0, 1).

(8)

Moreover, thanks to the convexity properties of the expo-
nential function, one can prove that the equations

�↵

�

✓
x,

1

2

◆
= x , �↵

�

(x, x) = x (9)

admit no more than one solution x 2 [0, 1/2). In the next
section we will see how those properties play an important
role in determining the behavior of the Markov chain A(t).

III. RESULTS

In this section, we present our results. These concern
the behavior of stationary probability distributions of the
Markov chain A(t). Throughout this section, we will restrict
ourselves to the case where the network is the disjoint union
of two fully connected components of equal size, as for the
following

Assumption 1: For positive even n, the network G
n

=
(V, E) has node set V = V1 [ V2, with |V1| = |V2| = n/2,
and link set E such that {i, j} 2 E if and only if i 6= j 2 V1

or i 6= j 2 V2.

The key simplification implied by Assumption 1 along with
the restriction to semi-anonymous games, is that the pair
⇢n(t) = (⇢n1 (t), ⇢

n

2 (t)), where

⇢n
k

(t) :=
2

n

X

i2Vk

A
i

(t) , k = 1, 2 , (10)

forms a Markov chain. This implies a dramatic reduction in
the size of the state space, from |AV | = 2n to (n/2+1)2. Our
focus will be on the stationary probability distributions µ

n

of ⇢n(t), and on their behavior in the limit as the population
size n grows large. We will interpret µ

n

as a probability
measure on [0, 1]2 and use the following terminology

Definition 1: Let {µ
n

} be a sequence of probability mea-
sures on [0, 1]2 and E ✓ [0, 1]2 a subset. Then, µ

n

concen-
trate on E as n grows large, if lim

n

µ
n

(O) = 1 for every
open O ✓ [0, 1]2 such that E ✓ O.

We can now introduce the result of this paper. It states the
existence of two threshold values

↵⇤ = inf

⇢
↵ 2 [0, 1) :

@�↵

@x
l

✓
1

2
,
1

2

◆
> 1

�
(11)



↵⇤⇤ = inf

⇢
↵ 2 [0, 1) :

@�↵

@x
l

✓
1

2
,
1

2

◆
+

@�↵

@x
g

✓
1

2
,
1

2

◆
> 1

�

(12)
such that 0 < ↵⇤  ↵⇤⇤ and the asymptotic behaviors of the
stationary probability distributions of A(t) in the limit as n
grows large are qualitatively different, depending on whether
↵ 2 [0,↵⇤], ↵ 2 (↵⇤,↵⇤⇤], or ↵ 2 (↵⇤⇤, 1).

Theorem 1: Let �↵ : [0, 1]2 ! [0, 1], 0  ↵ < 1 be a
family of interaction kernels satisfying properties (4), (6)-
(9), and let ↵⇤ and ↵⇤⇤ be defined as in (11) and (12),
respectively. Let A(t) be the network dynamics associated
to �↵ and a network G

n

as in Assumption 1, and let µ
n

be
an invariant probability distribution for ⇢n(t) defined as in
(10). Furthermore, let

a : [↵⇤, 1) ! [0, 1) , d : [↵⇤⇤, 1) ! [0, 1)

be two continuous nondecreasing functions such that
a(↵⇤) = d(↵⇤⇤) = 0, and d(↵)  a(↵) for ↵ 2 [↵⇤⇤, 1),
and R

↵

be the union of interiors of the four rectangles (see
the gray-shaded areas in Figure 1 (c)) with vertices

• ( 12 + d(↵)
2 , 1

2 ), (
1
2 + a(↵)

2 , 1
2 ),

( 12 + a(↵)
2 , 1

2 + d(↵)
2 ), ( 12 + d(↵)

2 , 1
2 + d(↵)

2 );
• ( 12 ,

1
2 + d(↵)

2 ), ( 12 ,
1
2 + a(↵)

2 ),

( 12 + d(↵)
2 , 1

2 + a(↵)
2 ), ( 12 + d(↵)

2 , 1
2 + d(↵)

