
Robust synchronization of networks of heterogeneous double-integrators

Ruggero Carli Enrico Lovisari

Abstract— This paper deals with the problem of clock syn-
chronization in WSN. Clocks are modeled as non-identical dou-
ble integrators with uncertain zeros and outputs corresponding
to their time-readings. Synchronization is achieved through
a control strategy based on second order linear consensus-
like algorithm, and its robustness with the respect to the
uncertainties on the clocks’ dynamics is studied resorting to
recently developed tools for synchronization of heterogeneous
networks. An implementable, nonlinear version of the previous
control strategy is also revised. Numerical simulations show
that the behavior of the linear model which is analyzed here
well approximates that of the implementable, realistic one.

I. INTRODUCTION

During the last decade there has been an increasing interest
in Networked Control System for synchronization problems.
The usual scenario is that of large networks of identical
anonymous agents, which have access to some partial in-
formation, and aim at agreeing on some quantity of interest,
possibly time-varying. A common feature of these problems
is the fact that there is a fundamental constraint on the
information flow: data are distributed among a large number
of nodes communicating with each other only through some
communication network which typically allows each agent to
receive information only from a small subset of other agents.

The most studied synchronization algorithm in the litera-
ture is the linear consensus in which the agents need to agree
on a static quantity. In this algorithm the agents behave as
simple integrators whose input is a linear combination of the
outputs of the neighbors. This model well describes many
cases of interest, for example when consensus is used as a
tool for formation control [1], [2], [3], distributed estimation
[4], sensor and camera calibration [5], [6], and distributed
optimization [7], [8].

However, there are many other situations in which agents
still need to agree on some quantity, but their nature is too
complex to be modeled as simple integrators. Examples can
be found in formation control problems for robotic networks,
where usually the dynamics are modeled as second order
systems. Recently, many contributions have been provided on
the synchronization of systems with high-order dynamics. In
[2] the authors consider a network of equal agents, modeled
as a generic SISO transfer function N0(s), where the inputs
of the agents are computed as a linear combination of the

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme under agreement
n. 257462 HYCON2 Network of excellence.

R. Carli and E. Lovisari are with the Department of Information En-
gineering, Università di Padova, Via Gradenigo 6/a, 35131 Padova, Italy
e-mail:{carlirug,lovisari}@dei.unipd.it.

outputs of the neighbors, as in the classic linear consensus.
Also in [9] the agents are assumed to have identical dynamics
described by a general state-space representation (A,B,C)
and the goal is to synchronize, entry–wise, the states of the
agents. In [10] the agents are noisy integrators and inputs
are filtered versions of the outputs, instead of being simple
linear combinations. Finally, in [11] the authors propose a
graphical criterion to check the synchronization of a generic
heterogeneous network, namely, a network comprising agents
with different dynamics.

Synchronization is also a key problem in wireless sensor
networks (WSNs). This is mainly motivated by the fact
that in many applications involving WSNs, like surveillance,
targeting systems, monitoring areas, intrusion detection, it is
essential that the nodes act in a coordinated fashion requiring
global clock synchronization, that is, all the nodes need
to refer to a common notion of time. The synchronization
problem has been addressed via hierarchical algorithms such
as leader election in a spanning tree [12], [13], or cluster-
ing of the network [14]. Despite the effectiveness of such
algorithms, they suffer from poor scalability and are very
sensitive to network topology changes.

Recently distributed architecture for clocks synchroniza-
tion have been proposed, where there are no reference
nodes and all nodes run exactly the same algorithm. These
protocols have the advantage of being highly scalable and
very robust to node failure and new node appearance. Fully
distributed algorithms able to compesate for both clock rates
and offsets are the Distributed Time-Sync Protocol in [15]
and the Average Time-Sync Protocol in [16]. The first one
is based on the cascade of two distributed least-squared
algorithms, while the second one is based on the cascade of
two first order consensus algorithms. They both are proved to
synchronize a network of clocks in the absence of noise and
time-delays. However, these strategies are highly non-linear
and do not lead to a simple characterization of the effects
noise on the steady-state performance.

