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The Capacity of Finite Abelian Group Codes Over
Symmetric Memoryless Channels

Giacomo Como and Fabio Fagnani

Abstract—The capacity of finite Abelian group codes over
symmetric memoryless channels is determined. For certain im-
portant examples, such as �-PSK constellations over additive
white Gaussian noise (AWGN) channels, with� a prime power, it
is shown that this capacity coincides with the Shannon capacity;
i.e., there is no loss in capacity using group codes. (This had previ-
ously been known for binary-linear codes used over binary-input
output-symmetric memoryless channels.) On the other hand,
a counterexample involving a three-dimensional geometrically
uniform constellation is presented in which the use of Abelian
group codes leads to a loss in capacity. The error exponent of the
average group code is determined, and it is shown to be bounded
away from the random-coding error exponent, at low rates, for
finite Abelian groups not admitting Galois field structure.

Index Terms—Capacity, channel coding theorem, error expo-
nent, geometrically uniform constellation, group codes, �-PSK,
nonbinary codes.

I. INTRODUCTION

I T is a well-known fact that binary-linear codes suffice to
reach capacity on binary-input output-symmetric channels

[1]–[3]. Moreover, by averaging over the ensemble of linear
codes, the same error exponent is achieved as by averaging over
the ensemble of all codes. The same has been proven to hold true
[4] for group codes over finite Abelian groups admitting Galois
field structure.

In this paper, we investigate the same question for group
codes employed over nonbinary channels exhibiting symme-
tries with respect to the action of a finite Abelian group . The
main example we have in mind is the additive white Gaussian
noise (AWGN) channel with input set restricted to a finite
geometrically uniform (GU) constellation [5] ( -PSK, for
instance) and with possibly hard- or soft-decision decoding
rule. In [6], it was conjectured that group codes should suffice
in this case to achieve capacity exactly as in the field case. On
the other hand, in [4] it was conjectured that group codes do
not achieve the random-coding exponent if the group does
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not admit Galois field structure. To our knowledge, there has
not been any progress towards any of these directions.

However, interest in group codes has not decreased in these
years. Indeed, they provide the possibility to use more spectrally
efficient signal constellations while keeping many good quali-
ties of binary-linear codes. More specifically, on the one hand,
group codes have congruent Voronoi region, invariant distance
profiles, and enjoy the uniform error property. On the other
hand, the nice structure of the corresponding minimal encoders,
syndrome formers, and trellis representations makes group
codes appealing for low-memory encoding and low-complexity
iterative decoding schemes. We refer to [7]–[20] and references
therein for an overview of the many research lines on group
codes which have been developing during recent years. Observe
that coset codes over finite fields allow to achieve capacity and
the random-coding error exponent of any memoryless channel
[2]. However, whenever the group structure does not match the
symmetry of the channel (e.g., binary coset codes on -PSK
AWGN channels, for ), or if the channel is not symmetric,
coset codes in general fail to be GU, do not enjoy the uniform
error property, and have noninvariant distance profiles.

Recently, group codes have made their appearance also in
the context of turbo concatenated schemes [21], [22] and of
low-density parity-check (LDPC) codes [23]–[26]. In the binary
case, an important issue, for these types of high-performance
coding schemes, is the evaluation of the gap to Shannon ca-
pacity, as well as the rate of convergence to zero of the word- and
bit-error rate. For regular LDPC codes such gaps have been eval-
uated quite precisely [23]–[28] and it has been shown that, when
the density parameters are allowed to increase, these schemes
tend to attain the performance of generic binary-linear codes. In
[24], [25], the authors extend such an analysis to LDPC codes
over the cyclic group , but they have to restrict themselves to
the case of prime . We believe that, without first a complete un-
derstanding of our original question, namely, if group codes do
themselves allow to reach capacity and the correct error expo-
nent, LDPC codes over general Abelian groups cannot be prop-
erly analyzed, since it cannot be understood whether the gap
to capacity is due to the group structure or to the sparseness of
the syndrome representation. In [29], a fundamental analysis of
LDPC codes over Abelian groups is proposed, based on the gen-
eral results for group codes presented in this paper.

Our work focuses on the case of finite Abelian groups and
is organized as follows. In Section II, we introduce all relevant
notation, we briefly resume the Shannon–Gallager theory
concerning the capacity and error exponents of memoryless
channels and basic concepts concerning GU constellations, and
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we formally state the main question whether group codes can
achieve capacity of a symmetric channel.

In Section III, we consider memoryless channels which are
symmetric with respect to the action of cyclic groups of
prime power order, and we determine (in a computationally ef-
fective way) the capacity achievable by group codes over such
channels. This capacity is called the -capacity and equals
the minimum of the normalized Shannon capacities of the chan-
nels obtained by restricting the input to all nontrivial subgroups
of . The results are contained in Theorem 5 which is an in-
verse coding theorem for group codes and in Theorem 7 which
exhibits an average result working on the ensemble of group
codes. The error exponent for the average group code is deter-
mined as well. It is shown that for , the average -code
is bounded away from the random-coding exponent at least at
low rates, confirming a conjecture of Dobrushin [4].

In Section IV, we show that for the -PSK AWGN channel,
the -symmetric capacity and the classical Shannon capacity
do coincide so that group codes allow to achieve capacity in this
case. This proves a conjecture of Loeliger [6].

In Section V, we present a counterexample based on a
three-dimensional GU constellation where, in contrast, the two
capacities are shown to differ from each other. It remains an
open problem whether using non-Abelian generating groups
the Shannon capacity can be achieved in this case.

Finally, in Section VI, we generalize the theory to channels
symmetric with respect to the action of arbitrary finite Abelian
generating groups.

II. PROBLEM STATEMENT

In this section, all relevant notation and definition are intro-
duced, and a formal statement of the problem is presented.

