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cSonny Astani Department of Civil and Environmental Engineering, University of Southern California,
3620 South Vermont Avenue, CA 90089-2531 Los Angeles, USA

Abstract

We study dynamical transportation networks in a framework that includes extensions of

the classical Cell Transmission Model to arbitrary network topologies. The dynamics are

modeled as systems of ordinary differential equations describing the traffic flow among a

finite number of cells interpreted as links of a directed network. Flows between contiguous

cells, in particular at junctions, are determined by merging and splitting rules within con-

straints imposed by the cells’ demand and supply functions as well as by the drivers’ turning

preferences, while inflows at on-ramps are modeled as exogenous and possibly time-varying.

First, we analyze stability properties of dynamical transportation networks. We associate

to the dynamics a state-dependent dual graph whose connectivity depends on the signs of

the derivatives of the inter-cell flows with respect to the densities. Sufficient conditions for

the stability of equilibria and periodic solutions are then provided in terms of the connec-

tivity of such dual graph. Then, we consider synthesis of optimal control policies that use

a combination of turning preferences, scaling of the demand functions through speed limits,

and thresholding of supply functions, in order to optimize convex objectives. We first show

that, in the general case, the optimal control synthesis problem can be cast as a convex

optimization problem, and that the equilibrium of the controlled network is in free-flow.

If the control policies are restricted to speed limits and thresholding of supply functions,

then the resulting synthesis problem is still convex for networks where every node is either

a merge or a diverge junction, and where the dynamics is monotone. These results apply
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both to the optimal selection of equilibria and periodic solutions, as well as to finite-horizon

network trajectory optimization. Finally, we illustrate our findings through simulations on

a road network inspired by the freeway system in southern Los Angeles.

Keywords: Dynamical flow networks, Traffic modeling, Stability, Convex Optimization,

Model Predictive Control, Monotone dynamical systems

1. Introduction

Transportation systems are vital for the well-functioning of the society and the econ-

omy. Increasing travel demand combined with limited growth in physical transportation

infrastructure necessitates efficient management of transportation systems, by leveraging

rapid advancements in sensing and information technologies. The true potential of these

technologies can be best utilized within a dynamical framework.

This paper deals with the stability analysis and control synthesis for road transporta-

tion networks. The dynamical models for such systems are primarily classified either as

microscopic or macroscopic. Microscopic models describe the behavior of every single ve-

hicle and, because of their complexity, their practical usage is typically limited to small

scale systems, e.g., a collection of few intersections. On the other hand, macroscopic mod-

els, which are the subject of this paper, describe traffic flow at an aggregate level. The

most celebrated macroscopic model is the Lighthill-Whitham and Richards (LWR) model

Lighthill and Whitham (1955), which describes traffic flow dynamics on a line by a partial

differential equation. These models have also been extended to networks, e.g., see Garavello

and Piccoli (2006), by careful consideration of the boundary conditions at the nodes. Space

discretization schemes for numerical implementation of PDE models for traffic have also

been developed. The Cell Transmission Model (CTM) Daganzo (1994, 1995) is arguably the

best known among these discretization schemes.
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Inspired by spatially discrete models, including CTM, we model the layout of a trans-

portation system by a directed graph. The links of this graph correspond to cells whose

direction is aligned to the one of the traffic flow, while its nodes correspond to interfaces

between two cells or junctions, e.g., between an on-ramp and main line of a freeway. Every

cell is endowed with a demand and a supply function, representing the maximum outflow

and the maximum inflow on the cell given its density, respectively. We model traffic dynam-

ics by a system of ordinary differential equations (ODEs) representing mass conservation

on the cells. Inflows at on-ramps are modeled as exogenous and possibly time-varying. On

the other hand, flows between contiguous cells, in particular at junctions, are determined

by merging and splitting rules within constraints imposed by the cells’ demand and supply

functions as well as by the drivers’ turning preferences. In the free-flow regime, i.e., when

the supply on every outgoing cell at a junction is less than the cumulative demand from

the incoming cells, these rules are specified via turning preferences. For the non-free-flow

or congested regime, there are several models in literature. Our model includes and ex-

tends several of these models, including FIFO Daganzo (1995), non-FIFO Karafyllis and

Papageorgiou (2014) and priority rules Daganzo (1995).

We prove a general result concerned with local stability of free-flow equilibria under any

such rules. Furthermore, we show that the flow dynamics naturally induce a state-dependent

dual graph whose connectivity depends on the signs of the derivatives of the inter-cell flows

with respect to the densities. If the dynamics satisfy a certain monotonicity property, then,

for constant and periodic inflows, we provide sufficient conditions for stability of equilibria

and periodic solutions, respectively, in terms of connectivity of the dual graph. Our analysis

relies on an `1 contraction principle for monotone dynamical systems with mass conservation,

which is similar to the corresponding property of the entropy solutions of scalar conservation

laws, including LWR models, e.g., cf. Kružkov’s Theorem (Serre, 1999, Proposition 2.3.6).

Then, we consider synthesis of optimal control policies that use a combination of turning

preferences, scaling of the demand functions through speed limits, and thresholding of supply

functions, in order to optimize convex objectives. We first show that, in the general case, the

optimal control synthesis problem can be cast as a convex optimization problem, and that
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the equilibrium of the controlled network is in free-flow. If the control policies are restricted

to speed limits and thresholding of supply functions, then the resulting synthesis problem is

still convex for networks where every node is either a merge or a diverge junction, and where

the dynamics is monotone. These results apply both to the optimal selection of equilibria

and periodic solutions, as well as to finite-horizon network trajectory optimization.

