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Abstract. The performance of the linear consensus algorithm is studied by using a Linear
Quadratic (LQ) cost. The objective is to understand how the communication topology influences
this algorithm. This is achieved by exploiting an analogy between Markov Chains and electrical
resistive networks. Indeed, this permits to uncover the relation between the LQ performance cost
and the average effective resistance of a suitable electrical network and, moreover, to show that, if
the communication graph fulfils some local properties, then its behavior can be approximated by
that of a grid, which is a graph whose associated LQ cost is well-known.
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1. Introduction. The last two decades have witnessed a great effort spent by
several scientific communities in the development and in the analysis of multi-agent
systems. The large number of simple intercommunicating and interacting entities
can be profitably used in order to model a number of rather different applications:
just to recall some of them, load balancing [1], coordinated control [2], distributed
estimation [3] and distributed calibration for sensor networks [4].

A tool which has been widely proposed for solving these problems is the linear
consensus algorithm, which is a powerful and flexible method for obtaining averages
in a distributed way with a limited communication effort. This algorithm is used
when there is a set of agents, each with a scalar value, and the goal is to drive all
agents to reach a common state, under the constraint that agents can only exchange
information locally.

To make the concepts more precise, assume that the agents are labeled by the
elements of the set V = {1, . . . , N} and that the graph G = (V, E), where E ⊆ V × V ,
describes which communication links between the agents are allowed. More precisely,
we say that (u, v) ∈ E if and only if the agent v can send information to u. The
graph G is called the communication graph. In the linear consensus algorithm, at
each iteration, the agents send their current state to their neighbors, and then update
their state as a suitable convex combination of the received messages. More precisely,
if xu(t) denotes the state of the agent u ∈ V at time t ∈ N, then

xu(t+ 1) =
∑
v∈V

Puvxv(t) , (1.1)

where Puv are the entries of a stochastic1 matrix P . In a more compact form we can
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1A matrix P is said to be stochastic if Puv ≥ 0 for all u, v ∈ V and

∑
v∈V Puv = 1 for all u ∈ V .
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write

x(t+ 1) = Px(t) (1.2)

where x(t) ∈ RN denotes the vector collecting all agents’ states. The constraint
imposed by the communication graph G is enforced by requiring that GP is a subgraph
of G, where GP = (V, EP ) is the graph associated with the matrix P , defined assuming
that (u, v) ∈ EP if and only if Puv 6= 0.

The stochastic matrix P is said to be irreducible if the associated graph is strongly
connected, namely, for all u, v ∈ V , there exists a path in GP connecting u to v, and
it is said to be aperiodic if the greatest common divisor of the lengths of all cycles in
GP is one. Notice that the presence of a self-loop, namely a Puu > 0 for some u ∈ V ,
ensures aperiodicity. As it is well known from Frobenius-Perron theory [5], if P is
irreducible and aperiodic, then P has the eigenvalue 1 with algebraic multiplicity 1,
and all other eigenvalues have absolute value strictly smaller than 1 and so we have
that

P t
t→∞−→ 1πT

where the vector π is the invariant measure of the matrix P , namely the left eigenvec-
tor of P corresponding to the eigenvalue 1, properly scaled so as to have

∑
u πu = 1.

Consequently, under these hypotheses, the states of the consensus algorithm (1.2)
converge to the same value xu(t)

t→∞−→ α, where α = πTx(0).
The convergence to the consensus value is exponential with exponent equal to the

second largest eigenvalue of the matrix P

ρ(P ) = sup{|λ| : λ ∈ σ(P ), λ 6= 1}

where σ(P ) is the spectrum of P . For this reason, the value ρ(P ) is a classical
performance cost for the algorithm. Indeed, the closer is ρ(P ) to zero, the faster is
the algorithm. However, as recent papers have pointed out [6, 7], this performance
index on P is not the only possible choice for evaluating the performance of the
algorithm. Different costs arise from different specific problems where the consensus
algorithm is used. Moreover, it can be shown [8, 9] that, by considering different
performance indices, it is possible to obtain different optimal graph topologies.

In this paper, we propose a Linear Quadratic (LQ) cost which is a performance
index widely used in the control community. To evaluate how fast P t converges to its
limit value 1πT we propose the index

J(P ) :=
1

N

∑
t≥0

||P t − 1πT ||2F =
1

N
trace

∑
t≥0

(I − π1T )(PT )tP t(I − 1πT )

 .
where ‖M‖F :=

√
trace(MMT ) is the Frobenius norm of a matrix and where we

added the normalizing factor 1/N for reasons which will be clarified in the following.
This cost appears in two different contexts. Assume first that we want to evaluate

the speed of convergence of the consensus algorithm by the `2 norm of the transient,
namely

1

N

∑
t≥0

[
‖x(t)− x(∞)‖2

]
.
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Notice that this `2 norm will depend on the initial condition x(0). For this reason, we
assume that the initial condition is a random variable with zero-mean and covariance
matrix E

[
x(0)x(0)T

]
= I. We can now consider the expected value of the `2 norm of

the transient which is now a function only of the matrix P . Indeed, by some simple
computations [8] it can be shown that

E

 1

N

∑
t≥0

‖x(t)− x(∞)‖2
 = J(P ) .

The cost J(P ) appears also in the context of noisy consensus [6, 8, 10]. Consider a
network of agents implementing the consensus algorithm, in which update is affected
by additive noise, so that the actual update of the state is the following

x(t+ 1) = Px(t) + n(t) ,

where n(t) is a random white process. Assume that E[n(t)] = 0 and E[n(t)n(t)T ] = I
for all t ∈ N. Assume that the initial condition is random and that it is uncorrelated
from the noise process. We are interested in the dispersion of x(t). If we measure it
by evaluating the displacement of x(t) from the weighted average

∑
i πixi(t), namely

by introducing the vector

e(t) = (I − 1πT )x(t),

then it can be shown that

lim
t→∞

E
[
‖e(t)‖2

]
= J(P ),

Thus, the proposed LQ cost also characterizes the spreading of the asymptotic value
of the state vector around its weighted average in a noisy network.

It is possible to consider the problem of determining the matrix P satisfying a
constraint and minimizing the index J(P ). In this paper we will instead consider
a different problem. Indeed we will try to provide estimates of J(P ) which permit
to understand how this index depends on the structure of P and more precisely on
the topological properties of the graph GP . More precisely we will be able to unveil
this dependence, proving that J(P ) is related to the effective resistance of a suitable
electrical network. This geometric parameter depends on the topology only, and not
on the particular entries of P . Since the electrical analogy holds only if P is reversible
[11], in this paper we will restrict to this class of matrices. An important subclass of
reversible matrices is the one of symmetric matrices, for which stronger and simpler
results hold true. The results for the symmetric case were already described, without
the proof details, in our paper [12].

Using these results we will show that, analogously to what happens for conver-
gence rate [13, 14], under some assumptions, a large class of graphs, called geometric
and which can be seen as perturbed grids, exhibit a particular behavior of the cost
J(P ) as a function of the number of nodes which depends on the geometric dimension
of the graph. In particular, if the graph has geometric dimension one, namely it is
a geometric graph on a segment, then J(P ) grows linearly in the number of nodes,
while, if the graph has geometric dimension two, namely it is a geometric graph on
a square, then J(P ) grows logarithmically in the number of nodes. Finally, if the
graph has geometric dimension three (or more), namely it is a geometric graph on a
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cube, then J(P ) is bounded from above by a constant independent on the number of
nodes. This result is based on (and extends) an analogous result [6] which holds for
torus graphs. In this way we show that the spatial invariance of torus graphs is not
a necessary requirement for having this kind of behavior of J(P ).