Differently, [17] proposes a linear synchronization algo-
rithm that allows for a formal analysis not only in the
noiseless scenario in terms of rate of convergence, but also
in a noisy setting in terms of the steady-state synchronization
error. In [17] the local clocks are modeled as non-identical
double integrators and the control strategy proposed is based
on a second order linear consensus algorithm. The authors
provide conditions guaranteeing synchronization under the
assumption of no-communication noise and no-delays and
provided that the rates of all the double integrators are
small enough perturbations of a nominal value. However

how big these perturbations could be, it is not addressed.
Moreover it is important to remark that the protocol in [17]
is proposed in a synchronous implementation, namely, all
nodes are assumed to communicate at the same time instants.
Clearly this assumption is unrealistic for implementing any
clock synchronization algorithm over WSNs since nodes data
transmissions and algorithm updating steps cannot occur ex-
actly at the same time. This issue is overcome in [18] where
a realistic implementation of the control law introduced in
[17] is proposed in the context of WSNs applications. The
authors refer to this realistic implementation as to the pseudo
synchronous algorithm which is proved to be a perturbation
of the synchronous version proposed in [17]. The pseudo
synchronous algorithm is shown to be provably convergent
even if also in this case the convergence result is only local,
that is, the clocks’ rates must be small perturbations of a
nominal rate value. It is worth mentioning that a completely
asynchronous version of the synchronization algorithm intro-
duced in [17] has been proposed in [19]. The effectiveness
of this asyncronous algorithm has been shown only through
simulations and no theoretical results have been provided so
far.

The contributions of this paper are twofold. Firstly in
Section II we review the synchronization problem over a
network of non-identical double integrators as posed in
[17] focusing on the robustness issues which arise since
the rates of the double integrators are, in general, different
one from each other. In section III, we provide interesting
insights on these issues. In particular resorting to robust
control tools recently developed, we obtain novel conditions
guaranteeing the synchronization which significantly extend
the ones stated in [17] and which allow for an interesting
characterization of the robustness properties of the control
strategy proposed in [17]. Secondly, in Section IV we review
the pseudo-synchronous algorithm proposed in [18]. Through
numerical simulations we show that the pseudo-synchronous
algorithm exhibits robustness properties similar to the ones
obtained in Section III for synchronous version. This fact
strengthens the local result provided in [18] for the conver-
gence of the pseudo-synchronous.

In Section V we gather our conclusions while in Appendix
A we shortly review the robust control tools proposed in [11].

A. Mathematical preliminaries

Before proceeding, we collect some useful definitions and
notations. In this paper, G = (V, E) denotes an undirected
graph where V = {1, ..., N} is the set of vertices and E is
the set of edges, i.e., E ⊆ V × V . Since G is undirected, if
(i, j) ∈ E then also (j, i) ∈ E . A path in G consists of a
sequence of vertices (i1, i2, ..., ir) such that (ih, ih + 1) ∈ E
for every h ∈ {1, . . . , r − 1}. A graph G is connected if for
any pair of vertices (i, j) there exists a path connecting i
to j. Given a matrix M ∈ RN×N , we define the induced
graph GM by taking N nodes and putting an edge (j, i) in
E if Mij 6= 0. Given a graph G on V , the matrix M is
compatible with G if GM ⊆ G. Given the node i, by Ni we
denot the set of its neighbors, i.e., Ni = {j ∈ V |(i, j) ∈ E}.