Part of this paper builds upon our previous work Como et al. (2013a,b, 2014) on dynam-

ical flow networks, adapting the stability analysis to the standard setting for transportation

networks. In particular, the models in Como et al. (2013a,b, 2014) only include demand

constraints, but they do not allow for either supply constraints or hard constraints induced

by the drivers’ turning preferences. On the other hand, the optimal control synthesis is

a novel feature of the present work that was absent in Como et al. (2013a,b, 2014). This

paper extends and unifies existing results on stability analysis for line topology in Gomes

et al. (2008); Pisarski and Canudas de Wit (2012), and for the network case in Karafyllis

and Papageorgiou (2014); Coogan and Arcak (2014).

While speed limits, e.g., see Hegyi et al. (2005), and metering, e.g., see Gomes et al.

(2008), have been used as control mechanisms before, we also consider controlling turning

preferences for congestion regimes. Although changes in turning preferences can occur nat-

urally because drivers change their route choices when exposed to congestion, one could

complement such changes favorably further by providing real-time traffic information to the

drivers. Computational complexity of optimal equilibrium selection and control problems

for transportation have been considered before, primarily in the context of receding horizon

control, due to its impact on realistic implementation of such control schemes. Existing

strategies are based on Mixed Integer Linear Program formulations Lin et al. (2011); Frejo

et al. (2014) or on relaxation of the problem to obtain linear formulations Muralidharan and

Horowitz (2012). A recent approach relies on avoiding the discretization of the underlying

LWR model via CTM and yields a reduction of the number of control variables Li et al.

(2014), but requires affine initial and boundary conditions. To the best of our knowledge,

one of the novelties of this paper is to identify sufficient conditions for convexity of optimal

control problems in the general network setting.

4



The major contributions of this paper are as follows. First, we propose a dynamical

model for transportation networks that extends several well-known models to networks with

arbitrary topologies. We introduce a state-dependent dual graph whose connectivity gives

sufficient condition for stability of equilibria and periodic solutions when the dynamics is

monotone. We postulate the problem of optimal control synthesis for transportation net-

works, and identify conditions under which it is a convex optimization problem. Finally, we

illustrate our findings through simulations on a road network inspired by the freeway system

in southern Los Angeles.

The paper is organized as follows: in the rest of this section we provide some basic nota-

tions. In Section 2 we describe the dynamical transportation network model and illustrate

how several well-known models fit into this framework. In Section 3, we introduce the notion

of dual graph and show its connection to stability of equilibria and periodic solutions for

monotone dynamics. Section 4 is devoted to the optimal control synthesis problem. In Sec-

tion 5, we present results from simulation studies, and Section 6 draws the conclusions. For

completeness, we briefly summarize key concepts from nonlinear dynamical systems relevant

for this paper in Appendix AppendixA, while in Appendix AppendixB we state a result from

our previous work that is used a few times in the paper. The proof of Lemma 2 is also given

in Appendix AppendixB.

1.1. Notation

The symbols R and R+ := {x ∈ R : x ≥ 0} denote the set of real and nonnegative real

numbers, respectively. For finite sets A and B, |A| denotes the cardinality of A, RA (respec-

tively, RA+) the space of real-valued (nonnegative-real-valued) vectors whose components are

indexed by elements of A, and RA×B the space of matrices whose real entries are indexed

by pairs in A× B.

The transpose of a matrix M ∈ RA×B is denoted by M ′ ∈ RB×A, while 0 stands for the

all-zero vector of suitable dimension.The natural partial ordering of RA will be denoted by

x ≤ y for two vectors x, y ∈ RA such that xa ≤ ya for all a ∈ A.

A directed multi-graph is a couple G = (V , E), where V and E stand for the node set
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Figure 1: Illustration of some notations.

and the link set, respectively, and are both finite. They are endowed with two vectors:

σ, τ ∈ VE . For every e ∈ E , σe and τe stand for the tail and head nodes respectively of

link e. We shall always assume that there are no self-loops, i.e., τe 6= σe for all e ∈ E . On

the other hand, we allow for parallel links. For a node v ∈ V , let E+
v := {e : σe = v} and

E−v := {e : τe = v}. For a link e ∈ E , let E+
e := E+

τe be the set of links downstream to e and

E−e := E−σe be the set of links upstream to e. See Figure 1 for an illustration of some of these

notations. Finally, for brevity in notation, unless explicitly specified otherwise, the range of

indices under summation is understood to be the set E .

2. Dynamical transportation networks

We model dynamical transportation networks as systems of ODEs of the form

ρ̇i = f in
i (ρ, t)− f out

i (ρ, t) , i ∈ E , (1)

often written in compact form ρ̇ = g(ρ, t). Here, ρi ≥ 0 stands for the density on a cell

i with E denoting the set of all cells, ρ ∈ RE stands for the vector of all densities on the

different cells, and f in
i (ρ, t) and f out

i (ρ, t) denote the inflow to and, respectively, the outflow

from cell i.

Remark 1. In order to be consistent with existing literature, the presentation in Sections

2 through 4 is in terms of densities on cells. Consequently, (1) is a mass conservation law

if and only if, as we implicitly assume, all cells have the same length. Note that, this is

without loss of generality, since the case of heterogeneous cells can be treated similarly by

interpreting the variable ρi(t) as the volume of vehicles, rather than density, on cell i at time

t. We adopt this approach in Section 5.
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Figure 2: Illustration of demand and supply functions, and of flow capacity, on a cell i ∈ E .

