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Abstract— In this paper a randomized linear protocol for
time synchronization of clocks in a multi–agent scenario is
considered. Clocks are allowed to have different offsets and
different rates, and they communicate through an asymmetric
broadcast protocol. The contribution of this paper is twofold.
It is first shown that, under very mild conditions on the com-
munication graph, it is possible to tune a protocol parameter
in such a way that synchronization is achieved in mean–square.
Then, via numerical simulations, the proposed strategy is com-
pared with other fully distributed strategies recently proposed
in the literature. While being slightly slower to reach the
asymptotic synchronization, the proposed strategy significantly
outperforms the other strategies in terms of robustness against
process and measurement noises and time-varying clock drifts.

I. INTRODUCTION

In networked control systems and in multi–agent systems
it is often needed to guarantee tight time synchronization
among the different agents. For example, basic synchro-
nization is needed in any sensor network, when different
devices have to provide their measurements with proper
time–stamping for subsequent data fusion and processing.

In some cases, however, the need for synchronization can
be very demanding. This is the case, for example, when
the collected data need to be interpreted according to a fast
dynamical model for the system, like in distributed detection
and localization of moving targets. In other scenarios, precise
time synchronization is required in order to perform some
specific measurements on the system: examples include the
voltage phasor measurement in electric power networks, via
synchronized phasor measurement units, and some time-of-
flight-based (GPS-like) distance measurements. Also some
ancillary services in networked control systems rely on
correct time sync: notably, TDMA communication (where
the use of a shared communication channel is regulated by
precise slotting of the access times) and energy saving mech-
anism (when nodes remain idle for most of the time and must
wake up all together in order to initiate a communication).

For all these applications, especially for large scale sys-
tems, extremely robust solutions must be designed, in order
to guarantee synchronization also in case of partial failure of
the system, communication faults, node appearance and dis-
appearance, and also possible malicious attacks. Scalability is
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also an issue, as we want the performance of the synchroniza-
tion algorithms to be practically independent from the size
of the system. On the contrary we want the reconfiguration
to be minimal every time a new node enters or leaves the
network, or if two networks merge. Because of these reasons,
the family of time synchronization algorithms that are based
on the construction of a hierarchical coordination tree, as in
[1], [2], are poorly suited for these applications. Maintaining
such architecture may be unbearable in many scenarios, and
these solutions exhibit little robustness against the failure of
any node which is not a leaf of the tree.

Other algorithms available in the literature try to cir-
cumvent the main drawbacks of tree-based solutions by
constructing different architectures, like clusters of nodes,
each one headed by an elected master node [3]. Master
nodes then synchronize among them, at a higher level
of coordination. Unless the communication architecture is
specifically designed, however, there is no guarantee that
master nodes can communicate more reliably over the longer
distances of the high level communication layer.

In this work, instead, we adopt a fully distributed (lead-
erless) approach, in which all the nodes communicate with
a limited number of neighbors, and each node behaves in
the same way. Existing algorithms in this sense include [4]
and [5], which however suffer from specific drawbacks: the
algorithm proposed in [4], inspired by the fireflies integrate-
and-fire synchronization mechanism, can compensate for
different clock offsets but not for different clock skews; on
the other hand, the algorithm proposed in [5] compensates
for the clock skews but not for the time offsets.

Fully distributed protocols that can compensate for both
clock skews and offsets have been proposed in [6], [7].
For these algorithms, convergence has been proved by the
authors, under reasonable assumptions. The main weakness
of these solutions resides in their highly nonlinear dynamic
behavior, which prevents the analysis of their robustness with
respect to data losses in the communication, quantization
noise, communication errors, and unmodeled dynamics of the
clocks. On the other hand, in [8], a linear, PI-like, distributed
algorithm has been proposed for the correction of both skew
and offset clock errors. The performance and the robust-
ness of this algorithm (which closely resembles high-order
consensus algorithms) have been thoroughly analyzed via
numerical simulations. However, providing a formal proof
of its convergence proved to be a difficult task, except for
some special cases in which either the communication graph
was restricted to some special families, or some assumptions
were made on the asynchronous activation of the nodes.



In this paper we prove that the algorithm convergence
can be guaranteed, via proper tuning of a design parameter,
independently from the communication graph. The proposed
algorithm can indeed be specialized to different communica-
tion strategies. According to the adopted technology, it might
be easier to perform symmetric vs. asymmetric communica-
tion, and point-to-point (gossip) vs. broadcast communica-
tion. Many of the most appealing applications of multi–agent
systems that we have mentioned before, are provided with
some inherently broadcast communication channel (namely,
wireless communication for sensor networks and power-line
communication in the electric grid). For this reason, we focus
in the following on the broadcast protocol, even if the main
result applies to generic communication protocols.

In Section II we introduce a model for the clocks and we
described the proposed algorithm. In Section III we present
the main theoretical result, proving and commenting the
convergence properties of the algorithm. Finally, in Section
IV, we simulate the algorithm behavior and we propose a
numerical comparison with other fully distributed strategies.
While being slightly slower in the asymptotic converge
to synchronization, the strategy we propose in this paper
significantly outperforms the other strategies in terms of
robustness against process and measurement noises and time-
varying clock drifts.