A. Notation

Throughout the paper, the functions and
have to be considered with respect to the same,

arbitrary chosen, base , unless explicit mention to
the contrary. For a subset , will denote
the indicator function of , defined by if ,

if .
For two groups and , we shall write to mean they

are isomorphic, while will mean that is a subgroup of
. Unless otherwise stated, we shall use the multiplicative no-

tation for a generic group , with denoting the null element.
When restricted to Abelian case, we shall switch to the additive
notation with denoting the null element.

Given a finite set , we shall consider the simplex
of probability measures on

. The discrete entropy function is defined by
. Similarly, for a continuous

space , we shall denote the set of probability densities
on and define the entropy function
by . Given , its -type
(or empirical frequency) is the probability measure

given by . Define the set of
types of all -tuples by , and let

be the set of all -types. The number of -types
is a quantity growing polynomially fast

in . In contrast, the set of -tuples of a given type , denoted
by

s.t.

has cardinality growing expo-
nentially fast with .

B. Coding Theory for Memoryless Channels

Throughout the present paper, memoryless channels (MCs)
will be considered, which are described by a triple ,
where is the input set, is the output set and, for every in ,

is a probability density on describing the conditional
distribution of the output given that the input has been trans-
mitted. The input set will always be assumed finite, while the
output set will often be identified with the -dimensional Eu-
clidean space . Nevertheless, all the results presented in this
paper continue to hold when is a discrete space as well; in
this case, it is simply needed to replace Lebesgue integrals with
sums over .1

We shall consider the th extension of an MC ,
having input set and output set and transition probability
densities . This motivates the name
memoryless, the various transmissions being probabilistically
independent once the input signals have been fixed.

As usual, a block code is any subset , while a decoder
is any measurable mapping . A coding scheme con-
sists of a pair of a code and a decoder. is the block length,
while will denote the transmission rate.

The probabilistic model of transmission is obtained by as-
suming that the transmitted codeword is a random variable (r.v.)

uniformly distributed over , and that the channel-output r.v.
has conditional probability density given . An

error occurs when the output is incorrectly decoded, i.e., it
is the event . The error probability of the coding
scheme is therefore given by

where is the error
probability conditioned on the transmission of the codeword .

It is well known that, given a code , the decoder mini-
mizing the error probability is the maximum-likelihood (ML)
one , solving cases of
nonuniqueness by assigning to a value arbi-
trarily chosen from the set of maxima of . Throughout
the paper, we shall always assume that ML decoding is used,
and use the notation and for and

, respectively.

1In fact, all the results hold true when� is a Borel space [32] and integrations
are carried on with respect to an abstract�-finite reference measure, with respect
to which all conditioned output measures are absolutely continuous.
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In order to state the classical channel-coding theorem we are
only left with defining the capacity and the random-coding ex-
ponent of an MC . The former is defined as

(1)
The latter is given, for , by

(2)

where, for every and

(3)
A well-known fact (see [2], [3]) is that

(4)

Moreover, the random-coding exponent is continuous,
monotonically decreasing, and convex in the interval ,
while the dependence of both and on the channel is
continuous.

Given a design rate and block length ,
the random-coding ensemble is obtained by considering a
random collection of possibly nondistinct -tu-
ples, sampled independently from , each with distribution

, where in is the optimal input distribu-

tion in (2). will denote the average error probability
with respect to such a probability distribution.

We can now state the Shannon–Gallager coding theorem for
MCs.

Theorem: Assume a MC is given, having capacity
and random-coding exponent . Then the following

holds.
(a)

In particular, this implies that the average error probability
tends to exponentially fast for , provided that
the rate of the codes is kept below .

(b) For every , there exists a constant inde-
pendent of such that for any coding scheme having rate
not smaller than , we have that .

C. Symmetric Memoryless Channels and Group Codes

In this paper, we shall focus on MCs exhibiting symmetries,
and on codes matching such symmetries.

In order to formalize the notion of symmetry, a few concepts
about group actions need to be recalled. Given a finite group

, with identity , and a set , we say that acts on if,
for every , there is defined a bijection of denoted by

, such that

In particular, we have that the identity map corresponds to
and the maps corresponding to an element and its inverse
are the inverse of each other. The action is said to be transitive
if for every there exists such that . The
action is said to be simply transitive if the element above is
always unique in . If acts simply transitively on a set ,
it is necessarily in bijection with , a possible bijection being
given by for any fixed . Finally, the action
of a group on a measure space is said to be isometric if it
consists of measure-preserving bijections. In particular, when
is a finite set, all group actions are isometric. In contrast, when

, this becomes a real restriction and is satisfied if the
maps are isometries of , i.e., maps preserving the
Euclidean distance.

Definition 1: Let be a group. An MC is said to
be -symmetric if

(a) acts simply transitively on ,
(b) acts isometrically on ,
(c) for every , , .

The simplest example of a -symmetric MC is the following
one, while a much richer family of symmetric MCs based on
GU signal constellations will be presented in Section II-D.

Example 1: ( -ary symmetric channel). Consider a finite
set of cardinality and some . The -ary
symmetric channel is described by the triple , where

if and otherwise.
This channel returns the transmitted input symbol as output
with probability , while with probability a wrong symbol
is received, uniformly distributed over the set . The spe-
cial case corresponds to the binary-symmetric channel
(BSC). The -ary symmetric channel exhibits the highest pos-
sible level of symmetry. Indeed, it is -symmetric for every
group of order . To see this, it is sufficient to observe
that every group acts simply and transitively on itself. Notice
that whenever for some prime and positive integer ,
the group can be chosen to be which is compatible with
the structure of the Galois field .

A first property of -symmetric channels is that, for both
their Shannon capacity and their random-coding exponent

, the maximizing probability distribution in
the variational definitions (1) and (2) can be chosen to be the
uniform distribution over the input set .

Since the input of a -symmetric MC can be identified with
the group itself, block codes for such channels are subsets

. However, it is natural to consider a subclass of codes
matching the symmetry of the channel: they are known as group
codes.

Definition 2: For a finite group , a -code is a subgroup
.