II. PROBLEM FORMULATION

Assume we have N units and that each unit i has a
clock which is an oscillator able to periodically increment
a counter by one unit, commonly known as tick. We assume
that the periods ∆i of these oscillators are unknown, but
are “perturbed” values of a “nominal” and known period ∆.
Therefore, the value of the i-th counter is si(t) = b t−t0i∆i

c,
where bac indicates the floor of a, i.e., the largest integer
smaller than or equal to a, and where t0i is the time when the
clock has been started. The units use these ticks to estimate
time. Since only the nominal clock period ∆ is known by
the clocks, a natural time estimate is given by

yi(t) = ∆ si(t) + yi(t0i) (1)

where yi(t0i) is the initial offset which is an estimate of
t0i. Since the ∆i’s are all different, if the units can not
communicate with each other, then each clock will drift away
from the others even under the ideal situation in which they
are all initially synchronized, i.e., yi(0) = yj(0) for all i, j.
Formally, if

ei(t) := yi(t)−
1

N

N∑
i=1

yi(t), i ∈ {1, . . . , N},

denote the synchronization error of the i-th unit,
then, in absence of communication between the units,
limt→∞ ‖e(t)‖2 =∞, where e(t) = [e1(t), . . . , eN (t)]

T .
Now let T ∈ R be a sampling time. Observe that at the

time instants hT , where h = 0, 1, . . ., the evolution of yi(hT)
in (1) can be iteratively described as

xi((h+ 1)T) =

[
1 ∆δi(h)
0 1

]
xi(hT), xi(0) =

[
yi(0)

1

]
yi(hT) =

[
1 0

]
xi(hT)

where xi(hT) ∈ R2 and where δi(h) := si((h + 1)T) −
si(hT) gives the number of ticks in the interval (hT, (h +
1)T]. If x′i and x′′i denote the two components of xi, then
x′i gives the time estimate, while ∆x′′i gives the oscillator
period estimate. Notice that si((h + 1)T) − si(hT) =
T/∆i + ε(hT) where −1 < ε(hT) < 1 and so ε(hT) can
be neglected if T/∆i >> 1 which will be assumed in the
sequel. Accordingly the above recursion can be rewritten as

xi((h+ 1)T) =

[
1 ∆

∆i
T

0 1

]
xi(hT), xi(0) =

[
yi(0)

1

]
yi(hT) =

[
1 0

]
xi(hT). (2)

Observe that the previous system corresponds to the output
of a second order integrator with unknown parameters (in
particular, one unknown zero), since {∆i}Ni=1 are not known.

Assume now that at the time instants hT , the nodes can
exchange their local time yi(t) according to a graph G having
{1, . . . , N} as set of vertices and in which there is an edge
from j to i whenever node j can send information to node
i. This information can be used by the nodes to correct
their clock estimate yi(t) so that eventually all nodes will
be synchronized, i.e., yi(t) ' yj(t) for all i, j. A natural

approach to achieve synchronization is to control the nominal
clock period ∆ and the clock offset yi(0). Based on the
information received from the neighboring nodes, we assume
that each node can add a control ui(hT) to its state, namely,

xi(hT
+) = xi(hT) + ui(hT) (3)

where hT+ denotes the time instant just after hT . It follows
that system (2) is modified as

xi((h+ 1)T) =

[
1 ∆

∆i
T

0 1

]
xi(hT

+)

=

[
1 ∆

∆i
T

0 1

]
(xi(hT)+ui(hT)) (4)

and

yi(h) =
[
1 0

]
xi(hT), (5)

From now on, for simplicity we will denote ∆/∆i by di.
The authors in [17] and [18] proposed the following linear

control law

ui(hT) = −
[
f1

f2

] N∑
j=1

kij(h)yj(hT) (6)

where f1 and f2 are two real parameters and where kij(h) is
the i− j entry of the matrix K(h) ∈ RN×N . Notice that at
time hT the protocol requires the transmission of the output
yj(h) from the node j to the node i if and only if kij(h) 6= 0.

As in [17] and [18] we assume the following properties.

Assumption II.1 The control law in (6) is time-invariant,
namely, K(h) = K for all h ∈ N, where

(i) K is symmetric and positive semidefinite;
(ii) K1 = 0 being 1 the N -dimensional column vector

with all the components equal to 1 and the algebraic
multiplicity of the eigenvalue 0 is one 1.