The paper is organized as follows. In Section 2 we give some basic notions on
reversible consensus matrices. Section 3 is devoted to recalling the analogy among re-
versible consensus matrices and electrical networks, which allows us to state the main
results. In Section 4 we present a particularly appealing application of our results,
showing that the performance cost in a family of geometric graphs only depends on
the dimensionality of the graphs. The proofs of the results are postponed to Section 5
and Section 6. Finally, in Section 7 we draw conclusions.

1.1. Notation. In this paper we will denote by R the set of real numbers and by
R+ the set of nonnegative real numbers. Vectors will be denoted by boldface letters,
e.g. x, while entries of vectors and scalars will be in italic font. We denote by 1 the
column vector with all entries equal to 1 and of suitable dimension, and by eu the
u-th element of the canonical basis of RN , i.e., a vector whose u-th entry is 1 and all
other entries are 0. Given v ∈ RN , the symbol diag v where denotes a N×N diagonal
matrix whose (k, k)-th entry is the k-th entry of v. Given v,w ∈ RN and a positive
definite matrix M , we will denote the inner product and the norm weighted by M as
〈v,w〉M := vTMw and ‖v‖M :=

√
vTMv, respectively.

2. Preliminaries. In this paper we will analyze the cost function J(P ) when
P is an irreducible and aperiodic stochastic matrix, so that J(P ) is finite. In fact,
aperiodicity will be the consequence of the stronger assumption which imposes that the
diagonal elements of P are all positive. Observe that this condition is not restrictive
for the consensus algorithm as it assumes only that in the state-update (1.1) each
agent gives to its own current state a positive weight and this does not requires
additional communication. For this reason, throughout the paper we will use the
following definition.

Definition 2.0.1. We say that a matrix P is a consensus matrix if it stochastic
and irreducible, and it satisfies Puu > 0 for all u.

Recall [5] that a consensus matrix has a dominant eigenvalue 1 with algebraic
multiplicity 1. As already pointed out, the corresponding left eigenvector π, normal-
ized so that

∑
u πu = 1, is called the invariant measure of P (a name coming from

the interpretation of P as the transition probability matrix of a Markov chain) and it
has all entries which are strictly positive.

An useful object is the Laplacian of a matrix P , which is defined as L := I −P ∈
RN×N . It is immediate to check that L1 = 0 and Luv ≤ 0, ∀u 6= v. Moreover, since
P has 1 as eigenvalue with algebraic multiplicity one, then dim(kerL) = 1. One of the
most important classes of consensus matrices is that of reversible matrices, a name
which comes, again, from the definition of reversible Markov chains [15].

Definition 2.0.2. Let P be a consensus matrix with invariant measure π. Then
P is said to be reversible if

πuPuv = πvPvu, ∀ (u, v) ∈ V × V

or equivalently if

ΠP = PTΠ, (2.1)

where Π = diagπ.
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Remark 2.0.1. The graph associated with a consensus matrix P in general is
a directed graph. However, the assumption that the consensus matrix is reversible
implies that the graph if undirected, i.e., (u, v) ∈ E ⇐⇒ (v, u) ∈ E. The proof comes
immediately from Eq. (2.1) and the property that πu > 0 for all u, which imply that
Puv > 0 if and only if Pvu > 0.

For this reason, in the following we will always assume that the communication
graph G is undirected. Also recall that in our definition a consensus matrix has non-
zero diagonal elements, and thus we will consider only graphs having a self-loop at
each node. However, consistently with previous literature of consensus, we will define
the neighborhood of a node u ∈ G to be the set of its neighbors, except u itself

Nu := {v ∈ V : v 6= u, (u, v) ∈ E}

and we will define the degree of u to be the cardinality |Nu| of its neighborhood.
Notice that Eq. (2.1) states that reversible matrices are self-adjoint with respect to

the inner product 〈·, ·〉Π, or, equivalently, that the matrix Π1/2PΠ−1/2 is symmetric.
This implies that P has real eigenvalues and that it has N independent eigenvectors.

Now we briefly recall the notion of Green matrix of a consensus matrix P , which
is also known as fundamental matrix in the Markov chains literature. Here we con-
centrate only on the results that are needed in the paper. A more complete list of the
properties of the fundamental matrix can be found in [16].

Definition 2.0.3. Let P be a consensus matrix, with invariant measure π. The
Green matrix G of P is defined as

G :=
∑
t≥0

(P t − 1πT ) . (2.2)

The Green matrix plays a fundamental role in this paper due to its property of
being almost an inverse of the Laplacian, in these sense that

G+ 1πT = (L+ 1πT )−1.

The above expression is easy to verify, and implies the following equation, which will
be useful later on [

G 1
] [ L
πT

]
= I . (2.3)

3. Reversible consensus matrices and electrical networks. In this section
we present electrical networks, their relation with consensus matrices, and the well-
known notion of effective resistance. Making use of these notions, we state our main
results, Theorem 3.2.1 and Theorem 3.2.2, which give useful bounds of the cost J(P )
of a reversible consensus matrix P .

3.1. The electrical analogy. The analogy between consensus matrices, or
Markov chains, and resistive electrical networks dates back to the work of Doyle
and Snell [11]. It is a powerful tool which gives strong intuitions on the behavior
of the chain on the basis of the physics of electrical networks, as well as permitting
simple and clear proofs for many results. Our interest is mainly related to the possi-
bility to rewrite the LQ cost we are interested in in terms of a geometric parameter,
the average effective resistance. To this respect we are strongly indebted in terms
of inspiration to the papers by Barooah and Hespanha [17, 18, 19], from which we
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took many results we state here without a proof. Effective resistances also arise as a
performance metric for clock synchronization algorithms in [20, 21], and methods for
its minimization are proposed in [22]. To conclude, in [23] the effective resistance is
computed in terms of the eigenvalues of the Laplacian matrix in the symmetric case.

3.1.1. Electrical networks. A resistive electrical network is a graph in which
pairs of nodes are connected by resistors. A resistive electrical network is therefore
determined by a symmetric matrix C with non-negative entries which tells for each
pair of nodes u, v which is the conductance of the resistor connecting those two nodes.
A resistive electrical network is said to be connected if the graph GC associated with
C is connected.

In order to describe the current flowing in the electrical network and to write
Kirchoff’s and Ohm’s laws, we choose (arbitrarily) a conventional orientation for each
edge of the undirected graph G, so that current will be denoted as positive when
flowing consistently with the direction of the edge and negative otherwise. To this
aim, for any pair of nodes u, v, such that u 6= v and Cuv = Cvu 6= 0, we choose either
(u, v) or (v, u) in V ×V . Let E ⊆ V ×V be the set of directed edges formed in this way
and letM be the number of edges. Define the incidence matrix B ∈ RM×N as follows:
order the edges from 1 to M and let for any e ∈ {1, . . . ,M} and u ∈ {1, . . . , N}

Beu =


−1 if the edge e is (v, u) for some v 6= u,

1 if the edge e is (u, v) for some v 6= u,

0 otherwise.
(3.1)

We define the diagonal matrix C ∈ RM×M having the conductance of the edge e as
the entry in position (e, e). The relation between C and C is easily obtained as

BTCB = diagC1− C , (3.2)

namely

[BTCB]uv =


Cu if u = v,

−Cuv if (u, v) ∈ E ,
0 if (u, v) /∈ E ,

where Cu :=
∑
v∈V Cuv.