-codes enjoy many properties when used over -symmetric
MCs. In particular, [5] they have congruent Voronoi (ML de-
coding) regions, and invariant distance profiles. As a conse-
quence, the uniform error property (UEP) holds true, namely,
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the error probability does not depend on the transmitted code-
word: for every in .

Another important property is that their ML error probability
of a -code can be bounded by a function of its type-spectrum
only. For a code and a type in , let

be the number of codewords of of type . The
following estimate is proved using techniques similar to those
in [33]. It will be used in Section III-B while proving the direct
coding theorem for -codes.

Lemma 3: Let be a finite group, a -symmetric
MC, and a code such that . Then

(5)

Proof: See Appendix A.

Observe that Lemma 3 does not assume to be a -code.
However, when is a -code, (5) provides an estimate to
by the UEP.

A fundamental question arising is whether -codes allow to
achieve the capacity of a -symmetric MC. This is known to be
the case for binary-linear codes over binary-input output-sym-
metric channels. Moreover, as shown in [4], the same continues
to hold true whenever the group has the property that every
element in has the same order, i.e., when is isomorphic
to for some prime and positive integer . However, in [6]
Loeliger conjectured that -codes should suffice to achieve
capacity on the -PSK AWGN channel even for non-prime .
In the present paper, Loeliger’s conjecture will be proved to be
true for equal to a prime power. More generally, the capacity
achievable by -codes over -symmetric channels will be char-
acterized for any finite Abelian group , and a counterexample
will be presented showing that, when is not isomorphic to ,

-codes may fail to achieve Shannon capacity.

D. Geometrically Uniform Signal Constellations

A finite -dimensional constellation is a finite subset
spanning ; i.e., every can be written as

with . We shall restrict ourselves to the study
of finite constellations with barycenter , i.e., such that

: these minimize the average per-symbol energy
over the class of constellations obtained one from the other by
applying isometries.

We denote by its symmetry group, namely, the set of all
isometric permutations of with the group structure endowed
by the composition operation. Clearly, acts on . is said
to be geometrically uniform (GU) if this action is transitive; a
subgroup is a generating group for if for every

a unique exists such that , namely, if
acts simply transitively on . It is well known that not every

finite GU constellation admits a generating group (see [34] for

Fig. 1. 8-PSK constellation with the two labelings and� .

a counterexample). However, in what follows we shall always
assume that the constellations we are dealing with, do admit
generating groups, and, actually, Abelian ones.

Let be a finite -dimensional GU constellation equipped
with a generating group . Define the -AWGN channel as the

-dimensional unquantized AWGN channel with input set ,
output , and Gaussian transition densities given by

The -AWGN channel is -symmetric.
A well-known fact (see [7]) is that every finite GU constel-

lation lies on a sphere. With no loss of generality, we shall
assume that the radius of this sphere is .

The above construction of -symmetric channels with a finite
GU constellation as input can be extended to a much wider
class of channels. Indeed, one could consider the hard-decoded
version of the -AWGN channel, obtained by quantizing the
output over the Voronoi regions of through the map

Moreover, all the theory can be generalized to MCs having a GU
finite constellation as input and transition densities
which are functions of the Euclidean distance only.
As an example, one can consider the Laplacian channel with
transition probability densities given by

where is a parameter and is
the well-known Euler’s function.

In the following we present some examples of finite GU con-
stellations admitting an Abelian generating group. We start with
the simplest example, a binary constellation.

Example 2: (2-PAM). The 2-PAM constellation is defined by

It is trivial to see that is a generating group for .
It is also possible to show that is the only one-dimensional
GU constellation.

We now consider -PSK constellations, which are the main
practical example of finite GU constellations.
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Fig. 2. (a) -labeled 2-PAM ��-PSK; (b) -labeled� constellation.

Example 3: ( -PSK) For any integer , define
. The -PSK constellation is

Clearly, is two-dimensional for . It can be shown that
, where is the dihedral group with ele-

ments. admits , the Abelian group of integers modulo
, as a generating group. When is even there is another gen-

erating group (see [5], [6]): the dihedral group , which is
noncommutative for . It follows that the -PSK AWGN
channel is both -symmetric and (for even ) -sym-
metric. The constellation with the two possible labelings
and is shown in Fig. 1.

The next example shows how higher dimensional GU con-
stellations can be obtained as Cartesian products of lower di-
mensional ones. This example will be considered in Section VI,
to show how the -capacity can be evaluated for Abelian group
codes whose order is not a power of a prime.

Example 4: (Cartesian product constellation). For any in-
teger consider the family of three-dimensional GU con-
stellations parameterized by

Fig. 2(a) shows the special case . It is easy to show that
is a generating group for ; notice that, for odd

, . Thus, for odd , AWGN channels with
input -PSK -PAM are -symmetric.

Finally, we provide an example of an “effectively” three-di-
mensional constellation, i.e., one which is not obtained as the
Cartesian product of lower dimensional ones. This constellation
will be used as a counterexample in Section V.

Example 5: (3-D constellation) For even , we intro-
duce the family of three-dimensional (3-D) GU constellations,
parameterized by

An example with is shown in Fig. 2(b): observe that
even-labeled points and odd-labeled ones have an offset of .
It can be shown that, similarly to the constellations , the con-
stellations have two different generating groups, and

; so, -AWGN channels are both -symmetric and
-symmetric.

III. THE CODING THEOREM FOR -CODES ON

-SYMMETRIC MEMORYLESS CHANNELS

Given a prime and a positive integer , let be
a -symmetric MC, whose input has been identified with the
group itself with no loss of generality. For , con-
sider the MC obtained by restricting the input
of the original MC to the subgroup . We shall denote
by the Shannon capacity of such a channel, and by its
error exponent.