In subsection II-A we show that, given a connected undi-
rected graph G, it is always possible to build in a distributed
way a matrix K compatible with G and satisfying the above
properties (i) and (ii). Introducing the 2N dimensional vector
x(hT) having x′(hT) = [x′1(hT), . . . , x′N (hT)]

T as the first
N components and x′′(hT) = [x′′1(hT), . . . , x′′N (hT)]

T as
the second N components, the N equations in (4) and in (6)
can be collected in

x((h+ 1)T) = A (f1, f2,K,D)x(hT) (7)

where

A (f1, f2, D,K) =

[
I DT
0 I

]([
I 0
0 I

]
−
[
f1K 0
f2K 0

])
being D the diagonal matrix having d1, . . . , dN as diagonal
elements, i.e., D = diag{d1, . . . , dN}. In case the matrix
A (f1, f2,K,D) yields all the components of x′(hT) follow

1It is worth remarking that the condition K1 = 0 is imposed in order to
avoid useless input in case the clocks are already synchronized.

asymptotically the same ramp function, that is, there exist
α ∈ R>0 and β ∈ R such that

lim
h→∞

(x′(h)− (αhT + β)1) = 0,

we say that this matrix yields the synchronization, as all the
entries of x′(h) are steered to the same time–varying value.

The next proposition, whose proof can be found in [18],
characterizes some convergence properties of system in (7).
Before stating it, we introduce the following notational
definition: let λ1, . . . , λN denote the N eigenvalues of K
and, without loss of generality, assume that

0 = λ1 < λ2 ≤ . . . ≤ λN . (8)

Proposition II.1 Consider system (7) under Assump-
tion II.1. Moreover assume that D = I , i.e., di = 1 for
all i ∈ {1, . . . , N}. Then, the matrix A(f1, f2,K, I) yields
the synchronization if and only if the following conditions
are satisfied

f1 > 0, f2 > 0, (9)

0 < λN <
4

2f1 + Tf2
.

The previous proposition is valid for D = I . However,
since the eigenvalues of A depend continuously on the
matrix D we have that conditions in (9) still ensure the
synchronization even in the case where D is a small enough
perturbation of the identity matrix I .

In this paper we aim at providing a more refined analysis
of the robustness of the control law in (6) with to respect to
the matrix D. Specifically, let us denote the matrix D as the
sum of the identity matrix I and of the diagonal perturbation
matrix D̃ = diag{d̃1, . . . , d̃N}, i.e., D = I + D̃, where
d̃i > −1 for all i ∈ {1, . . . , N}. Then, the problem of interest
is : Given a triple (f1, f2,K), satisfying conditions in (11),
characterize the set of perturbation matrices

P(f1, f2,K) :=

{D s.t. A(f1, f2,K,D) yields the synchronization} .

In section III we will provide some interesting insights on
the above problem.

A. Metropolis weights

Assume that D = I . Then, given a connected undirected
graph G, the problem is to determine a matrix K compatible
with G and the parameters f1, f2 such that conditions in (9)
are satisfied. In [18] it is proposed the following K

Kij =

− 1

max{vi,vj} if (i, j) ∈ E and i 6= j

−
∑
j 6=iKij if i = j

0 otherwise

(10)

where vi is the degree of the node i, namely vi = |Ni|, and
the constants

f1 = 1/2 and f2 = 1/(2T).

The weights Kij are called in literature Metropolis weights.
From now on, we will denote a matrix K built as in (10),
by KMetr. It is well known that, if the undirected graph G
is connected then the associated matrix KMetr yields 0 <
λi < 2, i ∈ {2, . . . , N}. Then it is straightforward to verify
that the triple f1 = 1/2, f2 = 1/(2T), KMetr satisfies the
conditions in (9). An additional goal of the next section will
be to provide some characterizations of the set

P (f1 = 1/2, f2 = 1/(2T), KMetr) .