A. Mathematical preliminaries

Before proceeding, we collect some useful definitions and
notations. In this paper, G = (V, E) denotes an undirected
graph where V = {1, . . . , N} is the set of vertices and E
is the set of edges, i.e., E ⊆ V × V . Since G is undirected,
if (i, j) ∈ E then also (j, i) ∈ E . A path in G consists of a
sequence of vertices (i1, i2, . . . , ir) such that (ih, ih+1) ∈ E
for every h ∈ {1, . . . , r − 1}. A graph G is connected if for
any pair of vertices (i, j) there exists a path connecting i to j.
Given a matrix M ∈ RN×N , we define the associatedu graph
GM by taking N nodes and putting an edge (j, i) in EM if
Mij 6= 0. Given a graph G on V , the matrix M is compatible
with G if EM ⊆ E . Given the node i, by Ni we denote the
set of its neighbors, i.e., Ni = {j ∈ V |(i, j) ∈ E}. With the
symbol 1 we denote the N -dimensional vector having all the
components equal to 1. Given the vector v ∈ RN , by diag(v)
we denote the diagonal matrix having the components of
v as diagonal elements. Superscript ∗ denote the transpose
operation.

II. PROBLEM FORMULATION AND PROPOSED SOLUTION

In this section we formulate the problem we aim at solving
in this paper and we propose our solution, which is a modi-
fication of the one introduced in [9]. This section is divided
into three parts. In subsection II-A we describe the adopted
clock model. In subsection II-B we formulate the clock
synchronization problem over a communication network.
Finally, in subsection II-C we introduce the PI controller
based on randomized asymmetric broadcast communications.

A. Mathematical modeling of a clock

Assume that each clock has an oscillator able to periodi-
cally increment a counter by one unit, commonly known as
tick. Let ∆ and s(t) denote, respectively, the period of the
oscillator and the evolution of the counter. Therefore

s(t) =

⌊
t− t0

∆

⌋
where t0 is the time when the clock has been started and
where bac denotes the largest integer smaller than or equal
to a. Based on its own counter, each clock estimates the time.

The value ∆ is assumed to be unknown; typically, only
an estimate ∆̂ of it is available to the clock. Since only ∆̂
and s are known, a natural way to built an estimate t̂(t) of
the absolute time t is given by

t̂(t) = t̂(t0) + ∆̂ (s(t)− s(t0)) , (1)

where t̂(t0) is an estimate of t0 and denotes the initial offset.
Both t̂(t) and ∆̂(t) can be modified if the clock obtains

information allowing it to improve its time and oscillator
period estimates. We denote by Tup(h), for h = 0, 1, . . . ,
these updating time instants. We can interpret the h-th update
as an event which happens at time Tup(h), and such that1{

t̂(T+
up(h)) = t̂(Tup(h)) + u′(h)

∆̂(T+
up(h)) = ∆̂(Tup(h)) + u′′(h)

where u′ and u′′ denote the control inputs applied to t̂ and
∆̂, respectively. In between consecutive updating times, the
estimate ∆̂ is kept constant, while t̂(t) is updated according
to (1). Thus, for t ∈

(
T+

up(h), Tup(h+ 1)
)

the updating law
can be written as{

t̂(t) = t̂(T+
up(h)) + ∆̂(T+

up(h)) (s(t)− s(Tup(h)))

∆̂(t) = ∆̂(T+
up(h))

(2)

We conclude this subsection by observing that s(t) −
s(Tup(h)) =

t−Tup(h)
∆ + r(h) where −1 < r(h) < 1 and

so r(h) can be neglected if ∆ � 1 which will be assumed
in the sequel. Equation (2) can then be rewritten as{

t̂(t) = t̂(T+
up(h)) +

∆̂(T+
up(h))

∆ (t− Tup(h))

∆̂(t) = ∆̂(T+
up(h))

(3)

B. Clock synchronization

Consider now a network composed by N clocks. For i ∈
{1, . . . , N}, let ∆i be the period of the oscillator of clock
i and let xi(t) = [x′i(t) x

′′
i (t)]

∗
= [t̂i(t) ∆̂i(t)]

∗
denote its

local state.
Assume that the clocks can exchange their time readings

x′i(t)’s according to a graph of admissible communications
G = (V, E), where V = {1, . . . , N} and where (i, j) ∈ E
whenever node i and node j can communicate.