2 );
• ( 12 � d(↵)

2 , 1
2 ), (

1
2 � a(↵)

2 , 1
2 ),

( 12 � a(↵)
2 , 1

2 � d(↵)
2 ), ( 12 � d(↵)

2 , 1
2 � d(↵)

2 );
• ( 12 ,

1
2 � d(↵)

2 ), ( 12 ,
1
2 � a(↵)

2 ),

( 12 � d(↵)
2 , 1

2 � a(↵)
2 ), ( 12 � d(↵)

2 , 1
2 � d(↵)

2 ).
Then, as n grows large µ

n

concentrate on a set E
↵

✓
[0, 1]2, where

(i) for ↵ 2 [0,↵⇤],

E
↵

= {(1/2, 1/2)} ;
(ii) for ↵ 2 (↵⇤,↵⇤⇤],

E
↵

= {(1/2, 1/2)} [ {(1/2⌥ a(↵), 1/2± a(↵))} ;
(iii) for ↵ 2 (↵⇤⇤, 1),

E
↵

= {(1/2, 1/2)} [ {(1/2⌥ a(↵), 1/2± a(↵))}
[{(1/2± d(↵), 1/2± d(↵))} [R

↵

.

The three cases of Theorem 1 are illustrated in Figure 1.

A. (Sketch of the) proof of Theorem 1
The proof of Theorem 1 is based on the study of the

asymptotic properties of the following mean-field dynamical
system:

⇢̇1 = �↵

⇣
⇢1,

⇢1(t)+⇢2(t)
2

⌘
� ⇢1(t)

⇢̇2 = �↵

⇣
⇢2,

⇢1(t)+⇢2(t)
2

⌘
� ⇢2(t).

(13)

Standard results allow one to relate both the transient and
the asymptotic behaviors of ⇢n(t) and ⇢(t). In particular,
Kurtz’s Theorem presented in [2] and [12], and results in
[10, Sect. 12B] imply that µ

n

concentrates in the Birkhoff
center of the dynamical system (13). Then, in order to prove

⇢2

⇢110

1

(a) ↵  ↵⇤.

⇢2

⇢110

1

(b) ↵⇤ < ↵  ↵⇤⇤.
⇢2

⇢110

1

(c) ↵ > ↵⇤⇤.

Fig. 1: Set E
↵

Theorem 1, it is sufficient to show that the Birkhoff center
of (13) is contained in E

↵

.
Proposition 1: For every ↵ 2 [0, 1), and every ⇢0 2

[0, 1]2, the solution of the dynamical system (13) with initial
condition ⇢(0) = ⇢0 converges to an equilibrium ⇢⇤ 2 E

↵

.
The key observation is that (13) is a competitive dynamical
system in the sense of Hirsch (see Hirsch [4]). In turn, this
implies the following monotonicity property: let �t be the
semiflow associated to the dynamical system (13). Then, for
every ⇢1 and ⇢2 2 [0, 1]2 such that

⇢11  ⇢21 and ⇢12 � ⇢22

one has that

�t

1(⇢1)  �t

1(⇢2) and �t

2(⇢1) � �t

2(⇢2) 8t � 0. (14)

It is a standard result (see Cañada, Drabek and Fonda [1],
Theorem 3.22) that all trajectories of a 2-dimensional mono-
tone system have each component eventually non increasing
or nondecreasing and hence converging to a limit point,
which, in our case, is necessarily an equilibrium.
Furthermore we can easily notice that property (14) implies
that every equilibrium (⇢e1, ⇢

e

2) 2 [0, 1]2 determines the two
invariant sets

�
(⇢1, ⇢2) 2 [0, 1]2 : ⇢1  ⇢e1 and ⇢2 � ⇢e2

 

and
�
(⇢1, ⇢2) 2 [0, 1]2 : ⇢1 � ⇢e1 and ⇢2  ⇢e2

 
.

