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The Conjugate Gradient Method

e Solves large linear systems of equations.

e Proposed by Hestenes and Stiefel in the 1950’s as an
alternative to Gaussian elimination for large problems with
positive definite coefficient matrices.

e Adapted to solve nonlinear optimization problems.

e Nonlinear conjugate gradient was introduced by Fletcher and
Reeves in the 1960's. One of the first methods for solving large
scale nonlinear optimization problems.

e Requires no matrix storage and are faster than the steepest
descent method.
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The Linear Conjugate Gradient Method

The (linear) CG is an iterative method for solving a linear system

of equations
Ax=b (1)

where A is a symmetric, positive definite matrix.
This is equivalent of solving the optimization problem
1
min ¢(x) = §XTAX —b"x (2)

Vo(x) = Ax — b =r(x) (3)

Problem 1 and 2 have the same unique solution.
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Conjugacy

The CG method generates a set of conjugate vectors p; w.r.t. A,
these vectors are the step directions when minimizing ¢(x).
Definition

Two vectors v and u are conjugate w.r.t. A if u” Av =0.

uT Av is an inner product since A > 0, n vectors fulfilling this
property are linearly independent and are a base in R".
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Conjugate directions of A

Given any starting point xp and a set of conjugate directions
{po,p1,---,Pn—1} w.r.t. A. The sequence {xx} generated by

Xk+1 = Xk + QP
where ay is the minimizer of ¢ along xx + akpk, given by

r P
pL Apk

Qg =—

will minimize ¢ in at most n steps.
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Conjugate directions theorem.

Theorem
For any xg, the sequence x; generated by a set of conjugate
directions {po, pi,...,Pn—1} and the minimizing o will converge

to the solution x* in at most n steps.

Proof.

xX*—xp = Z,’-’;Ol okpk since py span R", multiplying this expression

pl A(x*—xo)
p Apx

since p] A(x* —x0) = —p/ 1. O

by kaA from the left gives oy = which gives o, = ay
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Geometrical Interpretation
If Ais diagonal, ¢ has its level-curve ellipse axes aligned with the

coordinate directions.

/’

Figure 5.1 Successive minimizations along the coordinate directions find the
minimizer of a quadratic with a diagonal Hessian in » iterations.
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Geometrical Interpretation

Figure5.2 Successive minimization along coordinate axes does not find the solution
in n iterations, for a general convex quadratic.
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Geometrical Interpretation

Diagonalize A and minimize along the new coordinate directions
£=5"1x

where
S=[m - P,

STAS is diagonal by the conjugacy property.
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Expanding Subspace Minimization

The residual is orthogonal to the previous search directions.

Theorem

For any xp, the sequence xy generated by a set of conjugate
directions method fulfils the properties

rkTp,-:0, fori=0,1,...,k—1
and xy is the minimizer of ¢ over the set

x0+span{po,p1,---,Pk—1}
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Conjugate Directions

How to generate the conjugate directions
e Take the eigenvectors v, of A.
e Modified Gram-Schmidt orthogonalization.
These procedures are computationally heavy and requires storage.
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The CG Method

The CG method computes py in an economical fashion that only
requires the previous direction px_;. This requires little storage
and computation. With the following update rule

Pk = —rk+ BrpPr—1-
Conjugagy is fulfilled if

_ rlApia
Be=—F—F—
Pi_1APk-1
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Algorithm 1 CG Algorithm
1. n=Axp—b

22 pp=—ro
3 k=0
4; while r, 1 > € do
r)] pi
b: Q= ——k
k p) Apx
6:  Xk41 = Xk + Qi Pk
7 1= A>T<k+1 —b
Ie11APk
8: — fkena
9 Pk41= —rk+1+ BrPk
10: k=k+1

11: end while
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Theorem for Algorithm 1

Theorem
Suppose the iterate k is not the solution, then

e r/ri=0fori=0,1,....k—1

e span{ry,...,rc} = span{ry,...,Akr}
e span{po,...,px} = span{ny,...,Akr}
e plApi=0, fori=0,1...,k—1

Therefore the sequence {xx} converges in at most k steps.
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Remark from the book:

"The conjugate gradient method should rather be called the
conjugate (search) direction method since it is the search
directions that are conjugate w.r.t. A and not the gradients.”
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The CG Method

Simplified updating formulas

_ i
pl Apk

-
3 Mer1Tk+1
L e
rkTrk
gives a more economical CG algorithm which is also the standard
implementation.