For each clock i, i ∈ {1, . . . , N}, we denote by Ttx,i(h),
h ∈ N the time instants in which node i transmits its
readings, and by Tup,i(h

′), h′ ∈ N the time instants in which
it performs an update of its state based on the information

1Given the time t, the symbol t+ denotes the instant just after time t.



received from its neighbors. More precisely, analogously to
the case of a single clock in the previous subsection,

xi(T
+
up,i(h)) = xi(Tup,i(h)) + ui(h), (4)

where ui(h) = [u′i(h) u′′i (h)]
∗ is the control action applied

at time Tup,i(h), while for t ∈
(
T+

up,i(h), Tup,i(h+ 1)
)

we
assume that the state xi is updated according to (3), that is,{

x′i(t) = x′i(T
+
up,i(h)) +

x′′
i (T+

up,i(h))

∆i
(t− Tup,i(h))

x′′i (t) = x′′i (T+
up,i(h))

(5)

The goal is to find a control law that yields synchroniza-
tion, i.e. such that there exist constants a ∈ R>0 and b ∈ R
such that synchronization errors

ei(t) := x′i(t)− (at+ b), i = {1, . . . , N} (6)

converge to zero or remain small.

C. A PI Controller based on randomized asymmetric broad-
cast communications

In this subsection we propose a control law to solve the
synchronization problem stated in the previous subsection.
To do so, we first need to define the data transmission
and communication protocols used by the clocks to ex-
change information with each other. In this paper we adopt
an asymmetric broadcast communication model where the
transmission’s time instants are the samples generated by N
independent Poisson processes having all the same intensity.
In formal terms, for each i ∈ {1, . . . , N},
• the time instants Ttx,i(h), h ∈ N, are the sample times

of a Poisson process of intensity λ > 0;
• at time Ttx,i(h), h ∈ N, node i transmits only the

information related to the first component of its state,
i.e., x′i(Ttx,i(h)), to all its neighbors in the graph G,
namely, to any j ∈ Ni.

• nodes j ∈ Ni receive x′i(Ttx,i(h)) exactly at the
time instant Ttx,i(h) in which it has been transmitted
(assuming negligible transmission delays)2.

Based on the information received, nodes j ∈ Ni instan-
taneously update their current state xj(Ttx,i(h)) with the
correction

uj =

[
u′j
u′′j

]
=

1

2

[
1
α

] (
x′i(Ttx,i(h))− x′j(Ttx,i(h))

)
where α > 0 is a control parameter. Notice that, since there
are no deliver delays, Ttx,i(h) = Tup,j(h

′) for some h′ ≥ h.
From (4), it follows that, for all j ∈ Ni,

x′j(T
+
tx,i(h)) =

1

2

(
x′j(Ttx,i(h)) + x′i(Ttx,i(h))

)
x′′j (T+

tx,i(h)) = x′′j (Ttx,i(h))+ (7)

+
α

2

(
x′i(Ttx,i(h))− x′j(Ttx,i(h))

)
.

Notice that the above control law can be seen as a PI
controller where u′j = x′i(Ttx,i(h))−x′j(Ttx,i(h)) and u′′j =

2In general, the information xi(Ttx,i(h)) is received by clock j ∈ Ni

at a delayed time Trx,i,j(h) = Ttx,i(h) + γi,j(h), where γi,j(h) is a
nonnegative real number representing the deliver delay between i and j.

α
(
x′i(Ttx,i(h))− x′j(Ttx,i(h))

)
represent the proportional

and the integral part, respectively. We refer to the control
law described above as a PI controller based on randomized
asymmetric broadcast communications.

Remark 2.1: The proposed strategy is similar to the one
introduced in [9]. However, in [9], the authors adopted a
randomized asymmetric gossip communication model, i.e.,
the information x′i(Ttx,i(h)), is sent by node i to only one
of its neighbors, randomly selected in Ni with probability
1/|Ni|.

III. ANALYSIS

The goal of this section is to provide some theoretical
insights on the convergence properties of the control strategy
presented in the previous section. We start our analysis
by introducing a convenient vector-form description of the
evolution of the clocks’ network. To do so, we need some
auxiliary definitions. First of all, we stack the state variables
in vectors as follows

x′ =

x
′
1
...
x′N

 ∈ RN , x′′ =

x
′′
1
...
x′′N

 ∈ RN , x =

[
x′

x′′

]
∈ R2N

and similarly for u′ ∈ RN , u′′ ∈ RN and u ∈ R2N .
Let the matrix Ei ∈ RN×N , for i ∈ {1, . . . , N}, be

defined as
Ei :=

∑
j∈Ni

eje
∗
j − eje∗i ,

where ek is defined as the vector whose value is 1 in position
k and 0 elsewhere. The control action at time Ttx,i(h) can
therefore be rewritten as

u(Ttx,i(h)) =

[
− 1

2Ei 0
−α2Ei 0

]
x(Ttx,i(h)),

i.e. Ei is the “control matrix” for the broadcast of agent i.
It is also clear that Ei1 = 0, which intuitively means that if
the clocks are synchronized, no control is needed.

We let the matrix D ∈ RN×N be defined as

D = diag{d1, . . . , dN}

where for simplicity di := 1/∆i. To conclude, we let
{Tup(h), h ∈ N} be the set of all the updating time instants
of the clocks’ network, i.e.,

{Tup(h), h ∈ N} =

N⋃
i=1

{Tup,i(h), h ∈ N},

where, without loss of generality, we assume Tup(h) ≤
Tup(h + 1). Notice that, for any h ∈ N, there exist i ∈
{1, . . . , N}, j ∈ Ni, and h′, h′′j ∈ N with h′ ≤ h, h′′j ≤ h,
such that

Tup(h) := Tup,j(h
′
j) = Ttx,i(h

′′), ∀j ∈ Ni.