Definition 4: The -capacity of the MC is

its -error exponent is

It is easily observed that if and only if
. In the remainder of this section, the quantity

will be shown to be exactly the capacity achievable by
-codes over the -symmetric MC . In partic-

ular, in Section III-A it will be proven that reliable transmission
with -codes is not possible at any rate beyond . In
Section III-B, a random-coding argument will be used in order
to show that -codes of arbitrarily small error probability
exist at any rate below , and that is a lower
bound to the error exponent of the average -code of rate .
Section III-C will deal with issues of tightness of .

A. The Converse Coding Theorem for -Codes

Let be some -code of length and rate . Stan-
dard algebraic arguments (see [14], for instance) allow to show
that

for some nonnegative integers satisfying

For every , we consider the code
obtained by restricting the original code to the sub-
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group . This is tantamount to considering only those
codewords of of order not exceeding . It follows that

By denoting the rate of the subcode by , we get

(6)

We now apply the inverse channel coding theorem to the code
and to the MC obtained by restricting the

input of the original MC to the subgroup . Recalling
that denotes the Shannon capacity of such a channel, we get
that, if , then the error probability of the code is
bounded away from zero by some constant independent of the
block length . Since , and since both are -codes, by
the UEP we get that

It thus follows that, if , then the error probability of the
original -code itself is bounded away from zero indepen-
dently from its block length.

By repeating the argument above for all and using
(6), the following theorem is proved.

Theorem 5: Let be a -symmetric MC; denote
its -capacity by . Then, for every design rate
there exists a constant such that

for every -code of rate not smaller than .

B. A Coding Theorem for -codes

Theorem 5 provides a necessary condition for reliable trans-
mission using -codes on -symmetric channels: for this
to be possible, the rate must not exceed the -capacity .
However, it is not clear at all whether any rate below can
actually be achieved by means of -codes. In principle, there
could be other algebraic constraints coming into the picture,
which have been overlooked in our analysis. In fact, we shall
see that this is not the case: the condition will be
shown to be sufficient for reliable transmission using -codes
over a -symmetric MC.

Given a design rate in , we introduce the
-code ensemble as follows. For every block length ,

we set , and consider a random
parity-check operator uniformly distributed over the the
set of all homomorphisms from to .
Finally, let be the random -code obtained
as the kernel of , i.e., the set of all those -tuples in

such that . Observe that the rate of is determinis-
tically not smaller than . We are interested in estimating the
average error probability of the parity-check ensemble
of -codes of design rate .

A first step in our analysis consists in evaluating the average
type-spectrum. For any type in , let
be the number of codewords in the random code of type .
We have

(7)

The expected value of can be evaluated as follows.

Lemma 6: For every in , the average type spectrum
of the parity-check ensemble of -codes of design rate is
given by

where, for in , denotes the smallest integer
such that for all .

Proof: Consider the standard basis of .
Then, an equivalent condition for to be uniformly dis-
tributed over is that the r.v.’s , ,
are mutually independent and uniformly distributed over .

Let us now fix an -tuple of type . From the
definition of it follows that belongs to for all

, and that for some .
It follows that the r.v. is uniformly distributed
over , while the r.v. takes
values in and is independent from . Therefore,

is uniformly distributed
over . So, in particular, .

Hence, for any type in we have

the first equality above following from (7) and the linearity of
expectation.

Lemmas 6 and 3 allow us to prove the following fundamental
estimate on the average error probability of the parity-check en-
semble of -codes.

Theorem 7: Let be a -symmetric MC, and
let be its -error exponent. Then the average error
probability of the -code ensemble of design rate satisfies

Proof: For all let

be the subcode of consisting of the all-zero codeword and
of all the codewords of whose type is such that .
Observe that . By the UEP and the union bound
we have

(8)
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For every and , by applying Lemma 3
to the code and the MC , then Jensen’s in-
equality and Lemma 6, we get the bound on displayed
at the top of the page, where the summation index runs over

, over types in such that , and
over , the set of type- -tuples. Observe that

while, since the channel is stationary and memo-
ryless

Therefore, we get

where denotes the Gallager exponent of the MC
(as defined in (3)) and is the uniform

distribution over . Since the MC is
-symmetric, is the optimal input distribution. Then,

by optimizing the exponent over in ,
we get the error exponent , so that

The claim now follows by combining the above inequality with
(8), and recalling Definition 4.

Standard probabilistic arguments allow us to prove the fol-
lowing corollary of Theorem 7, estimating the asymptotic error
exponent of the typical -code.

Corollary 8: Let be a -symmetric MC of
-capacity and -error exponent . Then, for

every , we have

with probability one over the -coding ensemble of design
rate .

Proof: With no loss of generality, we can restrict ourselves
to rates , since otherwise and

the claim is trivial as . For any ,
define the event

By applying Theorem 7 and the Markov inequality, we obtain

Then , and the Borel–Can-
telli lemma implies that with probability one the event oc-
curs for finitely many in . Therefore, with probability one

. Finally, the claim
follows from the arbitrariness of in .

Corollary 9: Let be a -symmetric MC, and
let be its -capacity. Then, for all there
exist -codes of rate not smaller than and arbitrarily low
error probability.

C. On Tightness of the Error Exponent

Theorem 7 provides an exponential upper bound on the
average error probability of the parity-check ensemble of

-codes on a -symmetric MC. Corollary 8 states that the
same error exponent is asymptotically achieved by a typical
code sequence sampled from the -code ensemble.

A natural question arising is whether these bounds are tight.
We conjecture that is the correct error exponent for the
average -code at any rate , i.e., that

(9)

No proof of (9) in its full generality will be presented here.
Rather, we shall confine ourselves to consider the high-rate and
the low-rate regimes.

Theorem 10: For any nontrivial -symmetric MC, there
exist some such that (9) holds true for
the -code ensemble of design rate .

Proof: First we concentrate on the high-rate regime. For
rates close enough to , from the continuity of the ex-
ponents , it follows that for one
of the channels whose normalized capacity

Authorized licensed use limited to: MIT Libraries. Downloaded on April 24, 2009 at 14:59 from IEEE Xplore.  Restrictions apply.