The major computational tasks is the vector matrix multiplication
Apk, the inner products kaApk, fkT+1Fk+1 and three vector sums.
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Rate of Convergence

e We have seen that the method converges in at most n steps.

o If the eigenvalues of A are generously distributed, the method
will converge in much fewer iterations.
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Krylow Subspace

Definition
The order-r Krylov subspace generated by an n-by-n matrix A and
a vector b of dimension n is the linear subspace spanned by the

images of b under the first r powers of A (starting from A® = /),
that is,

K, (A, b) = span{b,Ab,A%b,... , A" 1b}.
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Rate of Convergence
From the previous results we have that

Xk41 = Xg +0opo + - . . + QP
X1 = X0 + 7000 + - .. + 1A 1
Xk4+1 = X0 + PZ(A)FO

where P is a k:th order polynomial.

Since xx41 minimizes
Ix* = xkr1lla = G(x*) — d(xk+1)
over the Krylow subspace
X0 —i—span{ro,...,Akrg}

P} (A) solves
min||xo + P (A)ro —x*||a
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Rate of Convergence

From this formulation the following inequality can be derived

k1 = x*[[4 < minmax(L+XiPe(X)?)?[x0 — x*|%
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Convergence Theorem |

The following theorem is then proven by the construction of Pj.

Theorem

If A has r distinct eigenvalues, then, the CG method will converge
in at most r steps.
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Convergence Theorem I

The following theorem is given without proof.

Theorem
If A has n eigenvalues \1 < ... < A,, then

*1(12 )\n—k*>\1 2 * (12
s =R < (25 ) o=
n—

This implies...
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Convergence

That if we A have m large eigenvalues and n— m small such that
€> Ap_m — A1, then

[ Xm+1—x"||a = €llx0 — x*| A

Ay Mi-m An—m+1 ln
L [ T R R |

0 1

Figure 5.3 Two clusters of cigenvalues.
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Convergence

tog([lx-x*[[5)

uniformly djsmbuledi o
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Figure 5.4 Performance of the conjugate gradient method on (a) a problem in which
five of the eigenvalues are large and the remainder are clustered near 1, and (b) a matrix
with uniformly distributed eigenvalues.
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Convergence

Iog(llx-x*\l,i’)

/
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Figure 5.5 Performance of the conjugate gradient method on a matrix in which the
eigenvalues occur in four distinct clusters.
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Convergence

"It is generally true that if the eigenvalues occur in r distinct
clusters, the CG iterates will approximately solve the problem in
about r steps.”

Another quite conservative bound on convergence is given by

2
N k(A)—1 .
= x HAsz( (4) ) o = x* .

VE(A)+1
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Preconditioning

The convergence can be accelerated by the use of preconditioning,
which is a rescaling of the variables on the form

%X =Cx
Now we instead solve the system
CTAC'%=C"Tb
or equivalently minimize
H(%) = %)%TC’TAC’%? —(CTh)Tx

The convergence now depend on the eigenvalues of C~T AC™1
rather than A.
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Preconditioned CG

Given xp and M, M= C'C.

Po=—)0
k=0
while(rk+1 > €)
Ly
p) Apx
Xk+1 = Xk + Qi Pk
k41 = Ik + xApk
solve Myj1 = riq1 for yiq1

Qg =—

";Z;_l)’kJrl

!y
Pk+1 = —Yk+1+ BrPk
k=k+1

end while

Brk+1 =
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Algorithm 2 Preconditioned CG Algorithm

1:

._.
e

11:
12:
13:

e N a0k wN

= AXO — b
solve Myp = rg for yp
Po=—Y0
k=0
while kg1 > € do
o
p) Apx
Xk+1 = Xk + QP
k41 = rk + ok Apk
solve Myjy1 = riy1 for yiiq

Bri1 = M1 Ykt1
+1 v

Pk+1 = —Yk+1 + BrPxk
k=k+1
end while

A =
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Practical Preconditioners

The choice of M is a trade off between the effectiveness of M,
storage and the computational cost of solving My = r.

A common choice is the incomplete cholesky factorization
A=LLT

where an L that is sparser than L is computed, then M =L[LT,
now L is stored rather than M.
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When should CG be used?