Let i ∈ RN be given such that iT1 = 0, and interpret the k-th entry of i as the
current which is injected (or extracted if negative in sign) into the k-th node of the
network from an external source. We denote by j ∈ RM and v ∈ RN , respectively,
the current flows on the edges and the potentials at the nodes which are produced in
the network by injecting the current i, with the convention that je, e ∈ E , is positive
when the current flows in the direction of e. The previously defined matrices B and
C allow us to compactly write Kirchhoff’s node law and Ohm’s law as the system as
follows {

BT j = i ,

CBv = j ,
(3.3)

where the first equation states that the total current flow entering into each node
equals the total flow exiting from it (Kirchhoff’s current law), while the second equa-
tion represents Ohm’s law, Cuu′(vu − vu′) = je for all e = (u, u′) ∈ E .
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Solving the electrical network means finding the solutions j and v of Eq. (3.3),
in particular finding the solution v of the following electrical equation

BTCBv = i . (3.4)

It is well known (see, e.g., [11]) that a solution exists and, for a connected network, is
unique up to a constant additive term for v, i.e., the differences vu− vu′ are uniquely
defined. In the next subsection, we will give an explicit expression for the solutions
v, involving the Green matrix of the associated reversible consensus matrix.

Given a connected electrical network with conductance matrix C, the effective
resistance between two nodes u, u′ is defined to be

Ruu′(C) := vu − vu′

where we impose i = eu − eu′ and v is any solution of the corresponding electrical
equation (3.4)namely, v is the potential at each node of the network in the case when
a unit current is injected at node u and extracted ad node u′. Finally the average
effective resistance of the electrical network is defined as

R̄(C) :=
1

2N2

∑
u, u′∈V

Ruu′(C). (3.5)

Given a connected undirected graph G, in the following we will use the notations
Ruu′(G) and R̄(G), as the effective resistance and the average effective resistance
associated with the electrical network having conductance equal to 1 for all the edges
of G and conductance equal to 0 otherwise.

3.1.2. Electrical network associated with a consensus matrix. There is
a way to obtain a one to one relation between reversible consensus matrices and
connected resistive electrical networks with some fixed total conductance (i.e., sum of
the conductances of all edges). Let P be a reversible consensus matrix and let

Φ(P ) := NΠP

where Π = diag(π) and π is the invariant measure of P . It is clear that Φ(P ) is the
conductance matrix of a connected resistive network. It can be shown that the map Φ
is injective. Indeed, if P1, P2 are reversible consensus matrices and if Φ(P1) = Φ(P2),
then diag(π1)P1 = diag(π2)P2. Multiplying on the right both members by 1 we
obtain that π1 = π2 and consequently P1 = P2. We show now that Im(Φ) = S,
where

S := {C ∈ RN×N+ : C = CT , Cuu > 0 ∀ u ∈ V , GC is connected, and 1TC1 = N}

Clearly Im(Φ) ⊆ S. To prove the equality, for any given C ∈ S we consider

P = (diag(C1))
−1
C (3.6)

and we show that P is a reversible consensus matrix such that Φ(P ) = C. It is
straightforward to see that P1 = 1, Puu > 0, ∀ u ∈ V , and that GP is connected. To
prove that P is reversible and that Φ(P ) = P , the key remark is that

π =
1

N
C1
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is the invariant measure of P , and thus Π = 1
N diag(C1). This immediately implies

that Φ(P ) = C. The reversibility of P is then proved by using the symmetry of C:
ΠP = 1

NC = 1
NC

T = PTΠ. In this way, we have proved not only that Φ is bijective
on S, but also that (3.6) provides the inverse of Φ over S.

Consider now a reversible consensus matrix P and its associated conductance
matrix C := Φ(P ). Let moreover B and C be the matrices associated with the
resistive electrical network with conductance C, as defined above. Notice that the
Laplacian matrix L := I − P = 1

NΠ−1BTCB and so the electrical equation 3.4 is
equivalent to

Lv = 1
NΠ−1i. (3.7)

The network being connected, kerL = {α1 : α ∈ R}, and thus, for any i such
that iT1 = 0, Eq. (3.7) has infinitely many solutions, of the form v+α1 for some real
constant α, where v is a particular solution. In our setting it is convenient to find v
which satisfies the following constraint

πTv = 0,

which means that we need to solve the equation[
L
πT

]
v =

[
1
NΠ−1i

0

]
.

Thanks to Eq. (2.3), the solution can be explicitly written by using the Green matrix
G associated with P , as follows

v =
[
G 1

] [ 1
NΠ−1i

0

]
= 1

NGΠ−1i .

Consequently, we can obtain the effective resistance as follows

Ruu′(C) = 1
N (eu − eu′)TGΠ−1(eu − eu′) . (3.8)

3.2. LQ cost and effective resistance. This section is devoted to our main
results on the relation between the LQ cost J(P ) for a reversible consensus matrix P
and the average effective resistance of a suitable electrical network. The results are
then formulated in the special case of symmetric consensus matrices, since for this
case they turns out to be clearer and more readable. The proofs are given in Section 5.

Consider a reversible consensus matrix P and let π be its invariant measure.
Build the electrical network associated with the matrix P 2 as suggested in Sec. 3.1.2,
namely build the matrix of conductances

C := Φ(P 2) = NΠP 2. (3.9)

In the particular case in which P is symmetric we have that C = P 2. The following
theorem allows us to estimate the cost in terms of the average effective resistance of
this electrical network, and of quantities depending on the elements of the invariant
measure of P .

Theorem 3.2.1. Let P ∈ RN×N be a reversible consensus matrix and π its
invariant measure, and C the matrix of conductances defined in Eq. (3.9). Then it
holds

π3
minN

2

πmax
R̄(C) ≤ J(P ) ≤ π3

maxN
2

πmin
R̄(C) ,
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where πmin and πmax are respectively the minimum and maximum entries of π.
In the particular case of symmetric matrix we have the following corollary which

is a straightforward consequence of the previous theorem.
Corollary 3.1. Let P ∈ RN×N be a symmetric consensus matrix, and C the

matrix of conductances defined in Eq. (3.9). Then it holds

J(P ) = R̄(C).

The previous results catch the dependance of the cost on the electrical network
built from P 2. The following theorem allows us to write the cost J(P ) in terms of the
effective resistance of the graph associated with P only, regardless of the particular
entries of the matrix.

Theorem 3.2.2. Let P be a reversible consensus matrix with invariant measure π
and let G be the graph associated with P . Assume that all the non-zero entries of P
belong to the interval [pmin, pmax], and that the degree of any node is bounded from
above by an integer δ. Then,

π3
minN

8p2
maxδ

2π2
max

R̄(G) ≤ J(P ) ≤ π3
maxN

p2
minπ

2
min

R̄(G) .

