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Abstract— A general framework for the study of robust
synchronisation in large-scale networks is provided. Agents are
represented as a common nominal linear time-invariant (LTI)
single-input-single-output (SISO) system with simple poles on
the imaginary axis, subject to LTI SISO stable multiplicative
perturbations. The agents exchange information in order to
achieve output-synchronisation, namely steer their outputs to
the same, possibly time-varying, signal. Such an information
exchange is modeled through a sparse dynamical operator that
maps the outputs of the agents into their inputs. The theory of
integral quadratic constraints is used to capture the structural
uncertainties of the perturbations, and to give certificates for
robust synchronisation of the systems. Since the IQC theory is
nominally applied to open-loop stable systems, the main idea
is to introduce a new space of signals with respect to which
the notion of feedback stability implies that of synchronisation
under appropriate assumptions on the interconnection operator.
The proposed criterion unifies and extends several results in the
literature.

Index Terms— Synchronisation, heterogeneous networks, ro-
bustness, integral quadratic constraints

I. INTRODUCTION

Synchronisation in large-scale networks is a ubiquous
phenomenon that takes place both in natural and engineered
contexts. In the former, examples arise from biological or
energy-exchanging networks [1]; in the latter, clock synchro-
nisation or power network phase locking. One of the most
studied synchronisation problems is consensus, or agreement,
in which agents in a large-scale network exchange informa-
tion in order to agree over time on some quantity of interest,
usually the average of their initial conditions. The network’s
structure is captured by a communication graph G = (V, E)
in which V is the set of nodes/agents, and an edge (i, j) ∈
E ⊆ V×V exists if and only if node j can receive information
from node i. The most popular consensus strategy is the
linear consensus algorithm [2], [3], where each agent is an
integrator whose input is given by a weighted difference
between its neighbor’s states and its own state. Despite its
simplicity, the linear consensus algorithm has been employed
as basic tool for a number of more complex tasks such
as formation control, distributed estimation, load balancing,
distributed optimisation, distributed demodulation [4], [5],
[6], [7]. However, it is often the case that agents cannot be
represented as simple integrators. For example, in formation
control agents can be more realistically represented as second
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order systems, clocks can be modeled as double integrators,
and power plants as systems with a couple of complex
conjugate poles. For this reason, in the last decade there
appeared an increasing number of studies on higher order
consensus networks, in which agents can be represented as
generic linear time-invariant (LTI) single-input-single-output
(SISO) systems, and synchronisation is meant as output-
synchronisation. These works address both the homogeneous
case [8], [9], in which agents are represented by the same
system, and the heterogeneous case, in which agents exhibit
some degree of difference. A particularly studied scenario is
when agents can be represented as additive or multiplicative
stable perturbations of the same nominal system [10], [11],
[12]. This is the scenario considered in this paper.

We examine a network of agents that are modeled as
a common nominal LTI SISO system multiplicatively per-
turbed by stable LTI SISO operators. The nominal system
has poles in the closed half-plane C−, of which those on
the imaginary axis are assumed to be simple. This setting
encompasses scenarios such as consensus networks or net-
works of oscillators. Agents are interconnected through a
(possibly dynamical) sparse LTI interconnection operator Γ
that maps their outputs into their inputs, and that is consistent
with the communication graph in the sense that [Γ]ij , from
the j-th output to the i-th input, is not the zero operator if
and only if (j, i) ∈ E . We provide general synchronisation
certificates that unify certain ad hoc methods in the literature
by employing the powerful robustness analysis tool known
as Integral Quadratic Constraint (IQC) theory [13].

The classical IQC theory aims at studying stability of
feedback interconnections by capturing the characteristics
and the structural uncertainties of open-loop stable systems
via quadratic inequalities, where stability is defined in the
classical sense of having no singularities in the closed right-
half plane. As such, it cannot be directly applied to the
case considered in this paper, in which agents can share
marginally stable poles on the imaginary axis. A usual
approach to circumventing this problem is by employing
loop-trasformations to convert the system into one that can be
cast into the IQC framework [14], [12]. The objective of this
paper is to show that, instead, the IQC theory can be applied
directly to the study of synchronisation of heterogeneous
systems. This approach allows for a less constrained usage of
the theory itself and for a clearer relation between the char-
acteristics of the systems and the possibility to achieve syn-
chronisation. Furthermore, since the interconnection operator
is allowed to be a dynamical system, we recover scenarios
such as time-delayed information communication [15].