Moreover observe that, since the N Poisson processes gen-
erating the transmission time instants are independent one
from another, the updating time instants {Tup(h), h ∈ N}
can be seen as the sample times of a Poisson process of



intensity Nλ. We denote by δ(h) := Tup(h + 1) − Tup(h)
the interarrival time between two subsequent updates. By
the properties of Poisson processes, and being δ(h) i.i.d.,
we have

E [δ(h)] = µ =
1

Nλ
, E

[
δ(h)2

]
= σ2 =

2

N2λ2

We now consider the discrete time evolution of the state x
at the update time instants Tup(h), h ∈ N. By combining (3)
with (7), we obtain

x(h+ 1) =

[
I δ(h)D
0 I

]([
I 0
0 I

]
−
[

1
2E(h) 0
α
2E(h) 0

])
x(h)

(8)

where for simplicity we denote x(h) := x(Tup(h)), and
we set E(h) = Ei if, during the h-th iteration, node i is
the transmitting node. The sampled system is a stochastic
time–varying system, and if we prove that it achieves syn-
chronization, then also the original continuous-time system
synchronizes, since it is autonomous (i.e., no control is
applied) when no update takes place.

For the convergence analysis it is convenient to introduce
the quantities y(h) ∈ RN−1 and z(h) ∈ RN−1 defined as

y(h) := V ∗x′(h) z(h) := V ∗Dx′′(h)

where V ∈ RN×N−1 is a matrix whose columns form an
orthonormal basis for span{1}, i.e. V ∗1 = 0 and V ∗V =
IN−1, begin IN−1 the (N − 1) × (N − 1) identity matrix.
In words, y(h) is an error vector which is zero only if
x′(h) belongs to span{1}, namely when the clocks are
synchronized. Analogously, z(h) is zero only if the vector of
the estimates x′′(h) belongs to span{D−11}, namely when
the slope of all the clocks is the same, i.e. ∆̂1

∆1
= · · · = ∆̂N

∆N
.

This argument shows that the synchronization error defined
in (6) is zero, or asymptotically approaches this value, if both
y(h) and z(h) vanish in time.

Our aim is to perform a mean–square analysis of the

process
[
y(h)
z(h)

]
, and thus we introduce

Σ(h) = E
[
y(h)
z(h)

] [
y(h)∗ z(h)∗

]
We say that mean–square synchronization is achieved if[
y(h)∗ z(h)∗

]∗ t→∞−→ 0 in mean square, i.e. if Σ(h)
t→∞−→ 0.

In order to state our main result, we need some additional
notations. Let E = E[E(h)], h ∈ N, be the expected value
of the communication matrices. Notice that since E(h) is
i.i.d. and uniform, E = E[Ei] = 1

N

∑
i∈V Ei.

It is easy to see that the admissible communication graph
G = (V, E) is the graph induced by E, namely, an edge (i, j)
exists in E if and only if namely if [E]ij 6= 0.

We can now state the following result, which gives suf-
ficient conditions for mean–square synchronization to take
place. The proof is postponed to the next section.

Theorem 3.1: Assume that the admissible communica-
tions graph G = (V, E) is connected. Assume moreover that
the matrix inequality

IN−1 ⊗ Ē−1F̄ + Ē−1F̄ ⊗ IN−1 > 0 (9)

is satisfied, where Ē = V ∗EV and F̄ = V ∗DEV . Then
there exists a value α∗ > 0 such that, for any α ∈ (0, α∗),
mean–square synchronization is achieved.

Remark 3.2: The result stated in Theorem 3.1 holds true
not only when the asymmetric broadcast communication
protocol is adopted but also for any other communication
protocol, like the symmetric gossip [10] and the asymmetric
gossip [9].

Among the hypoteses of Theorem 3.1, connectivity of
G is clearly a necessary condition, as otherwise the graph
would be divided into two or more components which do
not communicate, and thus cannot, in general, synchronize.
Condition (9) is a bit more involving, however it is always
verified in some notable cases, as the following corollary
states.

Corollary 3.3: Assume that the admissible communica-
tions graph G = (V, E) is connected. Assume moreover
E = ET . Then there exists a value α∗ > 0 such that for
any α ∈ (0, α∗) mean–square synchronization is achieved.

The result of Corollary 3.3 is quite remarkable since,
provided that E = ET , it ensures that existence of α∗ >
0 for any matrix D > 0 (i.e. for any difference in the
oscillators’ frequency). It can be shown that the condition
E = ET is satisfied in particular in the asymmetric broadcast
protocol adopted in this paper. Furthermore, E = ET is
also true in some other notable scenarios. These include the
particular case of highly regular graphs, like Cayley graphs
[11], and the case of symmetric protocols, like the symmetric
gossip [10], in which the matrix E(h) is extracted from a
family of symmetric matrices.