A simpler result can be obtained for symmetric matrices as a straightforward
consequence of the previous theorem.

Corollary 3.2. Let P be a symmetric consensus matrix associated with a
graph G. Assume that all the non-zero entries of P belong to the interval [pmin, pmax],
and that the degree of any node is bounded from above by an integer δ. Then,

1

8p2
maxδ

2
R̄(G) ≤ J(P ) ≤ 1

p2
min

R̄(G) .

These last two results can be used to estimate the proposed LQ-cost in terms of
the effective resistance of graphs only, as we will show in Section 4.

3.3. LQ cost and network dimension. One of the most important problems
in the design of a sensor network is to dimension it, namely to decide how many
sensors we need to deploy for obtaining a given performance. From this point of view,
it is very important to understand how our cost function scales in terms of the number
N of nodes in a sequence of graphs of growing size, belonging to a given family. The
results in the previous sections can be used to achieve this goal.

Consider in fact a sequence of graphs {GN}N , and assume that f(N) = R̄(GN ) is
a known function of N . Assume that the degree of any node of each GN is uniformly
bounded from above by a positive integer δ. At first, assume to build a sequence of
symmetric matrices PN , each one consistent with the corresponding GN , and such
that if [PN ]ij 6= 0, then pmin ≤ [PN ]ij ≤ pmax, for all N . Then we immediately obtain
by Corollary 3.2 that the asymptotic scaling of J(PN ) for N →∞ is given by f(N),
up to some multiplicative constant. Notice that the above-mentioned assumptions
on the family PN are satisfied, for example, by one of the most popular consensus
protocols on networks with bidirectional communication (i.e., on undirected graphs),
defined as follows

xu(t+ 1) = xu(t) + ε
∑
v∈Nu

(xv(t)− xu(t))
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for a sufficiently small ε > 0.
If we relax the assumption that all PN ’s are symmetric, and we consider a family

of reversible matrices PN , each one consistent with the corresponding GN , the uniform
bound from above and from below on the non-zero entries [PN ]ij is not enough to
ensure that the asymptotic behavior of J(PN ) is given by f(N). In fact, once we
denote by πN the invariant measure of PN , and by πN,min and πN,max respectively the
minimum and maximum value of the entries of πN , we need the further assumption
that the sequences NπN,min and NπN,max are uniformly bounded from above and
below by constants independent of N . Under this assumption, Theorem 3.2.2 clearly
ensures that the asymptotic behavior of J(PN ) is given by f(N). Although the
assumption requiring that NπN,min and NπN,max are uniformly bounded can be
rather difficult to check for the general reversible consensus matrices, we can easily
see that it holds true in the following important example of consensus iteration (known
as ‘simple random walk’ or ‘uniform weights’)

xu(t+ 1) =
1

|Nu|+ 1

(
xu(t) +

∑
v∈Nu

xv(t)
)
.

Indeed, it can be shown that, if the graph is undirected, then the consensus matrix
in this case is reversible, and that the invariant measure π has components

πu =
|Nu|+ 1∑

v∈V (|Nv|+ 1)

Under the assumption that the degree of any node is bounded by a value δ, it is clear
that the entries of the consensus matrix belong to the interval [ 1

δ+1 ,
1
2 ]. One can also

check that each entry of the invariant measure lies in the interval [ 2
(δ+1)N ,

δ+1
2N ], and

hence the assumptions are satisfied.
We conclude this remark noticing that the assumption requiring that NπN,min

and NπN,max are uniformly bounded is not implied by the other assumptions that PN
are reversible consensus matrices whose entries belong to a fixed interval [pmin, pmax]
and are consistent with graphs with degrees uniformly bounded by δ. This is proved
in the example showed in figure 3.1. One can check that the corresponding consensus
matrix is reversible and that the invariant measure π is such that πk = α(a/b)k−1,
where α is a suitable normalizing factor. If we assume that a > b, then πN,min =
π1 = α and πN,max = πN = α(a/b)N−1. In this case NπN,min and NπN,max cannot
be uniformly bounded from below and above, because if this were the case, then also
the ratio NπN,max/NπN,min would be uniformly bounded from below and above, but
this is not possible, as NπN,max/NπN,min = πN,max/πN,min = (a/b)N−1.

b

a
1− a

1− a− b 1− a− b 1− a− b

a a a

b b b

1− b

1 2 N. . . . . .

Figure 3.1. Example: a family of growing lines. We assume that a > 0, b > 0 and a+ b < 1.

4. Application to geometric graphs. Let G = (V, E) be a connected undi-
rected graph such that V ⊂ Q where Q = [0, `]d ⊆ Rd and |V | = N . Namely, the
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nodes of the graph are deployed in some d-dimensional hypercube of side length equal
to `. Given such a graph and two nodes u, v ∈ V , we denote by dE(u, v) the Euclidean
distance between u and v in Rd, namely

dE(u, v) =

√√√√ d∑
k=1

(uk − vk)2.

Following [18], we define following parameters associated with G:
• the minimum Euclidean distance between any two nodes

s = min
u, v∈V, u6=v

{dE(u, v)} ; (4.1)

• the maximum Euclidean distance between any two connected nodes

r = max
(u, v)∈E

{dE(u, v)} ; (4.2)

• the radius of the largest ball centered in Q not containing any node of the
graph

γ = max {r|B(x, r) ∩ V = ∅, ∀x ∈ Q} , (4.3)

where B(x, r) denotes the d-dimensional ball centered in x ∈ Rd and with
radius r;

• the minimum ratio between the Euclidean distance of two nodes and their
graphical distance2

ρ = min

{
dE(u, v)

dG(u, v)
| (u, v) ∈ V × V

}
. (4.4)

One important example of geometric graph is given by the regular grid with di-
mension d. This is defined as the geometric graph with N = nd nodes, lying in a
hypercube of edge length ` = n− 1, whose nodes have coordinates (i1, . . . , id), where
i1, . . . , id ∈ {0, 1, . . . , n− 1}, and in which two nodes u, v are connected if and only if
dE(u, v) = 1.

4.1. Geometric graphs: main result. The following theorem is the main
result of this section.

Theorem 4.1.1. Let P ∈ RN×N be a reversible consensus matrix with invariant
measure π, associated with a graph G = (V, E). Assume that all the non-zero entries
of P belong to the interval [pmin, pmax] and that G is a geometric graph with parameters
(s, r, γ, ρ) and nodes lying in Q = [0, `]d in which γ < `/4. Then

k1 + q1fd(N) ≤ J(P ) ≤ k2 + q2fd(N) ,

where

fd(N) =


N if d = 1,

logN if d = 2,

1 if d ≥ 3,

(4.5)

2The graphical distance dG(u, v) between u and v is defined as the length (i.e., number of edges)
of the minimum path connecting u and v.



12 E. LOVISARI, F. GARIN, AND S. ZAMPIERI

and where k1, k2, q1 and q2 depend on pmax, pmin, δ, d, on πminN and πmaxN and
on the parameters s, r, γ, ρ of the geometric graph.

One of the most important consequences of this result is the fact that a d-
dimensional regular grid has the same behavior of the LQ cost as a function of N
of a irregular geometric graph. This implies that the behavior of the LQ cost as a
function of N is essentially captured by the dimensionality, rather than by the sym-
metry, exactly as it happens for the rate of convergence towards consensus [13, 14].

