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Abstract— This note proposes a unified approach to analyse
linear time-invariant consensus problems via the use of integral
quadratic constraints (IQCs) without recourse to loop transfor-
mations, which may cloud the inherent structural properties
of the multi-agent networked systems. The main technical
hindrance to using IQCs lies in the presence of the marginally
stable integral action in consensus setups. It is shown that
by working with conditions defined on modified signal spaces
of interests and exploiting the graph structure underlying the
connections between the dynamic systems, IQC methods can
be applied directly to consensus analysis. A decentralised and
scalable condition for consensus is proposed in this setting,
which generalises some of the existing results in the literature.

Index Terms— consensus, multi-agent systems, feedback sys-
tems, integral quadratic constraints

AMS Subject Classifications—93A15, 93C05, 93C80

I. INTRODUCTION

The problems of consensus, where multiple agents in a
large-scale network are intended to collectively reach an
agreement on object of interest, have been studied exten-
sively in the literature; see the survey paper [1] for a list of
references. Consensus protocols find applications in various
areas such as flight formations, flocking behaviour, and
distributed computing. Various consensus algorithms have
been proposed for single and double integrator multi-agent
systems in [1], [2].

The theory of integral quadratic constraints (IQCs) intro-
duces a computationally attractive approach to encapsulating
structural uncertainties of open-loop systems [3]. It presents
itself as a useful tool in closed-loop stability/performance
analysis. IQC stability conditions, in their simplest forms,
are traditionally applied to open-loop stable components.
The integrator inherent in consensus problems is therefore
an impediment to the use of IQC analysis. One workaround
is to employ loop transformations to the systems to yield a
feedback interconnection whose stability implies that of the
original one [4], [5] — a related idea is exploited in [6] to
study systems with rate limiters. Specifically, the work [5]
considers the more general problem of synchronisation of
heterogenous linear time-invariant (LTI) systems perturbed
by nonlinear uncertainties. [4, Thm. 4] proposes an scalable
consensus certificate for heterogenous LTI systems inter-
connected on a possibly time-varying graph. In the case
where the network interconnection matrix is normal, a certain
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factorisation can be exploited to transform the systems to a
form to which IQC analysis is applicable to conclude higher-
order consensus (multiple poles at the origin) [7].

A main aim of this paper is to establish that the theory
of integral quadratic constraints (IQCs) [3] can be applied
directly to the study of consensus of LTI systems with-
out appealing to loop transformations to accommodate the
marginally stable integral dynamics in the open-loop plants
or exploiting structures of the interconnection matrices. This
input-output approach serves as an alternative to the results
in the literature, which are chiefly based on the generalised
Nyquist criterion. The idea is to modify the definition of
the standard frequency-domain L2 signal space with an
integration contour that avoids the pole at the origin and
apply IQC theory to the open-loop systems, which are stable
with respect to the new space. The proof method differs
from [3] in that graph-topological results of [8] are used
to establish closed-loop well-posedness for LTI systems,
thereby simplifying the IQC conditions for consensus. A
scalable distributed consensus certificate for heterogenous
networks that generalises a result in [4] is proposed within
the IQC setting using ideas from recent works [9], [10].

The paper is organised as follows. Notation is defined
in the following section. In Section III the problem of
consensus is formulated. IQCs are reviewed in Section IV
and consensus analysed. Section V proposes a decentralised
scalable consensus certificate within the IQC framework.
Finally, some concluding remarks are provided.

II. NOTATION AND PRELIMINARIES

A. Matrices

Let R and C denote the real and complex numbers
respectively. jR denotes the imaginary axis, C+ (resp. C̄+)
the open (resp. closed) right half complex plane, and | · |
the Euclidean norm. Given an A ∈ Cm×n (resp. Rm×n),
A∗ ∈ Cn×m (resp. AT ∈ Rn×m) denotes its complex
conjugate transpose (resp. transpose). Aij denotes the (i, j)
entry of A. The ith row and jth column of A are denoted
respectively by Ai• and A•j . Given a vector v ∈ Cn,
diag(v) ∈ Cn×n denotes the diagonal matrix whose diagonal
entires are v1, . . . , vn. Let ⊗ denote the Kronecker product
and ⊕ the direct sum of matrices. Define

⊕n
i=1Ai :=

A1 ⊕ A2 ⊕ . . . ⊕ An. In denotes the identity matrix of
dimensions n× n.