It is worth saying that in this paper we focus on the
Metropolis weights as special case since, given the connected
graph G, the associated matrix KMetr can be easily built
in a completely distributed way. Indeed what a node needs
in computing the weights Kij is only the knowledge of
the degrees of its neighboring nodes in the graph G. This
fact makes the use of the Metropolis weights quite wide in
wireless sensor networks applications.

III. ROBUSTNESS ANALYSIS OF THE SYNCHRONIZATION
PROTOCOL

In order to perform a robustness analysis of the iterative
algorithm in (7), we will resort to the robust control tools
recently developed in [11]. From a non-standard application
of these tools we get the following result which extends
the conditions in (9) to the case of heterogeneous double
integrators.

Theorem III.1 Consider system (7) under Assumption II.1.
If the following conditions are satisfied

f1 > 0, f2 > 0,

0 < λN <
4

2f1 + Tf2
, (11)

0 < λN <
4

2f1 + Tf2di
, i ∈ {1, . . . , N},

then the matrix A(f1, f2,K,D) yields the synchronization.

Some observations are now in order. Firstly observe that,
in order to deal with the fact that the values {di}Ni=1 might be,
in general, different from each other, Theorem III.1 requires
an extra condition with the respect to the ones assumed in
Proposition II.1. This condition relates the values {di}Ni=1 to
the parameters f1, f2 and to the eigenvalue λN . Secondly,
the result stated in Theorem III.1 is in some sense weaker
than the one stated in Proposition II.1. Indeed, while condi-
tions in (9) are necessary and sufficient to synchronization,
conditions in (11) are only sufficient. Finally let the triple
(f1, f2,K) be given and assume that f1, f2 and λN satisfy
conditions in (11), and, in turn, also the first two conditions
in (11). From the above Theorem it follows that, if

0 < di <
4− 2f1λN
Tf2λN

,

then the matrix A(f1, f2,K,D) yields the synchronization.
Hence if we introduce the set of diagonal matrices

P̄(f1, f2,K) :=

{
D : 0 < di <

4− 2f1λN
Tf2λN

, ∀ i
}

we have that

P̄(f1, f2,K) ⊆ P(f1, f2,K).

It is interesting to notice that the condition λN < 4
2f1+Tf2

implies 4−2f1λN

Tf2λN
> 1.

We conclude this section specializing the result of Theo-
rem III.1 to the case of Metropolis weights.

Corollary III.2 Let G be a undirected connected graph and
let KMetr be the matrix associated to G built as in (10).
Consider the matrix A (f1, f2,KMetr,D) where f1 = 1/2
and f2 = 1/(2T) and where the matrix D is such that

0 < di < 2, for all i ∈ {1, . . . , N}.

Then the matrix A (f1, f2,KMetr, D) yields the synchroniza-
tion.

Remark III.3 The result stated in the above Corollary is
quite remarkable. Indeed, if 0 < di < 2 for all i ∈
{1, . . . , N}, then the synchronization is guaranteed indepen-
dently from the number of agents and from the topology of the
communication graph G. The only requirement is the graph
G to be connected.

Remark III.4 Observe that the condition 0 < di < 2 can
be expressed in terms of the oscillator period ∆i as ∆

2 <
∆i < +∞.

Remark III.5 We tried to analyze the robustness of the
control law in (6) also through a standard application of
the small gain Theorem. The results we found were weaker
than the ones illustrated in this section. To be more precise
consider the circle graph, namely, the graph containing
the edges (i, i + 1), i ∈ {1, . . . , N − 1}, and (1, N). Let
di := 1 + d̃i. Then the result we obtained applying the small
gain Theorem was that the matrix A(f1, f2,KMetr, D) is
synchronizing if |d̃i| < γ(N) where the bound γ(N) is such
that limN→∞ γ(N) = 0. In other words the size of the
robustness interval obtained through the small gain Theorem
goes to zero as N tends to 0. We found similar results
for other families of Cayley graphs, like the d-dimensional
toruses for any arbitrary value of the dimension d.