2044 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 5, MAY 2009

coincides with the -capacity . It is known that
close to capacity the random-coding exponent coincides with
the sphere-packing exponent [2], [3]. Then, by applying the
sphere-packing bound to the subcode (whose
rate is not smaller than ), we get that, for all rates not
smaller than some

(10)

We shall now concentrate on showing the validity of (9) in
the low-rate regime. First, observe that at rate

(11)

the inequalities above being strict on nontrivial -symmetric
MCs. From the continuity of the error exponents as functions of
the rate , it follows that for any nontrivial -symmetric
MC

(12)

for some .
Notice that coincides with the -linear code

ensemble of rate . It is known [35] that is the correct
error exponent for the average -linear code. In fact, the argu-
ments developed in [36] in order to prove tightness of the error
exponent for the average code sampled from the random coding
ensemble only require pairwise independence of the random
codewords. In the -linear ensemble the events and

are independent whenever and are linearly in-
dependent in . Since the number of elements of lin-
early dependent on any in is at most , the arguments
of [36] can still be used to show that

Then, since , from (12) it follows
that

(13)

Finally, the claim follows from (10), (13) and Theorem 7.

Notice that, for , strict inequalities in (11) imply that

(14)

Therefore, for on any nontrivial -symmetric MC, the
average -code exhibits poorer performance than the average
code (i.e., a code sampled from the random-coding ensemble).
This result had been first conjectured in [4], where the author
hypothesized that the random-coding exponent of any -sym-
metric MC is achieved by the average -code only if
for prime , namely when admits Galois field structure.

However, it can be shown that, at low rates, is not
the correct error exponent for the -code ensemble. In fact,
similarly to the random-coding ensemble and the linear-coding
ensemble [35], it can be shown that at low rates the error expo-
nent of a typical -code is higher than . This is be-
cause the average error probability is affected by an asymptot-
ically negligible fraction of codes with poor behavior. In other
words, at low rates the bound of Corollary 8 is not tight. In a
forthcoming work [30], we shall show that the typical -code
achieves the expurgated error exponent on many -symmetric
MCs of interest, including the -PSK AWGN channel. Since it
is known that the random-coding ensemble does not achieve the
expurgated error exponent with probability one, this will show
that at low rates hierarchies for the average and the typical error
exponent can be reversed: while the average random code be-
haves better than the average group code, the typical group code
exhibits better performance than the typical random code.

IV. -CODES ACHIEVE CAPACITY ON THE

-PSK AWGN CHANNEL

This section will focus on the -PSK AWGN channel, for
which it will be shown that the -capacity coincides
with the Shannon capacity . As a consequence, -codes are
capacity-achieving for this important family of symmetric MCs,
thus confirming a conjecture of Loeliger [6].

Throughout this section will be some given prime number,
a fixed positive integer. The base of (and thus of the en-

tropy function ) will be . For in ,
will denote a primitive th root of will de-
note the -PSK AWGN channel, with input identified with

, output identified with the complex field , and tran-
sition probability densities accordingly given by

.
Recall that, by Definition 4, , where
is the Shannon capacity of the MC , i.e., the

AWGN channel with input restricted to the -PSK constella-
tion. Hence, the condition is equivalent to
for all . A simple inductive argument shows that this
is in turn equivalent to

(15)

The rest of the section will be devoted to the proof of (15). The
result will be achieved through a series of technical intermediate
steps.

We start by introducing some related probability densities
which will play a key role in the sequel:

• for every , in defined by

(with the second equality above following from the sym-
metry of the MC);

• for every and , in defined
by

(16)
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• for every and a probability distribution
in defined by

For any , consider the -PSK AWGN channel
. Since it is symmetric, its Shannon capacity

is achieved by a uniform distribution over the input .
The corresponding output probability density is given by

so that

(17)

Therefore, (15) is equivalent to

(18)

The following result relates the entropies of the discrete proba-
bility distributions and to those of the continuous
densities and .

Lemma 11: For every

(19)

(20)

Proof: See Appendix B, Subsection A.

As a consequence of Lemma 11 we have that (18) is equiva-
lent to

(21)

for all .
We pass now to the core of the argument which relies on geo-

metric considerations. For , fix an arbitrary point in
the output set , and consider the multiset of likelihood values
for the input -PSK, given by

Since the -PSK constellation is the disjoint union of
copies of the -PSK constellation each rotated by an angle
multiple of , we have

(22)

The geometry of the -PSK constellation implies that the
ordering of the multiset of likelihoods satisfies a fun-
damental nesting property with respect to the partition (22).
Roughly speaking, this property consists in that all the subsets

contain the same amount of highest values of the
set . More precisely, if is the th highest value in

for some and , then each

of the subsets contains at least elements not
smaller than . This is formalized in the following lemma.

Lemma 12: For every and , there exists a
partition

where each multiset is such
that, for all , belongs to , and

(23)

Proof: See Appendix B, Subsection B.

Observe that, with the notation introduced in Lemma 12

If we consider the probability distribution in
defined by

we have that the entropies and do

coincide, as and simply differ by a permu-
tation of .

Consider now the -adic expansion map ,
defined as follows: if is such that
for , then It is
a standard fact that is a bijection. Let be a

-valued random variable with distribution and
let the
corresponding -valued random variable. For , let

be the probability distribution of . A
straightforward computation shows that

(24)
We can now prove the following upper bound on the entropy

.

Lemma 13: For every

(25)

Proof: We have

where we first used the fact that where
is a bijection, then apply chain rule for entropy, and finally the
conditional entropy bound (see [37] for instance).

The next step of our argument consists in showing that the
probability distribution in —as defined in (16)—is
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a convex combination of for , so that—by
Jensen’s inequality—its entropy estimates from above the cor-
responding convex combination of the entropies of . The
proof of Lemma 14 below is based on certain properties of
the so called “permutahedron” of a given point in the -di-
mensional Euclidean space, which are derived in Appendix B,
Subsection C.