B. Function spaces

Define the Lebesgue space

L∞ :={φ : jR→ C |‖φ‖∞ := supω∈R |φ(jω)| <∞}



and the Hardy space

H∞ :=

{
φ ∈ L∞

∣∣∣∣ φ has analytic continuation into C+

with sups∈C+
|φ(s)| = ‖φ‖∞ <∞

}
.

Let C be the class of functions continuous on jR∪{∞}, and
S := H∞∩C. Note that C ⊂ L∞. An H ∈ Cn×n is said to
be Hermitian if H(jω) = H(jω)∗ for all ω ∈ R∪ {∞} and
positive definite if in addition, H(jω) > 0. Define a contour
parameterised by ε ≥ 0 as

Cε := j[ε,∞) ∪ {s ∈ C : |s| = ε,<(s) > 0} ∪ j(−∞,−ε],

that is, a straight line on the imaginary axis indented to the
right of the origin by a semi-circle of radius ε. In particular,
C0 = jR. Denote by C+

ε the open half plane that lies to the
right of Cε, i.e.

C+
ε := {s = σ + jω ∈ C | σ̄ + jω ∈ Cε =⇒ σ > σ̄},

and C̄+
ε its closure. Let Cε be the class of functions con-

tinuous on Cε ∪ {∞}. Given X ∈ Cn×m
ε , define ‖X‖∞ :=

sups∈Cε σ̄(X(s)), where σ̄(·) denotes the maximum singular
value. An H ∈ Cn×n

ε is said to be Hermitian if H(s) =
H(s)∗ for all s ∈ Cε ∪ {∞}.

Let the Lebesgue space Ln2 denote the class of functions
f : [0,∞) → Rn with finite energy, i.e. square-integrable
‖f‖22 :=

∫∞
0
|f(t)|2 dt < ∞. The Fourier transform of

f ∈ Ln2 is denoted f̂(jω) :=
∫∞

0
e−jωtf(t) dt. Note that

‖f̂‖2 = ‖f‖2 and f̂ has analytic continuation into C+ and
supσ>0 ‖f̂(σ + ·)‖2 = ‖f̂‖2 < ∞. The set of Fourier
transforms of functions in Ln2 is denoted Hn

2 . A linear
operator mapping between Banach spaces X : X → Y is
said to be bounded if

‖X‖X→Y := sup
f∈X :‖f‖X =1

‖Xf‖Y <∞.

Note that multiplication by a transfer function in S as an
operator on H2 defines a corresponding causal and bounded
LTI operator on L2 in the time domain via the Laplace
transform isomorphism [11].

For ε ≥ 0, define Hn
2ε to be the set of functions f̂ : C̄+

ε →
Cn that are analytic on C+

ε and square-integrable on Cε, i.e.
‖f̂‖2Cε :=

∫
Cε |f̂(s)|2 ds <∞. The ·̂ notation is occasionally

dropped when there is no need to distinguish between time
and frequency-domain signals. Note that Hn

2 = Hn
2ε when

ε = 0 and multiplication by a transfer function in Cε defines
a bounded operator on H2ε. Furthermore, H2ε is a Hilbert
space with inner product 〈u, v〉Cε :=

∫
Cε u(s)∗v(s) ds. It can

be seen that multiplication by an X ∈ S is bounded on H2ε

for all ε ≥ 0. One the other hand, multiplication by 1
s is

bounded on H2ε for ε > 0 but not on H2.