IV. ROBUST CLOCKS SYNCHRONIZATION IN WIRELESS
SENSORS NETWORK (WSNS)

Observe that the control strategy reviewed in Section II
is proposed in a synchronous implementation, namely, all
the nodes are assumed to perform their transmitting and
updating actions exactly at the same time instants. Clearly
this assumption is unrealistic for implementing any clock
synchronization algorithm over WSNs since nodes transmis-
sion and algorithm updating steps cannot occur exactly at
the same time. Indeed, in a fully distributed synchronization
algorithm, these operations can be performed by the nodes
relying only on their local time estimates and, in absence of
synchronization, these estimates differ from each other.

In [18], a realistic implementation of the approach illus-
trated in Section II is proposed in the context of WSNs
applications. In particular the authors of [18] introduced
suitable modifications to the iterative algorithm in (7) that
allow the nodes to overcome the fact that, in a realistic setup,
they are unable to carry out their transmission and updating
actions synchronously. They refer to this realistic implemen-
tation as to the pseudo-synchronous algorithm showing that
it can be described as a particular non-linear perturbation of
the synchronous version in (7). For completeness, we next
review the pseudo-synchronous algorithm. To do so we first
need to specify how the nodes select the transmission and
the updating time instants. Let us introduce the following
notational definitions.
• By ttx,h,i we denote the time instant in which the i-th

node performs its h-th transmission; here we assume a
broadcast model, i.e., each node transmits, at the same
time, the same information to all its neighbors;

• By tup,h,i we denote the time instant in which the i-th
node performs its h-th updating step.

As previously observed, ttx,h,i ad tup,h,i can be determined
by the node i relying only on its local information. We define:
• ttx,h,i as the first time such that x′i(ttx,h,i) = hT ,

namely the node i transmits when its time estimate is
equal to hT for the first time;

• tup,h,i to be equal to

max {ttx,h,j |j ∈ Ni ∪ {i}} ,

namely the node i updates its state only after having
received the information from all its neighbors and after
having performed its transmission.

The nodes transmission and updating steps of the pseudo-
synchronous algorithm can be formally described as follows.

According to the pseudo-synchronous algorithm, during
the h-th iteration each node i performs the following actions:
• At instant time ttx,i(h) the node i broadcasts to its

neighbors the state xi(ttx,i(h)).
• For all j ∈ Ni, at time ttx,j(h) the node i receives

from the node j the value xj(ttx,j(h)), it computes the
difference xj(ttx,j(h))− xi(ttx,j(h)) and it stores it in
the memory.

• At time tup,i(h) the node i updates its state using all
the stored data as follows

xi(t
+
up,h,i) = xi(tup,h,i) + ui(tup,h,i)

where

ui(tup,h,i) =
[
f1
f2

] ∑
j∈Ni

kij
(
x′j(ttx,h,j)− x′i(ttx,h,j)

)
.

Remark IV.1 Observe that it might happen that
x′i(tup,i(h)) < (h+ 1)T and that x′i(tup,i(h)+) > (h+ 1)T
so that there would not be any time t in which
x′i(t) = (h + 1)T and, in turn, no way to determine
ttx,i(h + 1). If this situation occurs, then it is imposed
that ttx,i(h + 1) = tup,i(h) and that the node i

transmits its state xi(tup,i(h)+) where it is assumed
that x′i(tup,i(h)+) = (h+ 1)T .

As mentioned, the pseudo-synchronus algorithm can be
written as a perturbation of the synchronous algorithm (7).
This fact is formally shown by introducing a set of suitable
sampling instants th, h ∈ N, defined as

th = min
i
{ttx,h,i} ,

namely, th represents the first time instant in which the
estimate of a node reaches the value hT . Additionally, let

x(h) := x(th).