Lemma 14: For every , and , we have

(26)

Proof: See Appendix B, Subsection C.

We are finally in the position to prove the following funda-
mental result.

Theorem 15: For every positive integer , let be the
Shannon capacity of the -PSK AWGN channel. Then

(27)

Proof: Fix an arbitrary output . By successively ap-
plying (26), the Jensen inequality, and (25), we obtain

Therefore

Thus, (21) holds true for all , and this has previ-
ously been shown to be equivalent to the claim.

We summarize the results of the present section in the fol-
lowing.

Corollary 16: For any prime and positive integer , the
-capacity of the -PSK AWGN channel coincides with its

Shannon capacity, i.e., .

Combining Corollary 16 with Corollary 9, we can finally state
a result first conjectured by Loeliger in [6].

Corollary 17: -codes achieve the capacity of the -PSK
AWGN channel.

We observe that the key step for the validity of the results
of this section is Lemma 12. In fact, while all the other deriva-
tions do not depend on the particular -symmetric channel,
Lemma 12 heavily relied on the geometry of the -PSK
constellation. Hence, for all -symmetric channels for which
Lemma 12 holds, Theorem 15 and Corollary 16 continue to
be true. This is for instance the case for hard-decoded -PSK
AWGN channels and for the -ary symmetric channel of
Example 1.

V. A SYMMETRIC CHANNEL FOR WHICH GROUP CODES DO

NOT ACHIEVE CAPACITY

In the previous section, it was shown that, for the -PSK
AWGN channel, -capacity and Shannon capacity do coin-
cide. At this point, the question arising is whether this is the case
for any higher dimensional GU constellation admitting a gener-
ating group isomorphic to . In this section, we shall show
that the answer is negative in general. In fact, we shall provide
a whole family of counterexamples based on the 3-D constella-
tions introduced in Example 5. We shall prove that -capacity
of the AWGN channel with input constrained to some of these
constellations is strictly less than the corresponding Shannon ca-
pacity, thus leading to an effective algebraic obstruction to the
use of -codes.

For some integer , we consider the family of GU con-
stellations , parameterized by and defined by

Observe that is 3-D for , and recall that the symmetry
group of is isomorphic to the dihedral group , and that

admits two nonisomorphic generating groups: the cyclic
one and the dihedral one . Let us fix a standard de-
viation value , and consider the corresponding family of

-AWGN channels , whose -capacity will

be denoted by . For , will denote
the capacity of the AWGN channel with input restricted to the
subconstellation , so that

We start our analysis by considering the limit case . In
this case, coincides with an embedding of the -PSK
constellation and it is clearly not 3-D since it does not span

. Since orthogonal components of the AWGN are mutually
independent, for every , coincides with the
Shannon capacity of the -PSK-AWGN channel. Thus, all the
results of Section IV hold true: in particular, the -capacity
and the Shannon capacity coincide, i.e.,

(28)

Similar arguments can be applied, for every given , to
the subconstellation
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coinciding with a 3-D embedding of a rescaled -PSK. Ap-
plying the results of the previous section, we get that

(29)

Thus, for every , in order to check whether
and do coincide, one is only left to compare the nor-
malized capacities and .

If we now let the parameter go to , the constellation
approaches an -embedding of the 2-PAM constellation,

with the even-labeled points
collapsed into the point , and the odd labeled ones

into the point . Let us define
this limit constellation as . Notice that,
for every finite standard deviation value , the Shannon
capacity of the -AWGN channel is strictly positive, while

, since it is the capacity of an MC with indistin-
guishable inputs. A continuity argument yields the following
result.

Proposition 18: For every finite variance and any
integer , the family of -AWGN channels satisfies

Proof: See Appendix C.

Theorem 5 and Proposition 18 have the following immediate
consequence.

Corollary 19: For all variances , there exists a positive
finite such that, for any , -codes do not achieve
Shannon capacity of the -AWGN channel.

On the other hand, it can be proved that
, for all . Then, by a continuity argument

it can be shown that, for sufficiently small values of ,
, so that -codes do achieve capacity of

the -AWGN channel. Fig. 3 refers to the case :
the normalized Shannon capacities and are
plotted as a functions of the parameter (Monte Carlo simula-
tions).

VI. ARBITRARY FINITE ABELIAN GROUP

A. The Algebraic Structure of Finite Abelian Groups

In order to generalize the results of Section III, some basic
facts about the structure of finite Abelian groups need to be re-
called. We refer to standard textbooks in algebra ([38] for in-
stance) for a more detailed treatment.

Let be a finite Abelian group. Given define the
following subgroups of :

It is immediate to verify that if and only if
. Define

Fig. 3. Shannon capacity and -capacity of� -AWGN channel as functions
of �. It can be seen as � ��� � ��� �� ���� ���� ���� coincides with
� ��� only for values of � below a certain threshold. The maxima of � ���
and � ��� are achieved for values of � close to this threshold, i.e., the two
problems of optimizing respectively Shannon capacity and -capacity seem to
have similar solutions. The optimal values are strictly greater than the 8-PSK
AWGN capacity.

Write , where are dis-
tinct primes and are nonnegative integers; existence
and uniqueness of such a decomposition being guaranteed by
the fundamental theorem of algebra. It is a standard fact that
admits the direct sum decomposition

(30)

Each is a -module and, up to isomorphisms, can be
further decomposed, in a unique way, as a direct sum of cyclic
groups

(31)

The sequence will be called the spectrum
of , the sequence the multiplicity and,
finally, the double indexed sequence

will be called the type of . It will be convenient often to use
the following extension: for . Given a sequence
of primes , we shall say that is -adapted
if is a subsequence of . Notice that, once the sequence of
primes has been fixed, all -adapted Abelian groups are com-
pletely determined by their type (which includes the multiplic-
ities with the agreement that some of them could be equal
to ). We shall denote by the finite Abelian group having
type .