Differently from the usual generalised Nyquist criterion
based approach in the literature, we shall introduce in this
paper a non-classical frequency-domain L2 signal space
with an integration contour that avoids via indentations the
marginally stable poles, and apply IQC theory to the open-
loop systems, which are ‘stable’ with respect to the new
space. The IQC based closed-loop stability proof method
differs from [13] in that graph-topological results of [16] are
used to establish closed-loop well-posedness for LTI systems,
thereby simplifying the IQC conditions for synchronisation.

As a final note, we distinguish the results presented here
from the literature on heterogeneous networks in which
agents are completely different, and as such the design of
the interconnection operator is more involved [17]. This
interesting problem is left for future research.

The paper is organised as follows. Notation is defined
in the following section. In Section III the problem of
synchronisation is formulated. The main result is given in
Section IV. Finally, some concluding remarks are provided.

II. NOTATION AND PRELIMINARIES

A. Matrices

Let R and C denote the real and complex numbers
respectively. jR denotes the imaginary axis, C+ (resp. C̄+)
the open (resp. closed) right half complex plane, and | · |
the Euclidean norm. Given an A ∈ Cm×n (resp. Rm×n),
A∗ ∈ Cn×m (resp. AT ∈ Rn×m) denotes its complex
conjugate transpose (resp. transpose). Aij denotes the (i, j)
entry of A. The ith row and jth column of A are denoted
respectively by Ai• and A•j . Given a vector v ∈ Cn,
diag(v) ∈ Cn×n denotes the diagonal matrix whose diagonal
entires are v1, . . . , vn. Let ⊗ denote the Kronecker product
and ⊕ the direct sum of matrices. Define

⊕n
i=1Ai :=

A1 ⊕ A2 ⊕ . . . ⊕ An. In denotes the identity matrix of
dimensions n× n.

B. Function spaces

Define the Lebesgue space

L∞ :={φ : jR→ C |‖φ‖∞ := supω∈R |φ(jω)| <∞}
and the Hardy space

H∞ :=

{
φ ∈ L∞

∣∣∣∣ φ has analytic continuation into C+

with sups∈C+
|φ(s)| = ‖φ‖∞ <∞

}
.

Let C be the class of functions continuous on jR∪{∞}, and
S := H∞ ∩C. Note that C ⊂ L∞. An H ∈ Cn×n is said
to be Hermitian if H(jω) = H(jω)∗ for all ω ∈ R ∪ {∞}
and positive definite if in addition, H(jω) > 0.

Given an ε > 0 and a point jq ∈ jR, define the semi-circle
of radius ε in the right-half plane as

Sε(jq) := {s ∈ C : |s− jq| = ε,<(s) > 0}
and S0(jq) := {}. Given a finite ordered set jQ =
{jq1, jq2, . . . , jqK} ⊂ jR with q1 > q2 > . . . > qK , define

a contour parameterised by ε ≥ 0 as

Cε(jQ) := j[q1 + ε,∞)

∪ Sε(jq1) ∪ j[q2 + ε, q1 − ε]
∪ Sε(jq2) ∪ j[q3 + ε, q2 − ε]

...
∪ Sε(jqK) ∪ j(−∞, qK − ε].

that is, a straight line on the imaginary axis indented to
the right of every point in jQ by a semi-circle of radius
ε. In particular, notice that C0(jQ) = jR for any jQ ⊂ jR.
Denote by C+

ε (jQ) the open half plane that lies to the right
of Cε(jQ), i.e.

C+
ε (jQ) := {s = σ+jω ∈ C | σ̄+jω ∈ Cε(jQ) =⇒ σ > σ̄},

and C̄+
ε (jQ) its closure. Let Cε(jQ) be the class of functions

continuous on Cε(jQ) ∪ {∞}. Given X ∈ Cε(jQ)n×m,
define ‖X‖∞ := sups∈Cε(jQ) σ̄(X(s)), where σ̄(·) denotes
the maximum singular value. An H ∈ Cε(jQ)n×n is said to
be Hermitian if H(s) = H(s)∗ for all s ∈ Cε(jQ) ∪ {∞}.

Let the Lebesgue space Ln2 denote the class of functions
f : [0,∞) → Rn with finite energy, i.e. square-integrable
‖f‖22 :=

∫∞
0
|f(t)|2 dt < ∞. The Fourier transform of

f ∈ Ln2 is denoted f̂(jω) :=
∫∞

0
e−jωtf(t) dt. Note that

‖f̂‖2 = ‖f‖2 and f̂ has analytic continuation into C+ and
supσ>0 ‖f̂(σ + ·)‖2 = ‖f̂‖2 < ∞. The set of Fourier
transforms of functions in Ln2 is denoted Hn

2 . A linear
operator mapping between Banach spaces X : X → Y is
said to be bounded if

‖X‖X→Y := sup
f∈X :‖f‖X =1

‖Xf‖Y <∞.