From the symmetry property (7) one can notice that the
diagonal ⇢1 = ⇢2 and the anti-diagonal ⇢1 = 1 � ⇢2 of
the square [0, 1]2 are invariant subsets for our system (13).
It follows that the center ⇢1 = ⇢2 = 1

2 will always be an
equilibrium of our system for every ↵ in [0, 1). Furthermore,
thanks to properties (4), (6) and (8), the two values ↵⇤ and
↵⇤⇤ defined in (11) and (12) characterize the transition of



⇢2

⇢110

1

(a) ↵  ↵⇤.

⇢2

⇢110

1

(b) ↵⇤ < ↵  ↵⇤⇤.

⇢2

⇢110

1

(c) ↵⇤ < ↵  ↵⇤⇤.

⇢2

⇢110

1

(d) ↵⇤⇤ < ↵.

⇢2

⇢110

1

(e) ↵⇤⇤ < ↵.

Fig. 2: Using monotonicity to prove that there cannot exist
equilibria outside E

↵

. In (a), the existence of an equilibrium
outside (1/2, 1/2) would prevent the trajectory starting from
some diagonal or some anti-diagonal point to converge to
(1/2, 1/2). In (b) and (c) the existence of an equilibrium
outside the anti-diagonal set would prevent either the tra-
jectory starting from some anti-diagonal point to converge
to the two stable equilibria or some the trajectory starting
from some diagonal point to converge to (1/2, 1/2). In
(d) and (e), the analogous argument allows one to exclude
the existence equilibria outside the union of the three anti-
diagonal equilibria and the four rectangles.

this equilibrium respectively from a locally asymptotically
stable equilibrium to a saddle point and from a saddle point
to an unstable focus. Indeed, from assumptions (4) and (6)
and given the regularity of � with respect to ↵, we notice
that the equilibrium ⇢1 = ⇢2 = 1

2 will be locally stable
when ↵ belongs to a certain neighborhood of 0. Furthermore
property (8) implies that both @�↵

@xl

�
1
2 ,

1
2

�
and @�↵

@xg

�
1
2 ,

1
2

�
are

non decreasing.
We proceed by considering how these two phase transitions
affect the global situation. We then study separately the two
monodimensional systems

ẋ = �↵

✓
x,

1

2

◆
� x (15)

related to the anti-diagonal and

ẋ = �↵ (x, x)� x (16)

related to the diagonal. Thanks to the symmetry property
(7), to the effect of parameter ↵ described in (8) and to
the considerations made in (9), one can derive the following
results:

Lemma 1: consider the threshold ↵⇤ defined in (11).
There exists a non decreasing function a : [↵⇤, 1) ! [0, 1)
such that (15) has the unique equilibrium x = 1

2 if ↵  ↵⇤

and the two additional equilibria x = 1
2 ± a(↵)

2 if ↵ > ↵⇤.
Lemma 2: Consider the threshold ↵⇤⇤ defined in (12).

There exists a non decreasing function d : [↵⇤⇤, 1) ! [0, 1)
such that (16) has the unique equilibrium x = 1

2 if ↵ < ↵⇤⇤

and the two additional equilibria x = 1
2 ± d(↵)

2 if ↵ � ↵⇤⇤.
Notice that when the two additional anti-diagonal equilibria
described in Lemma 1 are present they are also locally stable.
On the other hand, the two additional diagonal equilibria de-
scribed in Lemma 2 can be unstable in case of perturbations
on the direction of the anti-diagonal.
The proof of Theorem 1 then follows from the monotonicity
property (14) as illustrated in Figure 2.
If we apply our Theorem to the network dynamics related to
the interaction kernels of Examples 2 and 3 we obtain that
↵⇤ = ↵⇤

�

= 2
�

and ↵⇤⇤ = ↵⇤⇤
�

= 1
2 + 1

�

. This implies that
if �  4 our agents’ behavior is affected by too much noise
and no phase transitions are present when ↵ varies in [0, 1).