In [18], it is shown that

x(h+ 1) =A(f1, f2,K,D)x(h)

+ Φ(x(h), δTh, δtup,h, δttx,h)

where the function Φ depends continuously on the quantities
x(h), δTh, δtup,h, δttx,h being

δTh := th+1 − th − T
δtup,h := [tup,h,1 − th, . . . , tup,h,N − th]

T

δttx,h := [ttx,h,1 − th, . . . , ttx,h,N − th]
T
.

Observe that δtup,h and δttx,h accounts for the lack of
synchronicity in performing the updating and transmitting
actions, while th+1− th−T measures the length of the h-th
sample period with the respect to the nominal length T .

Through arguments related to the Center Manifold The-
orem, the pseudo-synchronous algorithm is shown to be
provably convergent, see [18]. However this is only a local
convergence result, in the sense that what it is proved
is only the existence of ε > 0 and of a neighborhood
W ∈ RN of the origin such that the synchronization is
asymptotically reached if x′(0) ∈W and |1−di| < ε for all
i ∈ {1, . . . , N}. How big ε and the neighborhood W could
be, it is not quantified in [18]. However, since the pseudo-
synchronous can be seen as a perturbation of the synchronous
algorithm (7), one could expect that some of the robustness
properties illustrated in Section III for (7), might be inherited
also by the pseudo-synchronous algorithm. We try to verify
this fact through numerical simulations. Specifically, we run
a number of simulations varying the size of the network N ,
the value of the sampling time T and the communication
topology G. Moreover in most of the simulations we assumed
that
• the graph G is connected and in the control law is

implemented with f1 = 1/2, f2 = 1/(2T) and K =
KMetr;

• for i ∈ {1, . . . , N}, the initial condition x′i(0), is
randomly generated within the interval [0, T/10]; and

• for i ∈ {1, . . . , N}, the value of di is randomly chosen
within the interval (1/2, 3/2).

Under the above assumptions, the pseudo-synchronous algo-
rithm always attained the asymptotic synchronization. Sim-
ilarly to result stated in Corollary III.2, we can argue the

0 100 200 300 400 500
10

−6

10
−4

10
−2

10
0

10
2

Iterations

S
y
n
c
h

ro
n

iz
a
ti
o
n

 e
rr

o
r

Fig. 1. Trajectories of the synchronization error generated by the pseudo-
synchronous algorithm.

existence also for the pseudo-synchronous algorithm of a
robustness interval which is independent from the number
of clocks N and the communication graph G.

In Figure 1 we plot an example of the behavior of
logN−1/2‖e(h)‖ where e(h) = [e1(h), . . . , eN (h)]T being
ei(h) = x′i(h)−

∑N
j=1 x

′
j(h). In this example we consider a

connected random geometric graph G with N = 100 points
uniformly distributed in the unit square, and placing an edge
between each pair of points at distance less than 0.2. We
associate to G the matrix KMetr and we set T = 100. We
assume that x′i(0) and di are uniformly chosen, respectively,
in [0, 10] and in (1/2, 3/2). The plot reported is the result of
the average over 1000 Monte Carlo runs, randomized with
respect to both the graph and the initial conditions. Observe
that the trajectory converge exponentially to zero.

Remark IV.2 We simulated the pseudo-synchronous algo-
rithm also for values of di uniformly chosen within (0, 2).
In some of the realizations generated, we obtained that
limh→∞ ‖e(h)‖ =∞.

V. CONCLUSIONS

This paper provides an analysis of synchronization ro-
bustness for networks of different double integrators, which
models a network of clocks. It is shown that synchronization
is achieved if conditions involving only the spectrum of the
interconnection matrix and the rate of the clocks are satisfied.
A realistic model for clocks is also revised, which is a
nonlinear perturbation of the one studied here. Numerical
simulations show good accordance among the two models.

REFERENCES

[1] J. Cortes, S. Martinez, and F. Bullo, “Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions,”
IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1289
–1298, aug. 2006.