Note that multiplication by a transfer function in S as an
operator on H2 defines a corresponding causal and bounded
LTI operator on L2 in the time domain via the Laplace
transform isomorphism [18].

For ε ≥ 0 and finite subset jQ ⊂ jR, define Hn
2ε(jQ)

to be the set of functions f̂ : C̄ε(jQ) → Cn that are
analytic on C+

ε (jQ) and square-integrable on Cε(jQ), i.e.
‖f̂‖2Cε(jQ) :=

∫
Cε(jQ)

|f̂(s)|2 ds < ∞. The ·̂ notation is
occasionally dropped when there is no need to distinguish
between time and frequency-domain signals. Note that Hn

2 =
Hn

2ε(jQ) when ε = 0 and multiplication by a transfer
function in Cε(jQ) defines a bounded operator on H2ε.
Furthermore, H2ε is a Hilbert space with inner product
〈u, v〉Cε(jQ) :=

∫
Cε(jQ)

u(s)∗v(s) ds. It can be seen that
multiplication by an X ∈ S is bounded on H2ε for all ε ≥ 0.
One the other hand, given a q ∈ R, multiplication by 1

s−jq
is bounded on H2ε({jq}) for all ε > 0 but not on H2.

C. Graph theory

A graph is denoted by G = (V,E), where V =
{v1, . . . , vn} is the set of nodes and E ⊂ V × V , E =
{e1, . . . , em} is the set of edges such that ek = {vi, vj} ∈ E
if node i is connected to node j. A graph is undirected if
{vi, vj} ∈ E then {vj , vi} ∈ E. A path on G of length N is



an ordered set of distinct vertices {v0, v1, . . . , vN} such that
{vi, vi+1} ∈ E for all i ∈ {0, 1, . . . , N − 1}. An undirected
graph is said to be connected if any two nodes in V is
connected by a path. The adjacency matrix A = [Aij ] ∈
Rn×n is defined by Aij = 1 if {vi, vj} ∈ E and Aij = 0
otherwise. Note that A is symmetric for an undirected graph.
In an undirected graph, let the neighbours of node vi ∈ V
be defined as Ni := {vj ∈ V : {vi, vj} ∈ E} and
denote its degree by |Ni|. The graph Laplacian is defined as
L := diag(|Ni|)−A. L has a zero eigenvalue corresponding
to the vector of ones 1n ∈ Rn. The multiplicity of the
zero eigenvalue is one if the graph is connected [19]. The
Laplacian matrix can be factorised as L = DDT , where
D = [Dik] ∈ Rn×m is the incidence matrix. It is defined
by associating an orientation to every edge of the graph: for
each ek = {vi, vj} = {vj , vi}, one of vi, vj is defined to be
the head and the other tail of the edge.

Dik :=

 +1 if vi is the head of ek
−1 if vi is the tail of ek
0 otherwise.

Note that the Laplacian matrix is invariant to the choice of
orientation.

III. PROBLEM FORMULATION
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Fig. 1. Feedback setup for synchronisation.

Consider the feedback interconnection in Figure 1. There,
P :=

⊕n
i=1 Pi with the dynamical agents Pi ∈ S and

Γ ∈ Sn×n denotes the interconnection matrix. Z is a scalar
proper rational transfer function analytic on C+ and has a
finite number of non-repeated poles on jR. These poles on
the imaginary axis describe the trajectory of the output signal
y under synchronisation. The interactions between the agents
is determined by an underlying undirected and connected
graph G = (V,E), where each node vi ∈ V is associated
with a corresponding Pi and the edges describe the commu-
nication/connections between the agents. Figure 1 models the
problem of synchronisation of a network of heterogeneous
agents interconnected through a dynamic matrix.

The following standing assumption is made throughout the
paper, where jQ denotes the set of poles of Z on jR.

Assumption 3.1: For every jq ∈ jQ, Γ(jq) has a simple
zero eigenvalue corresponding to the eigenvector 1n.

In the simplest case, Γ can be equal to L, the graph
Laplacian matrix for the graph G. Dynamics can be included
via the expression Γ = D diag(Γi)D

T , where D denotes the
incidence matrix and Γi ∈ S for i = 1, . . . ,m; see Figure 2.

Note that for both cases Γ satisfies Assumption 3.1 by the
connectedness of the graph G.

diag(Pi)

diag(Γi)

y
Z · In

DTD

Fig. 2. A synchronisation setup with dynamical interconnection matrix.