C. Graph theory

A graph is denoted by G = (V,E), where V =
{v1, . . . , vn} is the set of nodes and E ⊂ V × V , E =
{e1, . . . , em} is the set of edges such that ek = {vi, vj} ∈ E
if node i is connected to node j. A graph is undirected if
{vi, vj} ∈ E then {vj , vi} ∈ E. A path on G of length N is
an ordered set of distinct vertices {v0, v1, . . . , vN} such that

{vi, vi+1} ∈ E for all i ∈ {0, 1, . . . , N − 1}. An undirected
graph is said to be connected if any two nodes in V is
connected by a path. The adjacency matrix A = [Aij ] ∈
Rn×n is defined by Aij = 1 if {vi, vj} ∈ E and Aij = 0
otherwise. Note that A is symmetric for an undirected graph.
In an undirected graph, let the neighbours of node vi ∈ V
be defined as Ni := {vj ∈ V : {vi, vj} ∈ E} and
denote its degree by |Ni|. The graph Laplacian is defined as
L := diag(|Ni|)−A. L has a zero eigenvalue corresponding
to the vector of ones 1n ∈ Rn. The multiplicity of the
zero eigenvalue is one if the graph is connected [12]. The
Laplacian matrix can be factorised as L = DDT , where
D = [Dik] ∈ Rn×m is the incidence matrix. It is defined
by associating an orientation to every edge of the graph: for
each ek = {vi, vj} = {vj , vi}, one of vi, vj is defined to be
the head and the other tail of the edge.

Dik :=

 +1 if vi is the head of ek
−1 if vi is the tail of ek
0 otherwise.

Note that the Laplacian matrix is invariant to the choice of
orientation.

III. PROBLEM FORMULATION
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Fig. 1. Feedback interconnection for consensus.

Consider the feedback interconnection in Figure 1. There,
P :=

⊕n
i=1 Pi with the dynamical agents Pi ∈ S and Γ ∈

Sn×n denotes the interconnection matrix. The interactions
between the agents is determined by an underlying undi-
rected and connected graph G = (V,E), where each node
vi ∈ V is associated with a corresponding Pi and the edges
describe the communication/connections between the agents.
The following standing assumption is made throughout the
paper.

Assumption 3.1: Γ(0) has a simple zero eigenvalue corre-
sponding to the eigenvector 1n.

In the simplest case, Γ can be equal to L, the graph
Laplacian matrix for the graph G. Dynamics can be included
via the expression Γ = D diag(Γi)D

T , where D denotes the
incidence matrix and Γi ∈ S for i = 1, . . . ,m; see Figure 2.
Note that for both cases Γ satisfies Assumption 3.1 by the
connectedness of the graph G.

Definition 3.2: The interconnection in Figure 1 is said to
reach consensus if |yi(t) − yj(t)| → 0 as t → ∞ for all
i, j ∈ {1, 2, . . . , n}. That is, the agents asymptotically reach
an agreement in their output yi. In other words, lim

t→∞
y(t)

lies in the subspace spanned by 1n, i.e. span{1n}.



diag(Pi)

diag(Γi)

yẏ 1
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Fig. 2. A consensus setup with dynamical interconnection matrix.

IV. INTEGRAL QUADRATIC CONSTRAINT BASED
ANALYSIS OF CONSENSUS

This section introduces a unified framework within which
to analyse the problem of consensus using integral quadratic
constraints (IQCs) [3]. First an IQC-based stability result is
in order.

Definition 4.1: Given ε ≥ 0, P : Hn
2ε → Hn

2ε and
Γ : Hn

2ε → Hn
2ε in Sn×n, the feedback interconnection in

Figure 1: {
v = 1

sPw + f
w = Γv + e

(1)

is said to be H2ε-stable if the map (v, w) 7→ (f, e) has a
bounded inverse on H2n

2ε .
Given an ε ≥ 0, define the graph of X ∈ Cn×m

ε to be

Gε (X) :=

[
Im
X

]
Hm

2ε =

{[
u
y

]
∈ Hn+m

2ε : y = Xu

}
.

Similarly, define G′ε(X) :=
[
X
Im

]
Hm

2ε.
Theorem 4.2: Given ε > 0, P, Γ ∈ Sn×n, the feedback

interconnection of 1
sP and Γ in Figure 1 is H2ε-stable if

there exists a Π ∈ C2n×2n
ε such that the following IQC

conditions hold:

(i) 〈v,Πv〉Cε ≥ 0 for all v ∈ Gε
(

1
sP
)
;

(ii) there exists a γ > 0 for which 〈w,Πw〉Cε ≤ −γ‖w‖2Cε
for all w ∈ G′ε(τΓ) and τ ∈ [0, 1].