[2] J. Fax and R. Murray, “Information flow and cooperative control of
vehicle formations,” IEEE Transaction on Automatic Control, vol. 49,
no. 9, pp. 1465–1476, sep. 2004.

[3] R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri, “Communication
constraints in the average consensus problem,” Automatica, vol. 44,
no. 3, pp. 671–684, 2008.

[4] R. Olfati-Saber, “Distributed kalman filter with embedded consensus
filters,” in Proceedings of 44th IEEE Conference on Decision and
Control, 2005 and 2005 European Control Conference. CDC-ECC
’05., dec. 2005, pp. 8179 – 8184.

[5] A. Fagiolini, S. Martini, and A. Bicchi, “Set-valued consensus for
distributed clock synchronization,” in Proceedings of IEEE Conference
on Automation Science and Engineering. CASE ’09, august 2009, pp.
116–121.

[6] D. Borra, E. Lovisari, R. Carli, F. Fagnani, and S. Zampieri, “Au-
tonomous calibration algorithms for networks of cameras,” in Ameri-
can Control Conference, 2012.

[7] A. Nedic, A. Ozdaglar, and P. Parrilo, “Constrained consensus and op-
timization in multi-agent networks,” Automatic Control, IEEE Trans-
actions on, vol. 55, no. 4, pp. 922 –938, april 2010.

[8] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental
subgradient method for distributed optimization in networked sys-
tems,” SIAM Journal on Optimization, vol. 20, no. 3, pp. 1157–1170,
2009.

[9] L. Scardovi and R. Sepulchre, “Synchronization in networks of iden-
tical linear systems,” Automatica, vol. 45, no. 11, pp. 2557 – 2562,
2009.

[10] I. Lestas and G. Vinnicombe, “Heterogeneity and scalability in group
agreement protocols: Beyond small gain and passivity approaches,”
Automatica, vol. 46, no. 7, 2010.

[11] E. Lovisari and U. Jönsson, “A nyquist criterion for synchronization
in networks of heterogeneous linear systems,” in Proceedings of 2th
IFAC Workshop on Distributed Estimation and Control in Networked
Systems. Necsys’10, 2010.

[12] S. Ganeriwal, R. Kumar, and M. Srivastava, “Timingsync protocol for
sensor networks,” in Proceedings of the 1st International Conference
on Embedded networked sensor systems. (SenSys’03), 2003, pp. 138–
149.

[13] M. Maròti, B. Kusy, G. Simon, and Àkos Ldeczi, “The flooding time
synchronization protocol,” in Proceedings of the 2nd international
conference on Embedded networked sensor systems (SenSys’04), 2004,
pp. 39–49.

[14] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” in Proceedings of the 5th sym-
posium on Operating systems design and implementation (OSDI’02),
2002, pp. 147–163.

[15] R. Solis, V. Borkar, and P. R. Kumar, “A new distributed time
synchronization protocol for multihop wireless networks,” in 45th
IEEE Conference on Decision and Control (CDC’06), San Diego,
December 2006, pp. 2734–2739.

[16] L. Schenato and F. Fiorentin, “Average timesynch: a consensus-
based protocol for clock synchronization in wireless sensor networks,”
Automatica, vol. 47, no. 9, pp. 1878–1886, 2011.

[17] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Optimal synchro-
nization for networks of noisy double integrators,” IEEE Transactions
on Automatic Control, vol. 56, no. 5, pp. 1146–1152, 2011.

[18] R. Carli and S. Zampieri, “Networked clock synchronization based on
second order linear consensus algorithms,” in 49th IEEE Conference
on Decision and Control (CDC’10), Atlanta, December 2010.

[19] R. Carli, E. D’Elia, and S. Zampieri., “A PI controller based on asym-
metric gossip communications for clocks synchronization in wireless
sensors networks,” in Proceedings of the 50th IEEE Conference on
Decision and Control. CDC’11, 2011.