Cells are meant to represent portions of roads as well as on- and off-ramps. Following

Daganzo’s seminal work Daganzo (1994, 1995), the physical characteristics of each cell i

are captured by a possibly time-dependent demand function di(ρi, t) and a supply function

si(ρi, t), representing upper bounds on the outflow from and, respectively, the inflow in cell

i at time t, when the current density on it is ρi, i.e.,

f in
i (ρ, t) ≤ si(ρi, t) , f out

i (ρ, t) ≤ di(ρi, t) , i ∈ E , ρi ≥ 0 , t ≥ 0 . (2)

Throughout, we assume that, on every cell i ∈ E , the demand function di(ρi, t) is strictly

increasing in ρi, and the supply function si(ρi, t) is non-increasing in ρi, for all t ≥ 0.

The time-invariant jam density on cell i, namely, the maximum density allowed on i, is

defined as1

Bi := sup{ρ ≥ 0 : si(ρ, t) > 0} .

Observe that (2) implies that the set S :=
∏

i∈E [0, Bi] is invariant under the dynamics (1),

and, in accordance with the physics of the system, it is assumed throughout the paper that

the state of the network belongs to S at any time.

The function qi(ρi, t) = min{di(ρi, t), si(ρi, t)} is often interpreted as the fundamental

diagram and Ci(t) := maxρi≥0 qi(ρi, t) as the flow capacity of cell i. See Figure 2 for an

illustration. A particularly relevant role in the applications has been played by the special

case of linear demand functions

di(ρi, t) = vi(t)ρi , (3)

1Since the jam density does not depend on time, t here is arbitrary.

7



where vi(t) is the free-flow speed and saturated affine supply functions

si(ρi, t) = min{Si(t), wi(t)(Bi − ρi)} , (4)

where wi(t) is the wave-speed and Si(t) a supply saturation level.

In some cases, the free-flow speed vi(t) as well as the wave speed wi(t) and/or the

saturation level of the supply function Si(t) can be considered as control parameters that

can be actuated, e.g., through variable speed limits and, respectively, supply metering. We

refer the reader to Section 4 for a more in depth discussion on this, along with design

principles. In other cases, time variability of such parameters may be thought of as due to

uncontrolled perturbations of the system due to, e.g., increased inflows in some parts of the

network, changing weather conditions, accidents, and so on.

Cells are conveniently identified with the links of a directed graph G = (V , E) whose

nodes v ∈ V represent junctions between consecutive cells. Conventionally, we include in

the set V an extra node w meant to represent the external world, which is both the source of

the flow entering the network and the sink of flow exiting it. In particular, cells i ∈ E such

that σi = w represent on-ramps, while cells j ∈ E such that τj = w represent off-ramps. We

denote the sets of on- and off-ramps by R ⊆ E and Ro ⊆ E , respectively. To avoid trivial

cases, we will always assume that for every cell i there exists at least one directed path from

i to an off-ramp j ∈ Ro. We will also use the convention that on all on-ramps i ∈ R the

supply and jam density are infinite, i.e., si( · , · ) ≡ +∞ and Bi = +∞. In contrast, we will

assume that the jam density on every other cell is finite, i.e., Bi < +∞ for all i ∈ E \ R.

The network topology described by the directed graph G induces natural constraints on

the dynamics (1): flow is possible only between consecutive cells, i.e., from a cell i to a cell

j such that τi = σj. Specifically, we model the flow fij(ρ, t) from a cell i ∈ E \ Ro to a cell

j ∈ E \ R as a continuous function of (ρ, t), Lipschitz-continuous in ρ uniformly continuous

with respect to t, and let the inflow in and outflow from a cell i, respectively, satisfy the
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following equations

f in
i (ρ, t) =


λi(t), i ∈ R∑

j∈E−i fji(ρ, t), i ∈ E \ R

(5)

f out
i (ρ, t) =


di(ρi, t), i ∈ Ro

∑
j∈E+i fij(ρ, t), i ∈ E \ Ro

Equation (5) states that

• the inflow f in
i (ρ, t) = λi(t) into an on-ramp i ∈ R is independent of the state of the

network. Here, λi(t) ≥ 0 has to be interpreted as an input to the network, modeling

the possibly time-varying rate at which vehicles enter the on-ramp i from the external

world. Throughout, we shall denote the vector of inflows at the different on-ramps by

λ(t) ∈ RR, λ(t) ≥ 0, and assume that it is a piecewise continuous function of time for

all t ≥ 0.

• the outflow f in
i (ρ, t) = di(ρ, t) from an off-ramp i ∈ Ro equals the demand on cell i;

• besides the two cases above, inflow and outflow of a cell i coincide with the sum of

all incoming flows from cells j ∈ E−i immediately upstream and, respectively, outgoing

flows to the cells j ∈ E+
i immediately downstream, of cell i.

Standard results on ODEs guarantee, under the given continuity assumptions on the flow

functions fij and on the input vector λ(t), the existence and uniqueness of a solution to (1)

for every initial condition ρ(0) ∈ S.

The actual form of the flow functions fij(ρ, t) depends on a possibly time-dependent

turning preference matrix R(t) ∈ RE×E satisfying, for all t ≥ 0, and i, j ∈ E , 2

Rij(t) ≥ 0 ,
∑
k

Rik(t) = 1 , τi 6= σj ⇒ Rij(t) = 0 .

2Recall that the range of summation is E , unless specified otherwise.
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In particular, the flow functions have to satisfy the following natural constraints

0 ≤ fij(ρ, t) ≤ Rij(t)di(ρi, t) , ∀i, j ∈ E (6)∑
k

fki(ρ, t) ≤ si(ρi, t) ,∀i ∈ E (7)

and, for all v ∈ V ,∑
k

Rkj(t)dk(ρk, t) ≤ sj(ρj, t), ∀j ∈ E+
v =⇒ fij(ρ, t) = Rij(t)di(ρi, t), ∀i ∈ E−v .