4.2. Growing families of geometric graphs. Theorem 4.1.1 holds for each
given geometric graph with parameters s, r, γ and ρ. However, very much similarly
to what is done in Section 4.1, we want to use this result in order to capture the
asymptotic behavior in term of the dimension of the network.

Consider a growing family of geometric graphs GN with GN = (VN , EN ) and
|VN | = N . Let each GN be a geometric graph with parameters sN , rN , γN and
ρN . Assume that there exist parameters s, r, γ and ρ, which we call the geometric
parameters of the family, such that

sN ≥ s, rN ≤ r, γN ≤ γ, ρN ≥ ρ, ∀N . (4.6)

Let PN be the reversible consensus matrix associated with GN and with invariant
measure πN . First of all, we need that all the non-zero entries of PN belong to
the interval [pmin, pmax], for all N . Moreover, called πN,min an πN,max respectively
the minimum and maximum entries of πN , we need to assume that there exist two
constants cl and cu such that NπN,min ≥ cl and NπN,max ≤ cu. Notice now that

• by definition of sN and rN ,

sN = min
u, v∈V, u6=v

{dE(u, v)} ≤ min
(u, v)∈E

{dE(u, v)} ≤ rN

and thus

s ≤ sN ≤ rN ≤ r;

• given a graph GN , if ū and v̄ are two nodes connected by an edge, we have

ρN = min

{
dE(u, v)

dG(u, v)
| (u, v) ∈ V × V

}
≤ dE(ū, v̄) ≤ rN

and thus

ρ ≤ ρN ≤ r;

• by definition of γN , it is immediate to see that we must have 2γN ≥ sN , and
thus

s

2
≤ γN ≤ γ.

Hence, given the geometric parameters of the family, we have a lower and an upper
bound for the actual parameters in any graph. Notice moreover that the degree of
each node is bounded by the ratio of the volume of the sphere of radius rN and the
volume of the sphere of radius sN . Therefore the maximum degree δN of the nodes
of GN is uniformly bounded as follows

δN ≤
rdN
sdN
≤ rd

sd
.
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On the other side, clearly for all N we have δN ≥ 1, because GN is connected.
Therefore, similarly to Section 3.3, this discussion allows us to conclude that for

the family of reversible consensus matrices PN constructed as above, it holds

k1 + q1fd(N) ≤ J(PN ) ≤ k2 + q2fd(N)

where k1, q1, k2 and q2 depend on d, pmax, pmin, cl and cu and the geometric param-
eters of the family of graphs s, r, γ, ρ.

5. The relation between the LQ cost and effective resistance: Proofs
of Theorem 3.2.1 and Theorem 3.2.2. This section is devoted to the proof of the
theorems relating the LQ cost with the average effective resistance. We recall some
useful facts from the literature, and then use these notions to prove the results.

5.1. Electrical networks: properties of the effective resistances. This
section is devoted to briefly recall without proofs some well-known results on the
behavior of the effective resistances in case of perturbation of the electrical network.
These are of fundamental importance, since effective resistances show monotonicity
properties which are not trivial to prove for consensus matrices without the electrical
analogy.

A first important property is the following (see e.g. [24, Thm. B] for a proof).
Lemma 5.1. If the electrical network is connected, then the effective resistance is

a distance. Namely, it satisfies the following properties:
• Ruv ≥ 0 for all u, v ∈ V , and Ruv = 0 if and only if u = v;
• Ruv = Rvu;
• Ruw ≤ Ruv +Rvw for all u, v, w ∈ V .

A second result, known as Rayleigh’s monotonicity law, says that increasing (resp.,
decreasing) the conductance in any edge of the network implies that the effective resis-
tance between any other couple of nodes respectively cannot increase (resp., decrease).
The statement is essentially taken from [18, 25], where the authors were considering
a more general case.

Lemma 5.2 (Rayleigh’s monotonicity law).
Let C and C ′ be the conductance matrices of two electrical networks such that

Cuu′ ≤ C ′uu′ , ∀ (u, u′) ∈ V × V .

Then, the effective resistances between any two nodes v, v′ in the network are such
that

Rvv′(C) ≥ Rvv′(C ′).

The following lemma [25, Lemma 4.6.1] says that, if we take two resistive networks
with the conductance matrices scaled by a constant α, then the effective resistances
will be scaled by the constant 1/α.

Lemma 5.3.

Ruu′(αC) =
1

α
Ruu′(C), ∀ (u, u′) ∈ V × V.

Remark 5.1.1. Lemma 5.3 and Rayleigh’s monotonicity law imply that the effec-
tive resistance in an electrical network is essentially due to the graph topology. In fact,
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if we have an electrical network with conductance matrix C whose non-zero entries
belong to the interval [cmin, cmax] and if C ′ is a conductance matrix having entries
equal to 1 in the positions in which C has non-zero entries and to 0 elsewhere, then

1

cmax
Ruu′(C ′) ≤ Ruu′(C) ≤ 1

cmin
Ruu′(C ′), ∀ (u, u′) ∈ V × V.

The last technical lemma deals with h-fuzzing in electrical networks with unitary
conductances. Given an integer h ≥ 1 and a graph G, we call h-fuzz of G, denoted
by the symbol G(h) = (V (h), E(h)), a graph with the same set of nodes, V (h) = V ,
and with an edge connecting two nodes u and v if and only if the graphical distance
dG(u, v) between u and v in G is at most h, namely

E(h) = {(u, v) ∈ V × V : dG(u, v) ≤ h}.
Notice that, if h = 1, then G(1) = G. If D is the diameter of the graph, namely the
maximum graphical distance between a couple of nodes, then G(D) is the complete
graph. It is easy to see that, if P is a stochastic matrix with positive diagonal entries,
then the graph GPh associated with a Ph is the h-fuzz of the graph GP associated
with P .

The lemma, which is stated with proof in [25, Lemma 5.5.1], suggests that the
effective resistance of G and of its h-fuzz G(h) have effective resistances with a similar
asymptotic behavior.

Lemma 5.4. Let h ∈ Z, h ≥ 1, and let G = (V, E) be a graph and G(h) = (V, E(h))
be its h-fuzz. For any edge e ∈ E, define µh(e) to be the number of paths of length
at most h passing through e in G (without any self-loop in the path), and define
µh = maxe∈E µh(e). The following bounds hold true

1

hµh
Ruv(G) ≤ Ruv(G(h)) ≤ Ruv(G).

The value of µh in the previous result clearly depends on the particular graph
under consideration. The following lemma gives a conservative bound for µh which
depends only on the maximum degree of the nodes in the graph. We will use this
bound later, in the particular case of h = 2.

Lemma 5.5. Let µh be defined as in Lemma 5.4. If in G all nodes have degree at
most δ, then

µh ≤ h2(δ − 1)h−1.