Notice that if is a finite Abelian group with type and
, the Abelian group has the same spectrum and mul-

tiplicity of and type .
If and are finite Abelian groups and ,

then and for every .
It follows that is surely noninjective if is not -adapted
or if any of the multiplicities in is strictly larger than the
corresponding in .
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B. The Inverse Channel Coding Theorem for Abelian -Codes

Suppose we are given a finite Abelian group having spec-
trum , multiplicity , and
type . Consider a -code of rate .
Clearly, is -adapted and for all ,
since otherwise the immersion of in would not be injec-
tive. Then can be decomposed as illustrated above in (30)
and (31). Let us fix a matrix

such that for every and . We shall say that is an
-compatible matrix. Define

(32)

An immediate consequence of the previous considerations is
that

These inclusions automatically give information-theoretic con-
straints to the possibility of reliable transmission using this type
of codes. Denote by the rate of and by the capacity
of the subchannel having as input alphabet the subgroup .
Then, a necessary condition for not to be bounded away
from by some constant independent of is that for
every -compatible . This does not give explicit constraints
yet to the rates at which reliable transmission is possible using

-codes. For this, some extra work is needed using the structure
of the Abelian groups . Notice that

It is useful to introduce the following probability distribution on
the pairs :

From the preceding definition, and recalling that ,
we have .

Denote now by the space of probability distributions
on the set of pairs with and .

We introduce the following definition.

Definition 20: Let be a finite Abelian group of spectrum
and type . Let be a -sym-

metric MC. For each -compatible matrix , let be the
capacity of the MC . The -capacity of the MC

is

-

(33)

where means that for some .

It clearly follows from our previous considerations that
is an upper bound to the rates at which reliable transmission is
possible using -codes. More precisely, we have the following

result which is an immediate consequence of the inverse channel
coding theorem.

Theorem 21: Consider a -symmetric channel and let
be its -capacity. Then, for every rate there exists a
constant , such that the error probability of any -code

of rate satisfies

C. A Coding Theorem for Abelian -Codes

Given a design rate and a splitting , for each
block length define

Let be the Abelian group having spectrum and type .
Consider a sequence of independent r.v.’s uniformly dis-
tributed over . Let be the corre-
sponding sequence of random -codes. We shall refer to such a
random code construction as the -coding ensemble of design
rate and splitting . Notice that has rate deterministically

not smaller than . Let denote the word error prob-
ability averaged over this ensemble. Theorem 7 admits the fol-
lowing generalization.

Theorem 22: Let be a -symmetric MC. For
every ,

-

where is the error exponent of the MC , and

By choosing such that

-

one has that for all . Therefore,
Theorem 22 has the following corollary.

Corollary 23: Let be a -symmetric MC of -ca-
pacity . Then, for every rate , there exists a

-code of rate not smaller than and arbitrarily low error
probability.

Finally, for , it is possible to optimize the error ex-
ponent over all splittings in . This leads to the following
definition of the -coding error exponent of a MC :

-
(34)
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By letting in be an optimal splitting in the max-
imization above, and using arguments similar to the proof of
Corollary 8, the following corollary can be proved.

Corollary 24: Let be a -symmetric MC of -ca-
pacity and -coding exponent . Then, for all

we have

with probability one over the -coding ensemble of design rate
and optimal splitting .

D. Examples

In the sequel, three examples will be presented with explicit
computations of for Abelian groups with particular al-
gebraic structure. First we examine groups admitting Galois
field structure, showing as in this case the -capacity co-
incides with the Shannon capacity , as follows from classical
linear-coding theory.

Example 6: Suppose that for some prime and
positive integer . Thus

Consequently, the only -compatible is given by
and therefore we have that in this case ,

. In other words, -codes achieve both the capacity and
the random-coding exponent of every -symmetric MC. This
had first been shown in [4]. In fact, in this case it is known that
linear codes over the Galois field suffice to achieve capacity
random-coding exponent.

However, GU constellations admitting a generating group
which is isomorphic to are affected by a constraint on
their bandwidth efficiency. In fact, if is a -dimensional GU
constellation admitting as a generating group, then standard
arguments using group representation theory allow to conclude
that

if
if

In the next example, we show that when , Defini-
tion 20 reduces to Definition 4 of Section III.

Example 7: Let . We want to show that

Notice first that in this case and . A vector
is -compatible if and only if for

every . Notice now that

where . Hence, .

Observe that simply consists of the probability dis-
tributions . Suppose we are given some in

. We have that

- -

Now

-

and equality holds true if and only if and for
every . Hence

Finally, the following example concerns one of the Cartesian
product GU constellations introduced in Example 4.

Example 8: Consider the constellation introduced in
Example 4 and an AWGN channel with input constrained to

. It is easy to show that the independence of orthogonal
components of the Gaussian noise imply that the capacity
of such a channel is equal to the sum of the capacities of its two
subchannels, and . This fact allows us to explicitly
write down the optimal splitting, i.e., the solution of
the variational problem (33) defining , as a function of the
parameter .

Since , we have that , , ,
and . Equation (33) reduces to

We claim that, for every , , and
the optimal splitting is given by

Indeed, we have that

In Fig. 4, is plotted: notice how the optimal splitting
follows the geometry of the constellation as is mono-
tonically increasing in with (as

goes to collapses onto constellation ) and
(as goes to

collapses onto constellation 2-PAM).
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Fig. 4. The optimal splitting for the Cartesian product constellation � as
a function of �.

VII. CONCLUSION

In this paper, we have analyzed the information-theoretical
limits of Abelian group codes over symmetric memoryless
channels. Our results generalize the classical theory for bi-
nary-linear codes over binary-input symmetric-output channels.
The main example we have in mind is the AWGN channel with
input restricted over a geometrically uniform constellation
admitting as a generating group and either soft or quantized
output. We have characterized the threshold value for the rates
at which reliable transmission is possible with -codes, which
we called the -capacity . The -capacity is defined as
the solution of an optimization problem involving Shannon
capacities of the channels obtained by restricting the input to
some of the subgroups of . We have shown that at rates below

, the average ML word error probability of the ensemble
of -codes goes to zero exponentially fast with the block
length, with exponent at least equal to the -coding exponent

, while at rates beyond , the word error probability
of any -code is bounded from below by a strictly positive
constant. We have proved that for the AWGN channel with
input constrained to -PSK constellations—with prime –the

-capacity coincides with the Shannon capacity , so that
in this case reliable transmission at any rate is in fact
possible using -codes.