(8)

The constraints (6) and (7) ensure that the flow from a cell i to another cell j never exceeds

the part of the demand on i whose preference is to turn to j and, respectively, that the

total inflow in cell i never exceeds its supply. In particular, flow among non-consecutive

cells is zero. On the other hand, (8) states that, when there is enough supply on all cells

downstream of node v, the flow from a cell i ∈ E−v to a cell j ∈ E+
v coincides with the part of

the demand on i whose preference is to turn to j. Hence, Rij(t) ≥ 0 represents the fraction

of the demand on cell i that flows to cell j when there is enough supply on all cells in E+
τi

.

In particular, we say that cell i is in free-flow when fij(ρ, t) = Rij(t)di(ρi, t) for all j ∈ E+
i .

Observe that the constraints (6)–(8) do not uniquely characterize the value of the flow

functions fij(ρ, t) when ∑
k

Rkj(t)dk(ρk, t) > sj(ρj, t) . (9)

In this case, (7) only ensures that the total inflow in j does not exceed the supply of cell j,

while specific allocation rules are needed to determine how much of such supply is allocated

to the flows from the different cells i ∈ E−j . We now present a few different examples of flow

functions.

Example 1. Consider a network with line topology, consisting of N consecutive cells. The

first and the last cells are an on-ramp and an off-ramp, respectively. The dynamics is given
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by

ρ̇1(t) = λ(t)− f1,2(ρ1(t), ρ2(t), t)

ρ̇i(t) = fi−1,i(ρi−1(t), ρi(t), t)− fi,i+1(ρi(t), ρi+1(t), t), ∀i = 2, . . . , N − 1

ρ̇N(t) = fN−1,N(ρN−1(t), ρN(t), t)− dN(ρN(t))

where λ(t) is the inflow at the on-ramp. Under the Cell Transmission Model (CTM) Daganzo

(1994), the flow from one cell to the next is given by

fi,i+1(ρi, ρi+1, t) = min{di(ρi, t), si+1(ρi+1, t)} .

Since in this case Ri,i+1 = 1 for i = 1, . . . , N − 1 and Rij = 0 otherwise, this policy satisfies

(6), (7) and (8).

Example 2. One possible extension of the CTM to the network setting is the First In First

Out (FIFO) policy Daganzo (1995)Coogan and Arcak (2014). Given a node v ∈ V, i ∈ E−v
and j ∈ E+

v , under the FIFO policy,

fij(ρ) = κF
v (ρ, t)Rij(t)di(ρi, t)

where κF
v (ρ, t) ∈ [0, 1] is the maximum value such that κF

v (ρ, t)
∑

i∈E−v Rik(t)di(ρi, t) ≤ sk(ρk, t)

for all k ∈ E+
v . In words, the FIFO policy corresponds to a situation where drivers are rigid

about their route choice, and all the cells consist of a single lane. Therefore, increase in con-

gestion on any outgoing cell at a node potentially decreases inflow to other outgoing cells.

The FIFO policy gives maximum flow between incoming and outgoing cells subject to such

constraints. It is straightforward to see that such policy satisfies (6), (7) and (8).

Example 3. A second possible extension of the CTM to the network setting is the following

non-FIFO proportional allocation rule, which appears in Karafyllis and Papageorgiou (2014):

fij(ρ, t)=κNF
j (ρ, t)Rij(t)di(ρi, t) (10)
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where

κNF
j (ρ, t) = min

{
1,

sj(ρj, t)∑
k Rkj(t)dk(ρk, t)

}
.

Notice that κF
v (ρ) = minj∈E+v κ

NF
j (ρ). Unlike the FIFO policy in Example 2, under the non-

FIFO policy, inflows to the cells outgoing from a node are independent, possibly because of a

combination of having multiple lanes and adaptive route choice of drivers. This policy also

satisfies (6), (7) and (8).

Example 4. The FIFO and non-FIFO policies from Examples 2 and 3, respectively, possibly

represent two extremes of traffic splitting at a congested intersection, and that practical

settings correspond to somewhere in between. Accordingly, we propose the following mixture

model:

fij(ρ, t)=κNF
j (ρ)Rij(t)di(ρi, t) (11)

for i ∈ E−v and j ∈ E+
v , and

κM
j (ρ) = θκF

v (ρ) + (1− θ)κNF
j (ρ) (12)

where θ ∈ [0, 1] is the mixture parameter. For any θ, this policy satisfies (6), (7) and (8).

Example 5. Consider the setting where every node is either a merge node, i.e., having a

single outgoing cell, or a diverge node, i.e., having a single incoming cell. Further, let every

merge node have at most two incoming cells, e.g., when the node corresponds to a junction

of the mainline of a freeway and an on-ramp. Consider one such merge node with j as the

unique outgoing cell, and i and k as the two incoming cells. Let fij(ρ, t) be given by the

following priority rule proposed in Daganzo (1995):

fij(ρ, t) = di(ρi, t), if di(ρi, t) + dk(ρk, t) ≤ sj(ρj, t)

and

fij(ρ, t) = mid{di(ρi, t), sj(ρj, t)− dk(ρk, t), pisj(ρj, t)},

if di(ρi, t) + dk(ρk, t) > sj(ρk, t)
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and symmetrically for fkj(ρ, t). Here mid{a, b, c} denotes the middle value among a, b, and

c, and pi, pk are nonnegative and such that pi + pk = 1. The higher pi/pk, the more priority

is given to i with respect to k under congestion, i.e., when di(ρi, t) + dk(ρk, t) > sj(ρk, t).

Finally, for diverge nodes, consider one of the rules described in the previous examples. Such

a policy satisfies (6), (7) and (8).

3. Stability analysis

This section is devoted to the stability analysis of dynamical transportation networks.