The CG method should be used for large problems, otherwise
Gaussian elimination or other factorization algorithms are less
sensitive to rounding errors. The CG method also does not produce
fill in the arrays holding the matrix and has fast convergence.
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Nonlinear CG

Fletcher and Reeves showed how to the CG method to nonlinear
functions by making changes:

e «y is computed using line search.

e The gradient of the nonlinear objective has to be used.

32/43



Algorithm 3 FR

1:

_
= O

© ® N gk N

Given xg
Evaluate fy = f(xg), Vo = V£(x0)
po=—Vfo
k=0
while Vf, # 0 do
Compute o and set xx11 = Xk + QkPk-
Evaluate ka+1
5 VAL Vi
k+17 VeIV
Pk+1 = —ka+1 + Bk+1Pk
k=k+1

. end while

Reduces to the linear CG if f is strongly convex quadratic.
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Nonlinear CG

We have that
VE pie ==V El>+ BERV ] pes
so if ay is exact, then py is a descent direction.

The step lengths « could be chosen to fulfill the strong Wolfe
conditions

f(xk 4+ upr) < Fxk) + craxVE pr,
IV F (i +cuep) T il < —2VE pr.

This ensures a descent direction.
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The Polak-Ribiére Method
The Polak-Ribiére Method which alters the 8y update accordingly

= INAE k1 = ViTVf

has been shown to be more robust and efficient when applied to
general nonlinear functions, it is however the same when f is a
strongly convex quadratic function.

Now the strong Wolfe conditions does not guarantee that py is a
descent direction. However the modification

57@1 = max(O,ﬁ,ffl)

fixes this problem.
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The FR-PR

Global convergence can be guaranteed if |3| < |Bgr].

B — {BER, if, 1877 <187

ko i BN = |BER

There are some alternative choices for 5 presented in the book
that are not covered here.
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Modifications

e Quadratic interpolation along the search direction in the line
search gives an exact «y for strongly convex quadratic
functions.

e Restarting by setting 5, = 0 after every n iterations to refresh
the algorithm.
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Descent Lemma

Lemma

Suppose that FR is implemented with the strong Wolfe conditions
line search with 0 < co < 1/2 then the method generates descent
directions py satisfying

_ 1 < kaTpk < 2C2—1
11— ™ Hka||2 T 1-o
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FR Direction

A problem with the FR method is that if cos(fx) is small, a long
sequence of unproductive steps will follow, i.e. pxi1 = pk.

The PR method on the other hand produces a steepest descent
step if cos(fx) is small.

"In general FR should not be implemented w/o a restart strategy”.
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Global Convergence

Theorem

If the level set L = {x|f(x) < f(xo)} is bounded and that in some
open neighbourhood N of L, f is Lipschitz continuously
differentiable, then,

liminf || V| = 0.

40/ 43



Global Convergence

Theorem

Consider the PR method with an ideal line search. There exists a
twice continously differentiable function f and a starting point xg
such that the sequence {||Vfx||} is bounded away from zero.
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Numerical Comparison

Table 5.1 Iterations and function/gradient evaluations required by three
nonlinear conjugate gradient methods on a set of test problems; see [123]

Alg FR Alg PR Alg PR+
Problem " ‘ it/f-g ‘ it/'f-g ‘ it'f-g mod
CALCVAR3 200 2808/5617 | 2631/5263 | 2631/5263 0
GENROS 500 & 1068/2151 1067/2149 1
XPOWSING 1000 533/1102 212/473 97/229 3
TRIDIAIL 1000 264/531 262/527 262/527 0
MSQRT1 1000 4227849 113/231 113/231 0
NPOWELL 1000 568/1175 212/473 97/229 3
TRIGON 1000 2317467 40/92 40/92 0
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Exercises

1. Show that conjugate directions of A > 0 are linearly
independent.

2. Show that ||xo — x*[|3 = ¢(x0) — ¢(x*).
3. Verify formula (5.7) in the book.

4. Construct matrices with various eigenvalue distributions
(clustered and non-clustered) and apply the CG. Comment on
whether the behavior can be explained from Theorem 5.5.

5. Prove Theorem 5.2
6. Prove Theorem 5.3

The last two are easily found in the book but | think it is a good
exercise to be able to prove these on the whiteboard.
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