Finally, we have exhibited a counterexample when :
it consists of the AWGN channel with as input a particular 3-D
constellation admitting as a generating group.

Among the still open problems we recall:
• giving a full proof that is tight for the average

-code, and analyzing the error exponent of the typical
-code;

• extending the theory to non-Abelian groups: indeed, it is
known [6], [8] that GU constellations with Abelian gen-
erating group do not allow to achieve the unconstrained
AWGN capacity.

APPENDIX A
PROOF OF LEMMA 3

For the reader’s convenience, all statements are repeated be-
fore their proof.

Lemma: Let be a finite group, a -symmetric
MC, and a code such that . Then

Proof: We start by recalling the Gallager bound [2]. Given
an MC , and a code , for every in and

, the conditioned word error probability satisfies

From the given code we generate the random code
, where is an r.v. uniformly distributed over the permu-

tation group (where acts on by permuting
its components, i.e., ) and is an r.v. uniformly
distributed over , independent from . Throughout the proof,
we shall denote by the average operator with respect to such
a probabilistic structure.

The crucial point here is that the average word error proba-
bility of the random code conditioned on the transmission of

is equal to the word error probability of conditioned on the
transmission of . In fact, for every we have that

and, since the channel is memoryless and stationary,
the ML decision region for the codeword in the code

coincides with , where denotes the ML decision re-
gion of in the code . Thus

Similarly, for any we have and, due to the
-symmetry of the channel, the ML decision region of in

coincides with , so that . There-
fore, we have

(35)

From (35), by applying the Gallager bound to each realization
of the random code , and observing that, for any ,

is uniformly distributed over the set of -tuples of type
and independent from , we get the equation at the top of

the following page, with the summation index running over
, over , over , and over .
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APPENDIX B
PROOFS FOR SECTION IV

A. Proof of Lemma 11

Lemma: For every

Proof: We have, for

and

B. Proof of Lemma 12

Lemma: For every and , there exists a
partition

where each multiset is such
that, for all , belongs to , and

Proof: Since the transition densities are
decreasing functions of the Euclidean distance ,
the decreasing ordering of the set coincides
with the increasing ordering of the set of distances

Define ,
for . Then

Let be the closest input in to the given output ,
i.e., is such that for all .
Then, either

(36)

or

(37)

hold true. Suppose that (36) holds true, and define
. Then

(38)
From (38) it follows that, for odd
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...

The claim follows, since for every , contains exactly
one with belonging to each coset of in

.
The case when (37) holds true instead of (36) is analogous,

while the case is much simpler.

C. Proof of Lemma 14

For any subset , let denote the convex hull
of , i.e., the smallest convex subset of containing . A
polytope is the convex hull of finite set . A general fun-
damental result (see [39]) states that is a polytope if
and only if it is bounded intersection of closed half-spaces. In
the sequel, we shall deal with a special class of polytopes: given
a point , we shall consider , i.e., the convex hull
of the set of all component permutations of . This is sometimes
called the (generalized) permutahedron of . The next result ex-
plicitly characterizes as the intersection of half-spaces.

Lemma 25: Let be such that

(39)

Then , where

Proof: In order to prove that it suffices to
note that, for every , . In fact, it is easy to check
that, due to (39), every constraint is satisfied. Since is convex
it immediately follows that .

We now prove the converse inclusion, , by
induction. The statement is trivially true for . Suppose
that the claim is true for every for some and let

be such that . Define

For each , define by
and, respectively,

. Consider the
facet

We observe that

(40)

where and are the projections of onto the linear
subspaces and , respectively,
and

In fact, the former inclusion in (40) is trivial since is defined
as the intersection of a subset of the half-spaces whose intersec-
tion defines , while for the latter it suffices to observe that,
for each , if is in , then

so that

For , let be any permu-
tation mapping the first elements onto , i.e., such that

. Define to be the set of
permutations such that is the identity. Notice
that commutes with in the sense that , for
all and . Let and

be the standard isomorphisms. By ap-
plying the inductive hypothesis to and ,
respectively, and then immersing back the results in by

and , respectively, we have that

(41)

For every we have and from
(40). Then (41) implies that and exist
such that

with defined by
. Therefore, for every , we have

, and so .

Lemma 26: Suppose real numbers
are given, such that

(42)
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Define and in

Then , i.e., is a convex combination of permuta-
tions of .

Proof: Equation (42) implies that ,
and, for every , . Then,
Lemma 25 can be applied to show that .

We can now prove Lemma 14.

Lemma: For every and , we have

Proof: We shall show that

(43)

Then, the claim will simply follow from the concavity of the
entropy function.

Let us consider the quantities introduced in Lemma 12.
For all , define

From (24) it follows that

while, from (16), we have

Fix a pair : from (23) we have

for every , , . Thus

Therefore, the coefficients satisfy (42) and
then Lemma 26 can be applied to conclude that

which in turn implies (43).

APPENDIX C
PROOF OF PROPOSITION 18

Proposition: For every finite variance and any
integer , the family of -AWGN channels satisfies

Proof: We start by observing that, for every ,

where the first inequality is due to the convexity of the func-
tion , the second one to the triangular inequality,
the third one comes from the fact that for every

, and the last one from the fact that and both lie
on a sphere of radius , so that .
Since

Lebesgue’s dominated convergence theorem can be applied (see
[32]) in order to exchange the order of the limit and the integral
in evaluating the expressions for any
. By this argument and the continuity of transition densities

, we get, in the limit
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Similarly, for every , define . In the
limit we get
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