We refer to Appendix AppendixA for a primer on key concepts from nonlinear dynamical

systems that are relevant for this section. We start with the following simple result, which,

e.g., appeared in Coogan and Arcak (2014). It shows that when any transportation network

admits an equilibrium that is in free-flow, then such an equilibrium is locally asymptotically

stable, i.e., it attracts all sufficiently close points. We give a proof for completeness and

because it will also give us some insights on the properties of stable equilibria.

Proposition 1. Let (1) be a dynamical transportation network with time-invariant demand

di(ρi) and supply function si(ρi) on every cell i ∈ E, and constant turning preference matrix

R and inflow vector λ ∈ RR+ . Extend λ to a non-negative vector in REby putting λi = 0 for

all i ∈ E \ R, and let C ∈ RE be the vector of cells’ flow capacity. Then, if

f ∗ := (I −RT )−1λ < C , (13)

then ρ∗ ∈ S defined by

ρ∗i = d−1
i (f ∗i ) , i ∈ E

is a free-flow locally asymptotically stable equilibrium.

Proof. First we prove that ρ∗ is an equilibrium for the system. Indeed, f ∗j < Cj implies,

by definition of flow capacities and by the properties of demand and supply functions, that

dj(ρ
∗
j) < sj(ρ

∗
j). Then∑

e∈E−j

Rejde(ρ
∗
e) =

∑
e∈E−j

Rejf
∗
e = f ∗j = dj(ρ

∗
j) < sj(ρ

∗
j)

13
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Figure 3: The network considered in Example 6

where the second equality follows by (13). By (8), we obtain fej(ρ
∗) = Rejde(ρ

∗
e) = Rejf

∗
e

for all (e, j). Together with RTf ∗+λ = 0, this establishes that ρ∗ is a free-flow equilibrium.

We now prove that ρ∗ is locally asymptotically stable. In fact, let J = ∇g(ρ)|ρ=ρ∗ be

the Jacobian of the system computed at ρ∗. Since fej(ρ
∗) = Rejde(ρ

∗
e) for all (e, j), then

for all (e, j) with e 6= j it holds Jej = Rej
∂de(ρe)
∂ρe
|ρe=ρ∗e (this being zero if τe 6= σj), while

Jee = −∂de(ρe)
∂ρe
|ρe=ρ∗e for all e. This implies that J is a Metzler matrix, whose columns all

have non positive sum, and in particular whose columns corresponding to off-ramps have

strictly negative sum. Moreover, by assumption in the original graph for every cell there

is at least one directed path to at least one off-ramp. Under these assumptions, it is well

known (see, e.g., Lovisari et al. (2014)[Lemma 7]) that J is a stable matrix. Therefore, ρ∗

is a locally stable equilibrium.

For FIFO policies such as those presented in Example 2 it can be shown Coogan and

Arcak (2014) that the basin of attraction of ρ∗ contains any ρ ∈ S such that 0 ≤ ρ ≤ ρ∗.

However, in general, the free-flow equilibrium of a transportation network with FIFO policy

is not globally asymptotically stable. This is shown in following example, and also illustrated

in our simulation studies in Section 5.

Example 6. Consider a the network with four cells, one on-ramp and one off-ramp shown

in Figure 3. Let the dynamics be driven by a FIFO policy as per Example 2, so that

ρ̇1 = g1(ρ) = λ− κFa (ρ)d1(ρ1) ρ̇2 = g2(ρ) = κFa (ρ)(d1(ρ1) + d3(ρ3))− κFb (ρ)d2(ρ2)

ρ̇3 = g3(ρ) = κFb (ρ)R23d2(ρ2)− κFa (ρ)d3(ρ3) ρ̇4 = g4(ρ) = κFb (ρ)R24d2(ρ2)− d4(ρ4)

where

κFa (ρ) = min

{
1,

s2(ρ2)

d1(ρ1) + d3(ρ3)

}
, κFb (ρ) = min

{
1,

s3(ρ3)

R23d2(ρ2)
,

s4(ρ4)

R24d2(ρ2)

}
.
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Let de(ρe) = ρe for all e and R23 = R24 = 0.5. The candidate free-flow equilibrium can

be easily found to be ρ∗1 = ρ∗3 = ρ∗4 = λ and ρ∗2 = 2λ. Let the supply functions be so that

ρ∗ is indeed an equilibrium in the free flow. By Proposition 1, ρ∗ is locally asymptotically

stable. In order to see that it is not globally asymptotically stable, consider the trajectory

ρ̂1(t) = λt+ρo, ρo ≥ 0 arbitrary, and ρ̂2(t) = B2, ρ̂3(t) = B3, ρ̂4(t) = 0 for all t ≥ 0. This is

a feasible trajectory for the network under consideration because s2(ρ̂2(t)) = s3(ρ̂3(t)) = 0,

and hence κFa (ρ̂(t)) = κFb (ρ̂(t)) = 0, for all t ≥ 0. Therefore,

g1(ρ̂(t)) = λ, g2(ρ̂(t)) = 0, g3(ρ̂(t)) = 0, g4(ρ̂(t)) = 0, ∀t ≥ 0

proving that {ρ̂(t) : t ≥ 0} is a trajectory of the system. Clearly, since the densities on cells

2, 3 and 4 do not change, while the density on the on-ramp 1 grows unbounded, ρ̂(t) does

not converge to ρ∗, which is thus not globally asymptotically stable.

Example 6 shows that one cannot prove global asymptotic stability of free-flow equilibria

for general transportation networks. Even more so, for the FIFO policies in Example 2,

condition (13) (with non strict inequality) is a necessary and sufficient condition for the

network to admit an equilibrium. That is, under FIFO policies, if (13) does not hold true

with non-strict inequality, then no equilibrium can exist and, moreover, the trajectory of

the system grows unbounded for any initial condition.