Remark 3.4: Condition (9) is automatically verified if
D = I , for any (possibly asymmetric) communication
protocol. Since the dynamics of Σ are ruled by an operator
whose eigenvalues depend continuously on the matrix D,
the existance of α∗ > 0 that achieves mean–square synchro-
nization is guaranteed even in the case where D is a small
enough perturbation of the identity matrix I .

This is the approach followed by the authors in [9],
where they considered the same control law analyzed in this
paper, based however on the asymmetric gossip protocol.
They performed a convergence study of the evolution of Σ
assuming that G is the complete graph and that D = I .
Under these assumptions they found that synchronization is
achieved if and only if α < α∗ = λ/2.

In general, for a given matrix D, one needs to check con-
dition (9) numerically, thus performing a robustness analysis
on the values of oscillator periods ∆̂i, i ∈ {1, . . . , N}, for
which the PI controller yields the synchronization.

Remark 3.5: Theorem 3.1 offers an answer to the prob-
lem of mean–square synchronization, since it ensures the
existence of a consensus–like scheme capable of achieving
synchronization, under minimal assumptions on G. It remains
to study how the amplitude of the maximum α∗ depends
on the adopted protocol and how it scales with the size
of the network. This issue is important since it is in quite
intuitive that the smaller is α, the slower the clocks reach
the synchronization.



A. Proof of Theorem 3.1 and Corollary 3.3

In order to prove our results, we first need to write in
a suitable way the evolution of Σ(h). In order to do this,
notice that Ω := V V ∗ = IN − 1

N 11
T . In this section I will

denote the (N − 1) × (N − 1) identity. Using the fact that
for any i ∈ {1, . . . , N}, EiΩ = Ei, by easy computations
one can see that the evolution of y and z is described by the
following iteration[
y(h+ 1)
z(h+ 1)

]
=

[
I − 1

2 Ẽ(h)− αδ(h)
2 F̃ (h) δ(h)

−α2 F̃ (h) I

] [
y(h)
z(h)

]
where Ẽ(h) = V ∗E(h)V and F̃ (h) = V ∗DE(h)V .

We can thus write

Σ(h) = E
[[
y(h)
z(h)

] [
y∗(h) z∗(h)

]]
=

[
Σyy(h) Σyz(h)
Σ∗yz(h) Σzz(h)

]
,

where

Σyy(h) := E[y(h)y∗(h)], Σyz(h) := E[y(h)z∗(h)],

Σzy(h) := E[z(h)y∗(h)], Σzz(h) := E[z(h)z∗(h)].

The assumption on statistical independence on the choice
of E(h) and of the updating times allows to write

Σ(h+ 1) = E[A(h)Σ(h)A∗(h)] (10)

where

A(h) :=

[
I − 1

2 Ẽ(h)− αδ(h)
2 F̃ (h) δ(h)

−α2 F̃ (h) I

]
.

Simple manipulation yields then

Σ+
yy = E

[(
I − 1

2
Ẽ(h)− αδ(h)

2
F̃ (h)

)
Σyy×

×
(
I − 1

2
Ẽ(h)∗ − αδ(h)

2
F̃ (h)∗

)
+ λΣzy

(
I − 1

2
Ẽ(h)∗ − αδ(h)

2
F̃ (h)∗

)
+ λ

(
I − 1

2
Ẽ(h)− αδ(h)

2
F̃ (h)

)
Σyz

+ δ(h)2Σzz

]

Σ+
yz = E

[
−α

2

(
I − 1

2
Ẽ(h)− αδ(h)

2
F̃ (h)

)
ΣyyF̃ (h)∗

+

(
I − 1

2
Ẽ(h)− αδ(h)

2
F̃ (h)

)
Σyz

− αδ(h)

2
ΣzyF̃ (h)∗ + δ(h)Σzz

]

Σ+
zy = E

[
−α

2
F̃ (h)Σyy

(
I − 1

2
Ẽ(h)∗ − αδ(h)

2
F̃ (h)∗

)
+ Σzy

(
I − 1

2
Ẽ(h)∗ − αδ(h)

2
F̃ (h)∗

)
− αδ(h)

2
F̃ (h)Σyz + δ(h)Σzz

]

Σ+
zz = E

[
α2

4
F̃ (h)ΣyyF̃ (h)∗ − α

2
F̃ (h)Σyz

− α

2
ΣzyF̃ (h)∗ + Σzz

]
Define now Ē = E[Ẽ(h)], F̄ = E[F̃ (h)] and

EQR = E[Q⊗R]

where Q,R ∈ {E,F}.
Once we set

Y = vec Σyy W = vec Σyz

W ′ = vec Σzy Z = vec Σzz

it is easy, making use of the properties of the Kronecker
product and sum3, to obtain the following iteration rule