Proof: Using an argument in [13], let Ψ := 2Π + γI ,
the IQC conditions become

〈v,Ψv〉Cε ≥ γ‖v‖2Cε ∀v ∈ Gε
(

1

s
P

)
and

〈w,Ψw〉Cε ≤ −γ‖w‖2Cε ∀w ∈ G
′
ε(τΓ), τ ∈ [0, 1].

It follows that for any v ∈ Gε
(

1
sP
)
, w ∈ G′ε(τΓ) and τ ∈

[0, 1],

γ(‖v‖2Cε + ‖w‖2Cε)
≤〈v,Ψv〉Cε − 〈w,Ψw〉Cε
= 〈v + w,Ψ(v + w)〉Cε − 2〈w,Ψ(v + w)〉Cε
≤‖Ψ‖∞‖v + w‖2Cε + 2‖Ψ‖∞‖w‖Cε‖v + w‖Cε

≤‖Ψ‖∞‖v + w‖2Cε +
2‖Ψ‖2∞‖v + w‖2Cε

γ
+
γ

2
‖w‖2Cε ,

where the last inequality holds since 2xy ≤ x2

β + βy2 for
any x, y, β ∈ R. This implies(

1 +
2

γ
‖Ψ‖∞

)
‖Ψ‖∞‖v + w‖2Cε ≥ γ‖v‖

2
Cε +

γ

2
‖w‖2Cε

≥ γ

2
‖w‖2Cε

=⇒ ‖v + w‖2Cε ≥ η
2‖w‖2Cε , (2)

for any positive η ≤ γ√
2‖Ψ‖∞(γ+2‖Ψ‖∞)

.

Now observe that τ ∈ [0, 1] 7→ τΓ is continuous in
the graph topology induced by the gap metric with the
ambient space taken to be H2ε [8]. Since the feedback
interconnection is H2ε-stable for τ = 0, inequality (2) shows
that the corresponding robust stability margin bM,N in [8,
Section 5] is bounded away from zero with N = Gε

(
1
sP
)

and M = G′ε(0); see [14, Lem. 3.2.8]. Application of [8,
Thm. 3] then leads to the feedback connection being stable
for τ ∈ [0, ζ] for some non-zero ζ. Repetitively using the
aforementioned arguments yields feedback stability for τ ∈
[ζ, 2ζ], [2ζ, 3ζ], . . ., and eventually for τ = 1, as required.

The main result on consensus is stated next.
Theorem 4.3: The feedback configuration in Figure 1 with

P :=
⊕n

i=1 Pi : Pi ∈ S and Γ ∈ Sn×n that satisfies
Assumption 3.1 reaches consensus if there exists a Π ∈
C2n×2n such that

(i)
[

In
1
jωP (jω)

]∗
Π(jω)

[
In

1
jωP (jω)

]
≥ 0 ∀ω ∈ (0,∞];

(ii)
[
τΓ(jω)
In

]∗
Π(jω)

[
τΓ(jω)
In

]
≤ −γ ∀ω ∈ (0,∞], τ ∈

[0, 1], where γ is some positive constant.
Proof: The conditions of the theorem imply that the

IQC conditions in Theorem 4.2 are satisfied for arbitrarily
small ε > 0, whereby the feedback configuration is H2ε-
stable. In turn, this implies that

1

s
P (s)

(
I − Γ(s)

1

s
P (s)

)−1

= P (s)(sI − Γ(s)P (s))−1

has no poles on C̄+\{0}, i.e. det(sI − Γ(s)P (s)) has no
zeros on C̄+\{0}. Moreover, by Assumption 3.1, det(sI −
Γ(s)P (s)) has a simple zero at the origin corresponding to
the null space N satisfying P (0)N ⊂ span{1n}.

Now note that for any e, f ∈ L2, it can be derived from
(1) and Figure 1 that

ŷ =
1

s
P (I − Γ

1

s
P )−1(ê+ Γf̂)

= P (sI − ΓP )−1(ê+ Γf̂),

which has a simple pole at the origin. As such, it follows
from the above that ŷ = v̂ + ŵ, for some v̂ ∈ H2 and
ŵ ∈ 1

s span{1n}. Taking the inverse Laplace transform yields
that y = v+w, where limt→∞ v(t) = 0 because v ∈ L2 and
w(t) is a constant vector with equal entries for all t ≥ 0. In
other words, the feedback interconnection reaches consensus
as time approaches infinity.