Definition 3.2: The interconnection in Figure 1 is said to
reach synchronisation if |yi(t) − yj(t)| → 0 as t → ∞
for all i, j ∈ {1, 2, . . . , n}. In other words, lim

t→∞
y(t) lies

in the subspace spanned by 1n, i.e. span{1n}. This means
the output yi of each of the agent Pi synchronises to the
same trajectory defined by the imaginary-axis poles of Z.

Remark 3.3: By defining Z(s) := 1/s, one recovers the
standard consensus problem where all yi’s are to asymptot-
ically converge to the same constant value. By contrast, if
Z(s) := ω0

s2+ω2
0

and synchronisation takes place, then each
yi will converge to a sinusoid of frequency ω0 and the same
phase/magnitude.

IV. INTEGRAL QUADRATIC CONSTRAINT BASED
ANALYSIS OF SYNCHRONISATION

This section introduces a unified framework within which
to analyse the problem of synchronisation using integral
quadratic constraints (IQCs) [13]. First an IQC-based sta-
bility result is in order. Throughout this section, jQ =
{jq1, jq2, . . . , jqK} is taken to be the finite set of poles of
Z on jR.

Definition 4.1: Given ε ≥ 0, P : Hn
2ε(jQ) → Hn

2ε(jQ)
and Γ : Hn

2ε(jQ)→ Hn
2ε(jQ) in Sn×n, and a proper rational

transfer function Z : H2ε(jQ) → H2ε(jQ) that is analytic
on C+, the feedback interconnection in Figure 1:{

v = ZPw + f
w = Γv + e

(1)

is said to be H2ε-stable if the map (v, w) 7→ (f, e) has a
bounded inverse on H2n

2ε , where the shorthand notation ZP
has been used to denote (Z · In)P .

Given an ε ≥ 0, define the graph of X ∈ Cε(jQ)n×m to
be

Gε (X) :=

[
Im
X

]
Hm

2ε(jQ) =

{[
u
y

]
∈ Hn+m

2ε (jQ) : y = Xu

}
Similarly, define the (inverse) graph

G′ε(X) :=

[
X
Im

]
Hm

2ε(jQ) =

{[
u
y

]
∈ Hn+m

2ε (jQ) : u = Xy

}
Theorem 4.2: Given ε > 0, P, Γ ∈ Sn×n, the feedback

interconnection of ZP and Γ in Figure 1 is H2ε-stable if
there exists a Π ∈ Cε(jQ)2n×2n such that the following
IQC conditions hold:



(i) 〈v,Πv〉Cε(jQ) ≥ 0 for all v ∈ Gε (ZP );
(ii) there exists a γ > 0 for which 〈w,Πw〉Cε(jQ) ≤
−γ‖w‖2Cε(jQ) for all w ∈ G′ε(τΓ) and τ ∈ [0, 1].

Proof: Using an argument in the proof of [20, Lem.
5.1], let Ψ := 2Π + γI , the IQC conditions thus become

〈v,Ψv〉Cε(jQ) ≥ γ‖v‖2Cε(jQ) ∀v ∈ Gε (ZP )

and

〈w,Ψw〉Cε(jQ) ≤ −γ‖w‖2Cε(jQ) ∀w ∈ G′ε(τΓ), τ ∈ [0, 1].

It follows that for any v ∈ Gε (ZP ), w ∈ G′ε(τΓ) and τ ∈
[0, 1],

γ(‖v‖2Cε(jQ) + ‖w‖2Cε(jQ))

≤〈v,Ψv〉Cε(jQ) − 〈w,Ψw〉Cε(jQ)

= 〈v + w,Ψ(v + w)〉Cε(jQ) − 2〈w,Ψ(v + w)〉Cε(jQ)

≤‖Ψ‖∞‖v + w‖2Cε(jQ) + 2‖Ψ‖∞‖w‖Cε(jQ)‖v + w‖Cε(jQ)

≤‖Ψ‖∞‖v + w‖2Cε(jQ)

+
2‖Ψ‖2∞‖v + w‖2Cε(jQ)

γ
+
γ

2
‖w‖2Cε(jQ),

where the last inequality holds since 2xy ≤ x2

β + βy2 for
any x, y, β ∈ R. This implies(

1 +
2

γ
‖Ψ‖∞

)
‖Ψ‖∞‖v + w‖2Cε(jQ) (2)

≥ γ‖v‖2Cε(jQ) +
γ

2
‖w‖2Cε(jQ)

≥ γ

2
‖w‖2Cε(jQ)

=⇒ ‖v + w‖2Cε(jQ) ≥ η2‖w‖2Cε(jQ), (3)

for any positive η ≤ γ√
2‖Ψ‖∞(γ+2‖Ψ‖∞)

.