Proof. For any K = 1, . . . , h, we want to find an upper bound on the number of
paths of lengthK passing through the edge e. We letK ′ be an integer 0 ≤ K ′ ≤ K−1,
and we consider the number of paths in which edge e is the (K ′ + 1)-th edge in the
path, namely there are K ′ edges before e and K − K ′ − 1 edges after e. As it can
be easily seen in Figure 5.1, there are at most (δ − 1)K

′
choices for portion of path

preceding e, and at most (δ − 1)K−K
′−1 choices for the portion following e, so that

there are at most (δ − 1)K−1 paths having e in (K ′ + 1)-th position. Summing upon
all K ′ = 0, . . . ,K − 1, and then summing also upon all path lengths K = 1, . . . , h, we
obtain that, for any e ∈ E ,

µh(e) ≤
h∑

K=1

K−1∑
K′=0

(δ − 1)K−1 =

h∑
K=1

K(δ − 1)K−1 ≤
h∑

K=1

h(δ − 1)h−1 = h2(δ − 1)h−1 .
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e

(δ − 1)K
′

(δ − 1)K−K
′−1

at most δ − 1
edges

Figure 5.1. Illustration of the proof of Lemma 5.5: upper bound on the number of paths of
length K in which e is the (K′ + 1)-th edge, in a graph with node degree at most δ = 4.

Finally notice that this upper bound for µh(e) is the same for all edges e ∈ E , and
thus it is also an upper bound for the maximum, µe.

5.2. Proof of Theorem 3.2.1 and Theorem 3.2.2. The previous definitions
and properties are used in this section to prove the main results Theorem 3.2.1 and
Theorem 3.2.2 for reversible consensus matrices. Then Corollary 3.1 and Corollary 3.2
are immediate for symmetric matrices πi = 1

N for all i = 1, . . . , N . In order to prove
the results, we need to introduce two more technical objects which will help us to
develop the theory.

Consider a reversible consensus matrix P with invariant measure π. We call
weighted cost the following function of P

Jw(P ) := trace

∑
t≥0

(I − π1T )(PT )tΠP t(I − 1πT )

 (5.1)

where Π = diag(π). Notice that in the case of symmetric matrices J(P ) = Jw(P ).
Now, let C := Φ(P 2) = NΠP 2. The second object we need is the weighted average
effective resistance, which is defined as

R̄w(C) :=
1

2
πTR(C)π =

1

2

∑
(u, v)∈V×V

Ruv(C)πuπv . (5.2)

Again, notice that in the symmetric case the weighted definition coincides with the
un-weighted one, namely R̄(C) = R̄w(C). We present now a lemma which clarifie
the relation between the costs J(P ) and Jw(P ), and between the weighted and the
un-weighted average effective resistances, respectively. The proof is immediate from
the fact that πu > 0 for all u.

Lemma 5.6. Let P be a consensus matrix with invariant measure π and let
C := Φ(P 2) = NΠP 2. Then

1

Nπmin
Jw(P ) ≤ J(P ) ≤ 1

Nπmax
Jw(P )

π2
minN

2R̄(C) ≤ R̄w(C) ≤ π2
maxN

2R̄(C) .
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After the inequalities of the above lemma, which concern separately the LQ cost
and the average effective resistance, our goal is to find the relation between the cost of
the consensus matrix P and the average effective resistance of the connected electrical
network associated with P 2. Before doing so, we need the following technical lemma.

Lemma 5.7. If P is a consensus matrix, then the diagonal entries of its Green
matrix G are positive.

Proof. For ease of notation, we prove that G11 > 0; the proof for the other
diagonal entries of G can be obtained by the same arguments. We fix the following
notation: we let gT = [G11, g̃

T ] be the first row of G, and we define the following
partitions

L =

[
l11 rT1
c1 L̃

]
, P =

[
p11 r′1

T

c′1 P̃

]
, gT =

[
G11, g̃

T
]
, πT =

[
π1, π̃

T
]
.

Because GL = I − P , we have gTL = eT1 − πT , where e1 denotes the first vector of
the canonical basis of RN . Notice that G1 = 0 implies that gT1 = 0 and thus, in
particular, G11 = −g̃T1N−1. Similarly, πTL = 0T gives l11 = − 1

π1
π̃T c1. Hence, we

can write the equality gTL = eT1 − πT in the following equivalent way

g̃T1
[
−1N−1 IN−1

] [− 1
π1
π̃T

IN−1

]
L̃
[
−1N−1 IN−1

]
= eT1 − πT .

By right-multiplying both sides of the above equality with a factor
[
0TN−1

L̃−1

]
1N−1, we

obtain that g̃T1 1N−1 = −π̃T L̃−11N−1, and thus

G11 = π̃T L̃−11N−1 .

Now notice that, by the definition L = I −P of the Laplacian, L̃ = I − P̃ . Moreover,
our definition of consensus matrix implies that P is primitive, and thus it is well-
known that P̃ has all eigenvalues inside the unit circle (see e.g. [26, Lemma III.1] for
a proof). This implies that L̃ is invertible, and that the series

∑
t≥0 P̃

t is convergent
and is equal to (I − P̃ )−1 = L̃−1. This allows to obtain

G11 = π̃T
∑
t≥0

P̃ t1N−1 .

Recalling that the entries of π̃ are all positive, and that P̃ has non-negative entries
with at least some positive element, this proves that G11 > 0.

Now we have the tools to prove the following lemma, which shows the relation
between the weighted cost and the weighted average effective resistance.

Lemma 5.8. Let P be a reversible consensus matrix with invariant measure π
and let C := Φ(P 2) = NΠP 2. Then

πminNR̄w(C) ≤ Jw(P ) ≤ πmaxNR̄w(C).

Proof. To prove this lemma, we will prove the following two equalities involving
the Green matrix associated with P 2, which we will denote by G(P 2)

1. Jw(P ) = trace ΠG(P 2);
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2. R̄w(C) = 1
N traceG(P 2).

From such equalities, the statement follows, because Π is diagonal and positive defi-
nite, and G(P 2) has positive diagonal entries (see Lemma 5.7).

As far as the first equality is concerned, observe that

Jw(P ) = trace

∑
t≥0

(P t − 1πT )TΠ(P t − 1πT )


= trace

∑
t≥0

(
(P t)TΠP t − ππT

)
= trace

∑
t≥0

Π
(
P 2t − 1πT

) = trace
(
ΠG(P 2)

)
.

As far as the second equality is concerned, observe that, by substituting the
expression for Ruv(C) given in Eq. (3.8) inside the definition of R̄w(C), we get

R̄w(C) =
1

2

∑
u,v

1
N (eu − ev)TG(P 2)Π−1(eu − ev)πuπv,

from which we can compute

R̄w(C) =
1

2

∑
u,v

1
N (eu − ev)TG(P 2)Π−1(eu − ev)πuπv

=
1

N

1

2

∑
u,v

(eTu − eTv )G(P 2)(πveu − πuev)

=
1

N

(1

2

∑
u,v

(πve
T
uG(P 2)eu + πue

T
vG(P 2)ev)

− 1

2

∑
u,v

(πve
T
vG(P 2)eu + πue

T
uG(P 2)ev)

)
=

1

N

(
trace(G(P 2))− πTG(P 2)1

)
,

which yields the proof of the equality since πTG(P 2)1 = 0.
These lemmas can be easily used to infer the first main result, since Theo-

rem 3.2.1’s proof follows immediately from the inequalities in Lemma 5.6 together
with those in Lemma 5.8.

In order to prove the second main result, we need a last technical lemma, which
allows us to reduce the computation of the average effective resistances on the 2-fuzz
of G to those on G only.