Y
W
W ′

Z


+

=
(
M0 + αM1 + α2M2

)
Y
W
W ′

Z


where, called Ā = − 1

2 Ē ⊕ Ē + 1
4EEE ,

M0 =
I + Ā µ(I − 1

2I ⊗ Ē) µ(I − 1
2 Ē ⊗ I) σ2I

0 I − 1
2I ⊗ Ē 0 µI

0 0 I − 1
2 Ē ⊗ I µI

0 0 0 I


and, called B̄ = −µ2 (F̄ ⊕ F̄ − 1

2EEF −
1
2EFE),

M1 =
B̄ −σ

2

2 I ⊗ F̄ −σ
2

2 F̄ ⊗ I 0
− 1

2 (F̄ ⊗ I − 1
2EFE) −µ2 I ⊗ F̄ −µ2 F̄ ⊗ I 0

− 1
2 (I ⊗ F̄ − 1

2EEF ) −µ2 I ⊗ F̄ −µ2 F̄ ⊗ I 0
0 − 1

2I ⊗ F̄ − 1
2 F̄ ⊗ I 0


and finally

M2 =


σ2

4 EFF 0 0 0
µ
4EFF 0 0 0
µ
4EFF 0 0 0
1
4EFF 0 0 0


We have thus rewritten the evolution of the matrix Σ(h)

as a linear system governed by a matrix M(α) dependent on
the design parameter α.

In order to prove Theorem 3.1, we make use of the
following perturbation result, taken from [12], in which we
call an eigenvalue semi–simple if its algebraic and geometric
multiplicities coincide.

Theorem 3.6: Let be M(α) ∈ RN×N be a matrix de-
pendent on the parameter α in a sufficiently smooth way
so that the first derivative Ṁ(α)|α=0 exists. Let moreover
µ1, . . . , µm be semi–simple eigenvalues of M(α) with as-
sociated right eigenvectors r1, . . . , rm and left eigenvectors

3The Kronecker sum of A and B is defined as A⊕B = A⊗ I+ I⊗B,
where the identities are of suitable dimensions.



lT1 , . . . , l
T
m. Assume that these families of eigenvectors are

chosen such that if

R =
[
r1 . . . rm

]
L =

[
l1 . . . lm

]∗
then LR = Im, where Im is the m ×m identity. Then the
derivative of µi w.r.t. α, for α = 0, exists and is the i-th
eigenvalue of the matrix LM ′R where M ′ = Ṁ(α)|α=0.

Our scope here is to use this theorem in order to study the
eigenvalues of the matrix M(α) for α small and positive.

First of all, we need to introduce some other notations
and a technical result. Given Ei ∈ S , we let Pi = I − 1

2Ei
and P = I − 1

2E. Notice that each Pi is a row–stochastic
matrix, and P is a primitive matrix under the assumption
G to be connected. By Frobenius–Perron theorem Pv = v
if and only if v = β1. Moreover, the left eigenvalue of P
associated with 1, which is usually denoted by πT , has only
strictly positive entries. We normalize πT so that πT1 = 1.

The following fact holds.
Lemma 3.7: Assume that G = (V, E) is strongly con-

nected and for any i, Pii > 0 with nonzero probability. Then
the matrix M0 has exactly (N−1)2 semi–simple eigenvalues
in 1, and the other eigenvalues are stable, namely, in absolute
value less than 1.

Proof: As it is clear from the upper-block-triangular
structure of M0, this matrix has at least (N−1)2 eigenvalues
in 1, so first of all we need to check that the other blocks
have only stable eigenvalues. First of all,

I − 1

2
Ē = V ∗(I − 1

2
EEi)V = V ∗PV

and since Ḡ is strongly connected, P has only stable eigen-
values and a unique eigenvalue in 1 associated with 1. It is
an easy exercise to see that V ∗PV has all the eigenvalues of
P apart that in 1. This proves that (I− 1

2 Ē)⊗I is stable, and
analogously I⊗(I− 1

2 Ē), due to the properties of Kronecker
product.

It remains to analyze the first block of M0, which is

(V ∗ ⊗ V ∗)
(
E(I − 1

2
Ei)⊗ (I − 1

2
Ei)

)
(V ⊗ V )

Applying Proposition 4.3 in [13], we know that the middle
matrix is row–stochastic and primitive. Analogously to the
previous case, we conclude for the stability of the block.

As a side–consequence of the Lemma, the matrix A =
− 1

2 Ē ⊕ Ē + 1
4EEE turns out to be invertible.

Consider now the following matrices

L =
[
0 0 0 2Ē−1 ⊗ Ē−1

]
R =


Ā−1

(
µ2Ē ⊕ Ē + 1

2 (σ2 − 2µ2)Ē ⊗ Ē
)

µĒ ⊗ I
µI ⊗ Ē
1
2 Ē ⊗ Ē


It is easy to check the following equalities

LM0 = L, M0R = R, LR = IN−1

and that both L and R are (row– and column–, respectively)
full–rank matrices. Thus the N − 1 eigenvalues in 1 of M0

are semi–simple. We can now prove our result.