However, this feature does not extend to all transportation networks. Indeed, in the rest

of this section, we shall consider a special class of dynamical transportation networks, to be

referred to as monotone, characterized by an additional differential constraint on the flow

functions. Monotone dynamical transportation networks include those with flow functions

as in Examples 1 and 3, but not the FIFO diverge rule of Example 2 and the mixture model

of Example 4.

We will show that, under such additional differential constraint, (1) is a monotone dy-

namical system Hirsch (1985), i.e., one preserving the standard partial ordering in S. Then,

we will prove that such monotonicity property combined with the conservation of mass im-

plies a fundamental incremental stability property: the l1-distance between two solutions

of (1) starting from different initial conditions can never increase. We will explore several
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consequences of such monotonicity and incremental stability properties including, local sta-

bility of free-flow and non free-flow equilibria and periodic solutions and global asymptotic

stability of equilibria and periodic solutions, when a certain state-dependent dual graph,

which depends on the sign of the derivatives of the flow between contiguous cells, is con-

nected. This will substantially extend the available results on stability analysis for dynamical

transportation networks.

We consider flow functions that satisfy the following additional constraint

∂

∂ρj

∑
k

fki(ρ, t) ≥ 0 ,
∂

∂ρj

∑
k

fik(ρ, t) ≤ 0 , ∀j 6= i ∈ E , (14)

for all t ≥ 0 and almost every ρ ≥ 03.

Equation (14) states that the total inflow in (respectively, outflow from) a cell i does

not increase (does not decrease) if the density is increased in any other cell j 6= i and kept

constant on cell i. We will refer to dynamical systems of the form (1) satisfying (5)–(8) and

(14) as monotone dynamical transportation networks.

Examples 1, 3 - contd. The policies presented in Examples 1 and 3, which we discuss

together as the former is a special case of the latter, are monotone. To see this, first observe

that ∑
k

fki(ρ, t) = min

{
si(ρi, t),

∑
k

Rki(t)dk(ρk, t)

}
Then, notice that, for all j 6= i,

∂

∂ρj
si(ρi, t) = 0 ,

∂

∂ρj

∑
k

Rki(t)dk(ρk, t) ≥ 0 ,

where the second inequality follows from the monotonicity assumption on the demand func-

tions. Hence, the leftmost inequality in (14) is satisfied. Similarly, for every cell k,

∂

∂ρj

sk(ρk, t)Rik(t)∑
lRlk(t)dl(ρl, t)

≤ 0

3Lipschitz continuity of the flow functions implies their differentiability almost everywhere by

Rademacher’s theorem.
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so that, for all j 6= i

∂

∂ρj

∑
k

fik(ρ, t) = di(ρi, t)
∂

∂ρj

∑
k

min

{
sk(ρk, t)Rik(t)∑
lRlk(t)dl(ρl, t)

, Rik(t)

}
≤ 0 .

Hence, also the rightmost inequality in (14) is satisfied. Thus the flow functions in the two

Examples give rise to a monotone dynamical transportation network.

Example 2 - contd. In contrast, the policies proposed in Examples 2 and 4 are not

monotone in general. In fact, consider under FIFO policy (Example 2) a single diverge node

v with {i} = E−v and {j, k} = E+
v . Then the FIFO policy reads

fij(ρ, t) = Rij(t)di(ρi, t) min

{
1,

sj(ρj, t)

Rij(t)di(ρi, t)
,

sk(ρk, t)

Rik(t)di(ρi, t)

}
fik(ρ, t) = Rik(t)di(ρi, t) min

{
1,

sj(ρj, t)

Rij(t)di(ρi, t)
,

sk(ρk, t)

Rik(t)di(ρi, t)

}
so that when

sj(ρj ,t)

Rij(t)di(ρi,t)
< sk(ρk,t)

Rik(t)di(ρi,t)
< 1 we have

fik(ρ, t) =
Rik(t)

Rij(t)
sj(ρj, t)

and therefore
∂f ink (ρ,t)

∂ρj
< 0. The system under FIFO policies is thus in general non mono-

tone, as already observed in Coogan and Arcak (2014). The same obviously holds for mixed

policies.

Example 5 - contd. Routing under the priority rule proposed in Daganzo (1995) for

merge with at most two incoming cells, and the non-FIFO policies in Example 3 for diverge

is also monotone. We only need to study the merge case, and to this aim consider a node v

with E−v = {i, k} and E+
v = {j}. If di(ρi, t) +dk(ρk, t) ≤ sj(ρj, t), then f out

i (ρ, t) = fij(ρ, t) =

di(ρi, t) and f out
k (ρ, t) = fkj(ρ, t) = dk(ρk, t) and the two inequalities in (14) are satisfied.

Assume thus di(ρi, t) + dk(ρk, t) > sj(ρj, t). First of all, notice that

∂f out
i (ρ, t)

∂ρk
=
∂fij(ρ, t)

∂ρk
∈
{

0,−∂dk(ρk, t)
∂ρk

}
∂f out

i (ρ, t)

∂ρj
∈
{

0,
∂sj(ρj, t)

∂ρj
, pi

∂sj(ρj, t)

∂ρj

}
so the rightmost inequalities in (14) are satisfied. It remains to study the dependence of

f in
j (ρ, t) = mid {di(ρi, t), sj(ρj, t)− dk(ρk, t), pisj(ρj, t)}

+mid {dk(ρk, t), sj(ρj, t)− di(ρi, t), pksj(ρj, t)}
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on ρi and ρk. Since di(ρi, t) > sj(ρj, t)−dk(ρk, t) and dk(ρk, t) > sj(ρj, t)−di(ρi, t), we only

have to study the following cases:

a) sj(ρj, t) − dk(ρk, t) < di(ρi, t) ≤ pisj(ρj, t): then by pi + pk = 1 we have dk(ρk, t) >

pksj(ρj, t). So

a.1) if pksj(ρj, t) ≤ sj(ρj, t)− di(ρi, t) < dk(ρk, t), then f in
j (ρ, t) = sj(ρj, t);

a.2) if sj(ρj, t)−di(ρi, t) ≤ pksj(ρj, t) < dk(ρk, t), then f in
j (ρ, t) = pksj(ρj, t)+di(ρi, t).