Now observe that τ ∈ [0, 1] 7→ τΓ is continuous in the
graph topology induced by the gap metric with the ambient
space taken to be H2ε(jQ) [16]. To be specific, the gap
distance between two systems ∆1 : Hn

2ε(jQ) → Hn
2ε(jQ)

and ∆2 : Hn
2ε(jQ)→ Hn

2ε(jQ) is given by

δ(∆1,∆2) := ‖ΠGε(∆1) −ΠGε(∆2)‖Cε(jQ).

Since the feedback interconnection is H2ε-stable for τ = 0,
inequality (3) shows that the corresponding robust stability
margin bM,N in [16, Section 5] is bounded away from zero
with N = Gε (ZP ) and M = G′ε(0); see [21, Lem. 3.2.8].
In particular, bM,N ≥ η > 0. By continuity in the graph
topology, there exists an ζ > 0 such that δ(ZP, τΓ) <
η ≤ bM,N for all τ ∈ [0, ζ]. Application of [16, Thm.
3] then leads to the feedback interconnection of ZP and
τΓ being H2ε-stable for τ ∈ [0, ζ]. Repetitively applying
the aforementioned arguments yields feedback stability for
τ ∈ [ζ, 2ζ], [2ζ, 3ζ], . . . in succession, and eventually for
τ = 1, as required.

The main result on synchronisation is stated next.
Theorem 4.3: The feedback configuration in Figure 1 with

P :=
⊕n

i=1 Pi : Pi ∈ S, a proper rational transfer
function Z with non-repeated poles on jR and is analytic

on C+, and Γ ∈ Sn×n that satisfies Assumption 3.1 reaches
synchronisation if there exists a Π ∈ C2n×2n such that for all
ω ∈ R\Q = (q1,∞)∪(q2, q1)∪. . .∪(qK , qK−1)∪(−∞, qK),

(i)
[

In
Z(jω)P (jω)

]∗
Π(jω)

[
In

Z(jω)P (jω)

]
≥ 0;

(ii)
[
τΓ(jω)
In

]∗
Π(jω)

[
τΓ(jω)
In

]
≤ −γ ∀τ ∈ [0, 1], where

γ is some strictly positive constant.
Proof: The conditions of the theorem imply that the

IQC conditions in Theorem 4.2 are satisfied for arbitrarily
small ε > 0, whereby the feedback configuration is H2ε-
stable. In turn, this implies that

Z(s)P (s) (I − Γ(s)Z(s)P (s))
−1

= P (s)

(
1

Z(s)
I − Γ(s)P (s)

)−1

has no poles on C̄+\jQ, i.e. det( 1
Z(s)I −Γ(s)P (s)) has no

zeros on C̄+\jQ. Moreover, by Assumption 3.1, det( 1
Z(s)I−

Γ(s)P (s)) has a simple zero at every s ∈ jQ corresponding
to the null space N satisfying P (s)N ⊂ span{1n}.

Now note that for any e, f ∈ L2, it can be derived from
(1) and Figure 1 that

ŷ = ZP (I − ΓZP )−1(ê+ Γf̂)

= P

(
1

Z
I − ΓP

)−1

(ê+ Γf̂),

which has a simple pole at every point in jQ. As such, it
follows from the above that ŷ = v̂+ŵ, for some v̂ ∈ H2 and
ŵ ∈ Z̄ span{1n}, where Z̄ has only simple poles on jR at
the same locations as those of Z. Taking the inverse Laplace
transform yields that y = v + w, where limt→∞ v(t) = 0
because v ∈ L2 and w(t) is a vector with equal entries
corresponding to the trajectory defined by the imaginary-
axis poles of Z for all t ≥ 0. In other words, the feedback
interconnection reaches synchronisation as time approaches
infinity.

Remark 4.4: It can be seen from the proof of Theorem 4.2
that the conditions of Theorem 4.3 may also be written as

(i)
[

In
Z(jω)P (jω)

]∗
Π(jω)

[
In

Z(jω)P (jω)

]
≥ γ > 0;

(ii)
[
τΓ(jω)
In

]∗
Π(jω)

[
τΓ(jω)
In

]
≤ 0 ∀τ ∈ [0, 1],

for all ω ∈ R\Q.

V. CONCLUSIONS

The paper demonstrates that it is possible to apply integral
quadratic constraint based analysis to the study of synchroni-
sation problems for heterogeneous networks without the use
of loop transformations. Future research may involve devel-
oping synchronisation results for systems with imaginary-
axis poles of order greater than 1 and for nonlinear systems
in a similar spirit.
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