Proof: [of Theorem 3.1] By assumption G is connected,
thus the previously defined matrices exist and the eigenvalues
in 1 are semi–simple. And we can thus apply Theorem 3.6,
which in our case reads

LM0R = −µ2(I ⊗ Ē−1F̄ + Ē−1F̄ ⊗ I)

Since λ > 0, the derivative of all the eigenvalues in 1 of M0

is strictly negative for α > 0 small enough. Thus there exists
α∗ such that if α ∈ (0, α∗), M(α) is a stable matrix, and then
Σ(h)

t→∞−→ 0, i.e. we achieve mean–square synchronization.

If we assume E = ET we can prove our second result.
Proof: [of Corollary 3.3] If E = ET is symmetric, then

not only E = EΩ, but also E = ΩE. We can thus write
F̄ = V ∗DEV = V ∗DV V ∗EV = D̄Ē, where D̄ = V ∗DV .
Thus

I ⊗ Ē−1F̄ + Ē−1F̄ ⊗ I =(
E−1 ⊗ E−1

) (
I ⊗ D̄ + D̄ ⊗ I

)
(E ⊗ E)

so that I ⊗ Ē−1F̄ + Ē−1F̄ ⊗ I > 0 if and only if I ⊗ D̄ +
D̄ ⊗ I > 0. Since the generic eigenvalue of this last sum is
the sum of any pair of eigenvalues of I ⊗ D̄ and D̄⊗ I , we
only have to check that the eigenvalues of D̄ = V ∗DV are
strictly positive, which is trivial if D > 0.

IV. NUMERICAL EXAMPLES

A. Implementation examples of the PI consensus controller
algorithm

In this section we provide a numerical example illustrating
the PI consensus controller algorithm proposed in this paper.

We consider a connected random geometric graph gen-
erated by choosing N = 100 points uniformly distributed
in the unit square, and then placing an edge between each
pair of points at distance less than 0.1. In Figure 1 we plot
the trajectories of the quantity logN−1/2‖e(h)‖ for three
different values of α, precisely α = λ, λ/5, λ/10, where
we set λ = 0.01. In all the simulations we run we assume
the initial condition x′i(0) uniformly distributed in [0, 10].
Moreover the plots reported are the result of the average over
1000 Monte Carlo runs, randomized with respect to both the
graph and the initial conditions.

Observe that the all the trajectories converge to zero
exponentially and that the speed of convergence depends on
the value of the control parmeter α.

B. Comparison with other distributed strategies

In this section we provide a comparison between the
approach we propose in this paper and the one pursued
in [7], based on the cascade of two consensus algorithms.
Precisely, the goal is to compare the performance, in terms
of robustness to both noisy transmission data and time-
varying oscillator periods, between the algorithm described
in Section II-C and the Average TimeSync algorithm (denoted
hereafter with the shorthand ATS), introduced in [7].

For the sake of clearness, we start by briefly reviewing the
ATS algorithm. As in previous sections, let G be a connected
undirected graph. The ATS algorithm is the following.
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Fig. 1. Trajectories of the synchronization error generated by the PI
consensus strategy algorithm for different values of α.

Processor states: Recall that, for i ∈ {1, . . . , N}, the i-th
node has a local clock that, according to the notation used
in [14], we denote in this subsection as τi(t), t ∈ R≥0;
specifically, τi(t) = dit + x′i(0) where di and x′i(0) are as
in Section II.

At any time instant t, the i-th node keeps in memory the
values αi(t), γi(t), τ̄i(t) and {ηij(t)}j∈Ni

, where αi, γi, τ̄i
and ηij , j ∈ Ni, are auxiliary variables. Moreover the i-th
node stores in memory also the value τi(Ttx,i(hsi)) and the
values τi(Ttx,j(hsj )) where, for j ∈ Ni ∪ {i}, Ttx,j(hsj )
denotes the instant in which node j performed its last trans-
mission before time t, i.e., t ∈ (Ttx,j(hsj ), Ttx,j(hsj + 1))

Transmission and Updating step: At time Ttx,i(h) node
i performs its h-th transmission broadcasting to all its
neighbors the data τi(Ttx,i(h−1)), τi(Ttx,i(h)), αi(Ttx,i(h))
and τ̄i(Ttx,i(h)). For j ∈ Ni, node j istantaneously performs
the following actions in order

1) it receives the data τi(Ttx,i(h − 1)), τi(Ttx,i(h)),
αi(Ttx,i(h)) and τ̄i(Ttx,i(h));

2) it estimates the relative clock skew ηji := di/dj by
computing

ηji(Ttx,i(h)+) = ρ ηji(Ttx,i(h))+

(1− ρ)
τi(Ttx,i(h))− τi(Ttx,i(h− 1))

τj(Ttx,i(h))− τj(Ttx,i(h− 1))

where ρ is a filtering parameter;
3) it updates the variable αj according to

αj(Ttx,i(h)+) =
1

2
αj(Ttx,i(h)) +

1

2
ηji(Ttx,i(h)+)αi(Ttx,i(h))

4) it updates the variable γj according to

γj(Ttx,i(h)+) = γj(Ttx,i(h))+

1

2
(τ̄i(Ttx,i(h))− τ̄j(Ttx,i(h)))
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Fig. 2. Comparison in terms of speed of convergence between the approach
proposed in this paper and the ATS algorithm.