Remark 4.4: It can be seen from the proof of Theorem 4.2
that the conditions of Theorem 4.3 may also be written as



(i)
[

In
1
jωP (jω)

]∗
Π(jω)

[
In

1
jωP (jω)

]
≥ γ > 0;

(ii)
[
τΓ(jω)
In

]∗
Π(jω)

[
τΓ(jω)
In

]
≤ 0 ∀τ ∈ [0, 1],

for all ω ∈ (0,∞].

V. SCALABLE CONSENSUS CONDITIONS

Consider the consensus setup in Figure 2, where P :=⊕n
i=1 Pi : Pi ∈ S, Γ :=

⊕m
i=1 Γi : Γi ∈ S, and D denotes

the incidence matrix of a connected graph G. Given a B ∈
Cm×n such that |B•j | = 1 for j = 1, 2, . . . ,m, i.e. columns
of B are normalised, let

Cij :=

{
0 if Bij = 0
B−1
ij otherwise. (3)

Theorem 5.1: Suppose there exist B ∈ Cm×n with nor-
malised columns, H :=

⊕n
i=1Hi, J :=

⊕n
i=1 Ji with

Hi, Ji ∈ C and K ∈ Cn×n such that Hi + H∗i is positive
definite, Ji,K are positive semidefinite, for i = 1, . . . , n,
and

(i) [DΓ(jω)∗DT ](τJ(jω)−K(jω))[DΓ(jω)DT ] ≤ 0 for
all τ ∈ [0, 1] and ω ∈ (0,∞];

(ii) for all i = 1, . . . ,m and ω ∈ (0,∞],[
In
In

]∗
Πi(jω)

[
In
In

]
≥ γ > 0,

where
Πi =

[
H +H∗ + J Φi

Φ∗i Ωi

]
,

with

Φi := −H(diag(C∗i•)D•i)Γi(D
T
i•diag(Ci•))

1

s
P, (4)

Ωi := −
(

1

s
P

)∗
diag(C∗i•)D•iΓ

∗
iD

T
i•K

D•iΓi(D
T
i•diag(Ci•))

1

s
P,

and C is as defined in (3). Then the feedback connection in
Figure 2 reaches consensus.

Proof: It can be shown as in [9, Thm. 3.1] that the
hypothesis implies[

τDΓ(jω)DT

In

]∗
Π(jω)

[
τDΓ(jω)DT

In

]
≤ 0

and [
In

1
jωP (jω)

]∗
Π(jω)

[
In

1
jωP (jω)

]
≥ γ > 0

for all τ ∈ [0, 1] and ω ∈ (0,∞], where

Π :=

[
H +H∗ + J −HDΓDT

−DΓ∗DTH∗ −DΓ∗DTKDΓDT

]
.

Consensus then follows from Theorem 4.3.
The consensus certificate in Theorem 5.1 is distributed and

scalable in that it involves only each Γi and the associated
agents Pi’s as manifested by the incidence matrix; see (4).

A ‘complementary’ distributed certificate can also be stated
in terms of each individual Pi.

Theorem 5.1 generalises [4, Thm. 1] in the following
manner. The original versions of these results are derived
to establish closed-loop stability. In particular, the sibling
of Theorem 5.1, [9, Thm 3.1], generalises the stability
certificate in [10]. Via a specific choice of the parameter
H , the latter reduces to a Nyquist graphical test involving
ellipses across frequency. It is shown to be stronger than [15,
Thm. 1], the sibling of [4, Thm. 1], in that the ellipses are
subsets of the S-hulls employed in [15].

VI. CONCLUSIONS

The paper establishes a way for integral quadratic con-
straint based analysis to be applied directly to the inves-
tigation of consensus problems without the need of loop
transformations. It also proposes a scalable and distributed
test for consensus, which extends previous results in this
direction. The more general problem of synchronisation may
be examined along similar lines as future research.
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