Moreover, di(ρi, t) ≤ pisj(ρj, t) implies pksk(ρj, t) ≤ sk(ρj, t)− di(ρi, t), therefore

actually sj(ρj, t)− di(ρi, t) = pksj(ρj, t), hence f in
j (ρ, t) = sj(ρj, t).

b) sj(ρj, t)− dk(ρk, t) ≤ pisj(ρj, t) ≤ di(ρi, t): then again pi + pk = 1 yields pksj(ρj, t) ≥
sj(ρj, t)− di(ρi, t), and then

b.1) if sj(ρj, t)− di(ρi, t) ≤ pksj(ρj, t) ≤ dk(ρk, t), then f in
j (ρ, t) = sj(ρj, t);

b.2) if sj(ρj, t)−di(ρi, t) < dk(ρk, t) ≤ pksj(ρj, t), then f in
j (ρ, t) = pisj(ρj, t)+dk(ρk, t).

Similarly to the point a.2), dk(ρk, t) ≤ pksj(ρj, t) implies pisj(ρj, t) ≤ sj(ρj, t) −
dk(ρk, t), so that pisj(ρj, t) = sj(ρj, t)− dk(ρk, t) and f in

j (ρ, t) = sj(ρj, t).

c) pisj(ρj, t) ≤ sj(ρj, t)−dk(ρk, t) < di(ρi, t): then by pi+pk = 1 it holds true pksj(ρj, t) ≥
dk(ρk, t), hence the only possibility is sj(ρj, t)−di(ρi, t) < dk(ρk, t) ≤ pksj(ρj, t), which

yields f in
j (ρ, t) = sj(ρj, t).

In all cases it holds true f in
j (ρ, t) = sj(ρj, t), so

∂f inj (ρ,t)

∂ρi
=

∂f inj (ρ,t)

∂ρk
= 0, hence the leftmost

inequalities in (14) are also satisfied.

Basic properties characterizing monotone dynamical transportation networks are gath-

ered in the following result.

Theorem 1. Let (1) be a monotone dynamical transportation network. Let ρ(1)(t) and

ρ(2)(t), for t ≥ 0, be solutions of (1) corresponding to initial conditions ρ(1)(0), ρ(2)(0) ∈ S
with continuous inflow vectors λ(1)(t) and λ(2)(t) ≥ 0 respectively.Then,

(i) if ρ(1)(0) ≤ ρ(2)(0) and λ(1)(t) ≤ λ(2)(t), then ρ(1)(t) ≤ ρ(2)(t) for all t ≥ 0;
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(ii) if λ(1)(t) = λ(2)(t), then ||ρ(1)(t)− ρ(2)(t)||1 is non-increasing in t ≥ 0.

Proof. Notice that by (14) and (5) it holds true

∂gi(ρ, t)

∂ρj
≥ 0, ∀i 6= j ∈ E

∂gi(ρ, t)

∂λk

∣∣∣∣
λk=λk(t)

≥ 0, ∀i ∈ E , k ∈ R

Point (i) is then a direct consequence of Kamke’s theorem (Hirsch and Smith, 2003,

Theorem 1.2), Kamke (1932) for monotone controlled systems Angeli and Sontag (2003).

Point (ii) is a consequence of Lemma 5 in Appendix. Indeed, g(·, ·) satisfies (B.1) by

(14), and moreover ∑
i∈E

gi(ρ, t) =
∑
i∈R

λi(t)−
∑
i∈Ro

di(ρi, t)

so (B.2) is also satisfied by the properties of the demand functions. Therefore, by (B.3),

along the evolution of the system it holds true

d

dt
‖ρ(1)(t)− ρ(2)(t)‖1 =

∑
i∈E

sgn
(
ρ

(1)
i (t)− ρ(2)

i (t)
) (
gi(ρ

(1)(t), t)− gi(ρ(1)(t), t)
)
≤ 0

namely ‖ρ(1)(t)− ρ(2)(t)‖1 does not increase.

We shall now investigate some consequences of the previous result.

Point (i) of Theorem 1 states that the trajectories of a monotone dynamical transporta-

tion network are monotone systems, namely, they maintain the natural partial ordering with

respect to initial conditions and inputs. An analogous monotonicity property holds for the

solutions of some hyperbolic partial differential equations, including the celebrated Lighthill-

Whitham and Richards model: e.g., cf. Kružkov’s Theorem (Serre, 1999, Proposition 2.3.6)

for entropy solutions of scalar conservation laws.

The monotonicity property established in point (i) of Theorem 1 implies the existence of

equilibria, convergent solutions, and periodic solutions provided that the flow functions and

the inflow vector are, respectively, constant, convergent, or periodic in time, as formalized

in the following result.
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Lemma 1. Let (1) be a monotone dynamical transportation network with continuous inflow

vector λ(t) ∈ RR, λ(t) ≥ 0.Then,

(i) if the inflow vector λ(t) ≡ λ∗ and, for all (i, j), the flow functions fij(ρ, t) = f ∗ij(ρ) do

not depend on time, and if for at least one finite initial condition, the corresponding

trajectory does not grow unbounded in time, then there exists an equilibrium ρ∗ ∈ S
such that lim inf ρ̂(t) ≥ ρ∗ for every ρ̂(0) ∈ S.