5) it updates the variable τ̄j according to

τ̄j(Ttx,i(h)+) =

αj(Ttx,i(h)+)τj(Ttx,i(h)) + γj(Ttx,i(h)+)

Test 4.1 (Speed of convergence to synchronization): We
provide here a comparison of the speed of convergence
of the proposed algorithms and of the ATS algorithm. We
consider a random geometric graph G, where vertices are 30
points uniformly distributed in the unit square, and nodes
whose distance is smaller than 0.4 are connected.

In Figure 2, we depict for both strategies the behavior of
logN−1/2‖e‖ for both strategies being e the synchronization
error defined as e = Ωx′ for the PI strategy and e = Ωτ̄ for
the ATS algorithm, where Ω = I − 1

N 11
T . The dashed red

curve refers to the PI strategy, while the solid blue curve to
the ATS algorithm. The two strategies have been simulated
using the same transmission times. Moreover the control
parameters of both algorithms have been experimentally
designed in order to maximize the speed of convergence.

The plots reported have been obtained averaging over 1000
simulations; a different random geometric graph and initial
conditions are independently generated for each simulation.
From Figure 2, one can see that the ATS algorithm out-
performs, with the respect to the speed of convergence, the
performance of the PI consensus strategy.

Test 4.2: (Robustness with the respect to communication
noise and time-varying oscillator frequencies):
We now assume that

1) the information exchanged by the nodes is affected by
communication noise; and

2) the oscillator periods are time-varying.
Specifically, we assume that if x′j(Ttx,j(h)) is any infor-

mation transmitted by node j to node i at time Ttx,j(h),
then node i receives the information x′j(Ttx,j(h))+nj→i(h)
where nj→i(h) is a white noise of bounded support. As far
as the oscillator periods are concerned, we assume that they
are modeled as saturated random walks, namely, for each
i ∈ {1, . . . , N}, the value of ∆i is always within the interval
[∆− ε,∆ + ε] for some ε such that 0 < ε < ∆, where we
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Fig. 3. Comparison in terms of robustness to communication noises and
time-varying oscillator periods between the PI consensus strategy proposed
in this paper and the ATS algorithm.

recall ∆ represents the nominal value of the oscillator period.
Precisely, for i ∈ {1, . . . , N},

∆i(Tup(h+ 1)) = Sat∆,ε [∆i(Tup(h)) + ni(Tup(h))]

where ni(Tup(h)) is a white noise of bounded support and,
for ∆, ε ∈ R such that 0 < ε < ∆,

Sat∆,ε(x) =

 x if ∆− ε ≤ x ≤ ∆ + ε
∆− ε if x < ∆− ε
∆ + ε if x > ∆ + ε

The behavior of logN−1/2‖e‖ is plotted in Figure 3 for
both strategies.

The control parameters for both algorithms have been cho-
sen experimentally in such a way to minimize the steady state
value of ‖e‖. Data have been obtained averaging over 1000
simulations; a different random geometric graph and initial
conditions are generated for each simulation. From Figure 3,
one can see that the PI consensus strategy outperforms, with
respect to robustness to communication noises and time-
varying oscillator periods, the ATS algorithm.

Remark 4.3: Besides the comparison provided in the pre-
vious two examples, it is worth stressing also the fact that
the ATS algorithm requires, in general, higher computational
and memory capabilities than the PI strategy. In the ATS
algorithm, each node has to perform non-linear updates and
has to keep in memory a number of variables which is
proportional to the number of its neighbors.

Remark 4.4: The Distributed Time-Sync Protocol is an
another fully distributed algorithm recently proposed in the
literature to solve the clock synchronization problem, see [6].
The authors of [6], for simplicity, restrict themselves to the
case where all the clocks have exactly the same constant
oscillator period, but have different initial offsets. The offsets
compensation is posed as a least-squares problem which
is solved in a distributed way through a gradient-based
method. The authors mention that a similar least-squares
approach could be used also to solve the case of different
clocks frequencies. We have run a number of simulations
implementing this cascade of two least-squares solvers and

we have observed that the performance of this protocol is
comparable with the performance of the ATS algorithm with
the respect to both the speed of convergence and robustness.

V. CONCLUSIONS

In this paper we have considered a recently proposed
randomized strategy for time synchronization of a network
of clocks, adopting in particular an asymmetric broadcast
communication protocol. Our main result shows that under
mild conditions in the admissible communications, it is
always possible to tune the control parameter α in order to
achieve (robust) mean–square synchronization. A compari-
son with other distributed strategies has also been performed,
showing slower convergence but higher resilience to noise
and uncertainties. Future work includes the study of the
maximum allowed α and a more extensive comparison of
the proposed strategy versus its competitors.
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