IV. NUMERICAL SIMULATIONS

In this section we report some simulations related to our
theoretical results. Our goal is to verify their stability when
the dynamics are associated to undirected networks Ĝ

n

=
(V, E) that have node set V = V1 [ V2, with |V1| = |V2| =
n/2, and where the number of connections between a node
belonging to V1 and a node belonging to V2 is relatively
low with respect to the number of connections within each
of these sets. In particular, we consider a stochastic block
model random network Ĝ

n

obtained as follows:
• we first generate two Erdős Rényi random graphs each

with n/2 nodes and with a probability p of existence
of an edge between two nodes;

• we connect every couple of nodes belonging to different
Erdős Rényi random graphs according to a probability
q << p.

The simulations will be performed on the network dynamics
associated with the interaction kernel of Example 2 and both
the network G

n

described in Assumption 1 and the random
network Ĝ

n

with p = 10�1 and q = 10�3, each of them
with n = 500 vertices. We will set parameter � to 4: this
implies that, in the case expressed in Theorem 1, we will
obtain ↵⇤ = 0.5 and ↵⇤⇤ = 0.75. Three situations will be
considered:

• ↵ = 0.58, where the dynamical system (13) has
two locally stable anti-diagonal equilibria in (1/2 ⌥
a(0.58), 1/2±a(0.58)) and a saddle point in (1/2, 1/2);



• ↵ = 0.77 where the dynamical system (13) has
two locally stable anti-diagonal equilibria in (1/2 ⌥
a(0.77), 1/2 ± a(0.77)), two diagonal saddle point in
(1/2±d(0.77), 1/2±d(0.77)), an unstable equilibrium
in (1/2, 1/2) and other possible equilibria in R0.77;

• ↵ = 0.93 where the dynamical system (13) has four
locally stable equilibria in (1/2⌥a(0.93), 1/2±a(0.93))
and in (1/2 ± d(0.93), 1/2 ± d(0.93)), an unstable
equilibrium in (1/2, 1/2) and other possible equilibria
in R0.93.

For each network and each value of ↵ we will perform 400
simulations for T = 30000 time steps starting from a random
state. Each final configuration will be represented by a point
in the square [0, 1]2. Our conjecture is that every random
dynamic can be attracted only by the locally stable equilibria
of system (13) and that no equilibria are present in the region
R

↵

. To verify this conjecture we highlight the neighborhoods
(radius 0.08) of locally stable equilibria belonging to the two
diagonals of the square [0, 1]2 and we measure the frequency
f̂400 according to which a dynamic will end up in one of
them.

(a) Network G500,
f̂400 = 0.8575.

(b) Network Ĝ500,
f̂400 = 0.5.

Fig. 3: Interaction kernel of Example 2 with ↵ = 0.58.

(a) Network G500,
f̂400 = 1.

(b) Network Ĝ500,
f̂400 = 0.9875.

Fig. 4: Interaction kernel of Example 2 with ↵ = 0.77.

(a) Network G500,
f̂400 = 1.

(b) Network Ĝ500,
f̂400 = 1.

Fig. 5: Interaction kernel of Example 2 with ↵ = 0.93.

V. CONCLUSION

In this paper we considered network games where players
are represented as nodes of a graph and their payoffs depend

both on the local aggregate of the their neighbors’ actions
and of the global aggregate of the whole population’s actions.
We focused on payoffs exhibiting local coordination and
global congestion effects, and on graph topologies that
are the disjoint union of two complete components. We
proved concentration results, as the population size grows
large, for the stationary distribution of the Markov chain
associated to the noisy best response dynamics. In particular,
we showed that the asymptotic behavior of such stationary
distribution is characterized by two phase transitions with
respect to a parameter measuring the relative strength of
the local coordination and the global congestion effects. Our
results are presented with reference to particular examples
of payoffs functions and noisy best responses. However,
since only hypotheses (1)-(2), (4), (6)-(8) are fundamental
for our results, we believe that many more cases can be
covered. Furthermore, as we can notice from the presented
simulations, we conjecture that our results can be generalized
to every network with strong community structure. Ongoing
work includes extensions of the results to more general
topologies both analytically and via simulations.
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