Lemma 5.9. Let P be a reversible consensus matrix with invariant measure π
and with associated graph G. Let C := Φ(P 2). Then

1

8Nπmaxδ2p2
max

R̄(G) ≤ R̄(C) ≤ 1

Nπminp2
min

R̄(G) , (5.3)

where δ denotes the largest degree of the graph nodes in G and pmin and pmax are,
respectively, the minimum and the maximum of the non-zero elements of P .
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Proof. First of all notice that, for all u, v such that Cuv 6= 0 we have that

Cuv = Nπu[P 2]uv = Nπu
∑
w PuwPwv.

By definition of pmin and pmax, and because there are at most δ + 1 non-zero terms
Puw for any fixed u, this yields

∀Cuv 6= 0, Nπminp
2
min ≤ Cuv ≤ Nπmax(δ + 1)p2

max. (5.4)

By Remark 5.1.1, 1
cmax
R̄(G(2)) ≤ R̄(C) ≤ 1

cmin
R̄(G(2)), where cmin and cmax are

the minimum and maximum non-zero entries of C, respectively. This, together with
Eq. (5.4), gives

1

Nπmax(δ + 1)p2
max

R̄(G(2)) ≤ R̄(C) ≤ 1

Nπminp2
min

R̄(G(2)) .

Then we apply Lemmas 5.4 and 5.5, both with h = 2, and we obtain

1

8(δ − 1)Nπmax(δ + 1)p2
max

R̄(G) ≤ R̄(C) ≤ 1

Nπminp2
min

R̄(G) ,

which yields the claim, because (δ + 1)(δ − 1) ≤ δ2.
Now we can prove the second main result: Theorem 3.2.2 immediately follows

from Theorem 3.2.1 and Lemma 5.9.

6. Application to geometric graphs: Proof of Theorem 4.1.1. In order
to prove Theorem 4.1.1, we need two preliminary results. The first one is an immedi-
ate corollary of a theorem taken from [6], which states that the claimed asymptotic
behavior of geometric graphs holds true at least in the case of regular grids. Recall
that, by regular grid, we mean a d-dimensional geometric graph with N = nd nodes
lying on the points (i1, . . . , id), where i1, . . . , id ∈ {0, . . . , n− 1} and in which there
is an edge connecting two nodes u, v if and only if their distance is dE(u, v) ≤ 1.

Lemma 6.1. Let BL be the incidence matrix of a regular grid in dimension d
with N = nd nodes. Let P ∈ RN×N be the consensus matrix defined as follows

P = I − 1

2d+ 1
BTLBL

whose associated graph is the regular grid. Then

clfd(N) ≤ R̄(L) ≤ cufd(N)

where cl and cu depend on d only, and where fd(N) is defined in Eq. (4.5).
Proof. With the same assumptions, from [6], Proposition 1, we known that

c′lfd(N) ≤ J(P ) ≤ c′ufd(N) ,

where c′l and c
′
u depend on δ only. The result immediately follows from Corollary 3.2.

The second result allows us to reduce the problem of computing the average
effective resistance in the geometric graph to the simpler case of two suitable grids.
First of all, we state the following three technical results.

Lemma 6.2. In an hypercube H ⊆ Q with side length less than s√
d
, there is at

most one node u ∈ V. In an hypercube H ′ ⊆ Q with side length greater than 2γ, there
is at least one node u′ ∈ V.
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Proof. If the side length of an hypercube is s√
d
, then its diagonal has length

s. If we had two nodes in the hypercube, their distance would be less than s, in
contradiction with the definition of s. The second claim is proved noticing that an
hypercube of side length 2γ includes a sphere of radius γ. If it did not contain any
node, then we could find a sphere of radius larger than γ not containing any node, in
contradiction with the definition of γ.

As a corollary of the previous lemma we have the following result.
Lemma 6.3. Let H be a hypercube in Q with edge length `H and let NH be the

number of nodes in it. Then⌊
`H
2γ

⌋
< d
√
NH <

⌈√
d`H
s

⌉
.

Proof. The result follows from Lemma 6.2 simply counting how many disjoint
hypercubes of side length s√

d
and 2γ we can find in an hypercube of side length `H .

In particular for the whole graph we have the following corollary.
Corollary 6.4. The number of nodes N of the graph is such that

`
1− 2γ

`

2γ
<

d
√
N < `

√
d− s

`

s
.

Notice that, in the case where ` is big with respect to γ and s, the previous corol-
lary essentially implies that N is proportional to `d. The following lemma concerns
geometric graphs and their embeddings in lattices.

Lemma 6.5. Let G = (V, E) be a geometric graph with parameters (s, r, γ, ρ) and
with nodes in an hypercube Q = [0, `]d in which γ < `

4 . Then there exist two lattices,
L1 and L2 such that

k1 + q1R̄(L1) ≤ R̄(G) ≤ k2 + q2R̄(L2), (6.1)

where q1, q2, k1 and k2 depend on s, r, γ, ρ, and on d. Moreover, there exist four
constants, c′1, c′′1 , c′2, and c′′2 , depending on the same set of parameters, such that, if
N1 and N2 are respectively the number of nodes of L1 and L2, then

c′1N1 ≤ N ≤ c′′1N1 c′2N2 ≤ N ≤ c′′2N2. (6.2)

Proof. The idea is to tessellate the hypercube Q in order to obtain a rough
approximation of G, and then compute the bound for the effective resistance. Let us
consider the upper bound first. Define n1 := d `

2γ e − 1 and λ := `
n1

and (exactly)
tessellate the hypercube Q with N1 := nd1 hypercubes of side length λ as in Fig. 6.1.
Notice that the technical assumption γ < `

4 also implies γ < `
2 , which in turn avoids

the pathological case in which n1 = 0. Using the properties of d·e, it can be seen that

2γ < λ < 4γ.

Notice that the assumption ` > 4γ ensures that N1 ≥ 2d.
Notice that, by Lemma 6.2, in each of these hypercubes there is at least one

node of the graph G. On the other hand, by Lemma 6.3, we can argue that in each
hypercube there are at most d

√
dλ
s ed nodes. Since 2γ < λ, then

1

d 2
√
dγ
s ed

N ≤ N1 ≤ N.
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This proves the first of the two bounds in Eq. 6.2. Another consequence of the fact
that in each of these hypercubes there is at least one node of G is that for each
hypercube we can select one “representative” node in V belonging to it. Let VL1

⊆ V
be the set of these representatives. Consider now the regular lattice L1 = (VL1 , EL1)
having as the set of nodes the set of representatives VL1 and in which there exists
an edge connecting two nodes in VL1

if the two corresponding hypercubes touch each
other (not diagonally). Define the function η : V → VL1

such that η(u) = u′ if u
belongs to the hypercube associated with u′.

γ

ρ

s

r

Figure 6.1. On the left, an example of geometric graph in R2 with parameters s, r, γ and ρ
(for ρ, the two nodes for which the minimum in the definition is attained). On the right, the lattice
L1 built for the upper bound. The box-marked nodes are the representatives of the hypercubes, in
thick solid line the edges of the lattice L1. Small nodes and dotted lines are the other nodes and
edge of the original graph G.

The next step is to prove that there exists an integer h ≥ 1 such that the h-fuzz
G(h) of G embeds L1, namely that all the nodes and edges of L1 are also nodes and
edges of G(h). Take thus u′, v′ ∈ VL1

such that (u′, v′) ∈ EL1
. Their Euclidean distance

is bounded as follows

dE(u′, v′) ≤ λ
√
d+ 3

as a simple geometric argument shows. By definition of ρ, we obtain

dG(u′, v′) ≤ λ
√
d+ 3

ρ
≤ 4γ

√
d+ 3

ρ
.

Take thus h = b 4γ
√
d+3
ρ c and build G(h). By the previous discussion, it is manifest

that G(h) embeds L1.
Now, we claim that in G(h) all the nodes lying in the same hypercube have graph-

ical distance 1, namely they are all connected each other. In fact, if u and v lie in one
hypercube, and thus dE(u, v) ≤ λ

√
d, then we have

dG(v, u) ≤ 1

ρ
dE(v, u) ≤ λ

√
d

ρ
≤ 4γ

√
d

ρ
≤ 4γ

√
d+ 3

ρ
,

and thus dG(v, u) ≤ h. This clearly yields

dG(h)(u, η(u)) ≤ 1. (6.3)
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We can now prove the claim. Since G(h) embeds L1, by the properties of the
effective resistances, for each u′, v′ ∈ VL1

we have that

Ru′v′(G(h)) ≤ Ru′v′(L1).

This is still limited to the set of representatives VL1
. If u and v are two generic

nodes of G(h), using Eq. (6.3) and the fact that the effective resistance is a distance
(Lemma 5.1), we can obtain that

Ru, v(G(h)) ≤ Ru, η(u)(G(h)) +Rη(u), η(v)(G(h)) +Rη(v), v(G(h))

≤ 2 +Rη(u), η(v)(G(h)).

Thus, we have

R̄(G(h)) =
1

2N2

∑
u,v∈V

Ru, v(G(h)) ≤ 1 +
1

2N2

∑
u,v∈V

Rη(u), η(v)(G(h))

≤ 1 +
1

2N2

∑
u,v∈V

Rη(u), η(v)(L1) = 1 +
1

2N2

∑
u′,v′∈VL1

∑
u∈η−1(u′)

v∈η−1(v′)

Ru′,v′(L1)

≤ 1 +
M2

2N2

∑
u′,v′∈VL1

Ru′,v′(L1) = 1 +M2N
2
1

N2
R̄(L1)

where, as already pointed out, M , the maximum number of nodes of G in each hy-
percube of length λ, can be bounded as M ≤ d

√
dλ
s ed. By previous arguments, M N1

N
can be bounded from above by a constant dependent on the geometric parameters of
the geometric graph and on d. Thus, the claim of the Lemma immediately descends
from Lemma 5.4.

The proof for the lower bound follows basically the same steps once a good regular
lattice candidate is selected. We tessellate again Q by means of hypercubes of side
length

λ :=
`

b `
√
d
s c+ 1

as in Fig. 6.2. Observe that λ < s/
√
d so that by Lemma 6.2 in each of them there can

be at most one node. The candidate lattice is L2 = (VL2
, EL2

), where VL2
is the set

of hypercubes and the edges connect again two nodes in VL2
if the two corresponding

hypercubes touch each other (not diagonally).
It can be proved that, if we take u, v ∈ V such that (u, v) ∈ E , then dL2

(u, v) ≤
dd r/λe. We define now the map η : VL2 → V so that η(u′) is the node in V which is
closest to u′ in the Euclidean distance. It can be proved that, for all u′ ∈ VL2 we have
that dE(u′, η(u′)) ≤ γ and so for any pair of nodes u′ and v′ such that η(u′) = η(v′)
we have that dE(u′, v′) ≤ 2γ and consequently dL2

(u′, v′) ≤ dd 2γ/λe.
Analogously to the upper bound case, we write V ⊆ VL2

identifying a node of
the graph with the hypercube it belongs to. Once this is done, and taking h :=

max {dd r/λe, dd 2γ/λe} we can argue that L(h′)
2 embeds G and that, given u ∈ V , for

any pair of nodes u′ and v′ in η−1(u) we have

dL(h)
2

(u′, v′) ≤ 1.



22 E. LOVISARI, F. GARIN, AND S. ZAMPIERI

γ

ρ

s

r

Figure 6.2. On the left, the geometric graph already used for the upper bound. On the right,
the lattice L2 built for the lower bound. The centers of the hypercubes in which there are no nodes
of G are marked by a cross, while the bullet nodes are the nodes of G. In solid lines are all the edges
of L2, in dotted lines the other edges of the original graph G.

The last part of the proof, including the second bound in Eq. 6.2, is totally analogous
to the upper bound case.

We can now prove our theorem on geometric graphs.
Proof. [of Theorem 4.1.1] We know by Theorem 3.2.2 that

clR̄(G) ≤ J(P ) ≤ cuR̄(G)

with cl and cu dependent on pmin, pmax, δ and the products πminN and πmaxN . By
Lemma 6.5, we can argue that

k′1 + q′1R̄(L1) ≤ J(P ) ≤ k′2 + q′1R̄(L2) (6.4)

where L1 and L2 are two lattices such that c′1N1 ≤ N ≤ c′′1N1, c′2N2 ≤ N ≤ c′′2N2

and where k′1, q′1, k′2 and q′2 is a set of constants dependent on pmin, pmax, δ, the
products πminN and πmaxN , d and the parameters of the geometric graph.

Take now the grid L1, let BL1 be its adjacency matrix, and build the consensus
matrix

P1 = I − 1

2d+ 1
BTL1

BL1
.

By Lemma 6.1, we know that

α1fd(N1) ≤ R̄(L1) ≤ α′2fd(N1),

where α1 and α2 depend on the parameter δ only.
Notice now that Lemma 6.5 also states that c′1N1 ≤ N ≤ c′′1N1, where c′1 and c′′1

depend on the parameters of the geometric graph only. Simple computations using
the definition of fd(·) in Eq. (4.5) yield to

k′1 + q′1fd(N) ≤ R̄(L1) ≤ k′′1 + q′′1 fd(N),

where k′1, q′1, k′′1 and q′′1 depend on the geometric parameters and on d.
Analogously, there exists a symmetric consensus matrix P2 associated with L2 for

which

k′2 + q′2fd(N) ≤ R̄(L1) ≤ k′′2 + q′′2 fd(N),
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where k′2, q′2, k′′2 and q′′2 depend on the geometric parameters and on d.
By substituting in Eq. (6.4), it is now clear that

k1 + q1fd(N) ≤ J(P ) ≤ k2 + q2fd(N)

with k1, q1, k2 and q2 as in the statement of the theorem.

7. Conclusion. In this paper we study an LQ cost which measures the per-
formance of a consensus algorithm. We show that, under mild assumptions on the
associated communication graph, if the consensus matrix is reversible then the LQ
cost can be bounded using a quantity related to the graph topology only, namely its
average effective resistance. For the generic reversible matrix a strong condition on
the entries of the invariant measure must be satisfied in order the bound to be ef-
fective. However, we have shown that some highly popular and easily implementable
strategies implicitly fulfil it. Exploiting this result, we study a large class of graphs,
called geometric graphs, which describe geometrically local communication and which
can be seen as perturbed grids. We show the the cost exhibits a particular behaviour
as a function of the number of nodes in the graph, which is related to the dimension
of the space in which the graph is drawn only, extending a result already known for
highly symmetric graphs.
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