(ii) if the inflow vector and the flow functions are convergent in time, i.e., if limt→+∞ λ(t) =

λ∗ and limt→+∞ fij(ρ, t) = f ∗ij(ρ), for all (i, j), and if for at least one finite initial con-

dition, the corresponding trajectory does not grow unbounded in time, then there exists

one trajectory such that ρ(t)→ ρ∗, and lim inf ρ̂(t) ≥ ρ∗ for every ρ̂(0) ∈ S.

(iii) if the inflow vector and the flow functions are periodic in time, i.e., if there exists

some T > 0 such that λ(T + t) = λ(t) and fij(ρ, t+ T ) = fij(ρ, t) for all t ≥ 0 and all

(i, j), and if for at least one finite initial condition the corresponding trajectory does

not grow unbounded in time, then there exists a periodic solution ρ(t+ T ) = ρ(t).

Proof. Let ρ(t) be the trajectory of the system with zero initial condition ρ(0) = 0. Under

constant inflow vector and flow functions that do not depend on time, the properties of

monotone systems ensure that ρ(t) is increasing in time in every component. This implies

that limt→∞ ρ(t) exists. By point (ii) of Theorem 1, moreover, limt→∞ ρ(t) is finite if and

only if any trajectory with finite initial condition that does not grow unbounded in time.

Under the assumptions, therefore, limt→∞ ρ(t) = ρ∗ is finite, so by Barbalat’s lemma it is an

equilibrium. Since by monotonicity for an arbitrary initial condition ρ̂(0) it holds ρ̂(0) ≥ 0,

we have ρ̂(t) ≥ ρ(t) for all t ≥ 0, which proves (i).

Point (ii) is now an application of the converging input - converging state property of

monotone controlled systems Angeli and Sontag (2003).

Finally, in the periodic setting, recall that the system evolves according to ρ̇(t) =

g(ρ(t), t) with g(ρ, t + T ) = g(ρ, t) for all t ≥ 0 and ρ ∈ S. Let φ(ρ̂; t, t0) be the evolu-

tion of the system starting at time t0 with initial condition ρ(t0) = ρ̂ up to time t ≥ t0. We

claim that φ(ρ̂; t + kT, 0) = φ(φ(ρ̂; kT, 0), t, 0) for all t ≥ 0 and any nonnegative integer k.

20



In fact, y(t) = φ(ρ̂; t+ kT, 0) and x(t) = φ(φ(ρ̂; kT, 0), t, 0) are for t ≥ 0 the solutions ofẏ(t) = g(y(t), t+ kT ) = g(y(t), t)

y(0) = φ(ρ̂; kT, 0)

ẋ(t) = g(x(t), t)

x(0) = φ(ρ̂; kT, 0)

By uniqueness of the solutions, y(t) = x(t), that is, φ(ρ̂; t + kT, 0) = φ(φ(ρ̂; kT, 0), t, 0), for

all t ≥ 0.

Consider now the map F : S → S, F (ρ̂) = φ(ρ̂;T, 0), and set F k(ρ̂) = F (F k−1(ρ̂)). In

this way we define the discrete time system ρ(kT ) = F k(ρ(0)), ρ(0) = ρ̂. We claim that

F k(ρ̂) = φ(ρ̂; kT, 0). It holds true for k = 1. For k ≥ 2, by the previous argument and by

induction,

F k(ρ̂) = F (F k−1(ρ̂)) = F (φ(ρ̂; (k − 1)T, 0)) = φ(φ(ρ̂; (k − 1)T, 0);T, 0) = φ(ρ̂; kT, 0) .

This immediately implies that the discrete time system is monotone, as ρ̂1 ≥ ρ̂2 yields

F k(ρ̂1) = φ(ρ̂1; kT, 0) ≥ φ(ρ̂2; kT, 0) = F k(ρ̂2). Let ρ̃(kT ) be the trajectory of the discrete

time system with ρ̃(0) = 0. Notice that ρ̃(kT ) = φ(0; kT, 0), namely, ρ̃(kT ) is the sampled

version of the trajectory in the original system with zero density initial conditions. By

monotonicity, ρ̃(kT ) is increasing in each component and admits a limit limk→∞ ρ̃(kT ) = ρ∗T .

Since ρ̃(kT ) = φ(0; kT, 0), by point (ii) of Theorem 1 if at least one trajectory of the original

system does not grow unbounded, then ρ∗T is finite.

To conclude, consider the trajectory ρ(t) = φ(ρ(0); t, 0) of the original system with initial

condition ρ(0) = ρ∗T . Since ρ∗T is a fixed point for F , we have ρ(T ) = F (ρ∗T ) = ρ∗T = ρ(0),

and therefore ρ(t) is a periodic trajectory for the original system.

In addition to point (i), point (ii) of Theorem 1 states that a monotone dynamical

transportation network is non-expansive in the l1-distance, namely it is incrementally stable

Angeli (2002). In particular, Theorem 1 directly implies a general (weak) stability property:

the distance from any reference trajectory ρ∗(t), being it, e.g., an equilibrium, a periodic,

or convergent solution, can never increase in time. However, in general it is not guaranteed

that the l1-distance between two trajectories is strictly decreasing. In contrast, it is possible
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Figure 4: A network and the corresponding dual graphs in (a) free-flow and in (b) a congestion scenario.

to show Lovisari et al. (2014) that there are cases, such as multiple equilibria, where the

distance between two trajectories remains constant in time. In the following, we provide some

sufficient conditions for the l1-distance from a reference trajectory to be strictly decreasing.

Before stating the following result, we introduce a state-dependent dual graph.

Definition 1. For every ρ ∈ S and t ≥ 0, where both f in
i (ρ, t) and f out

i (ρ, t) are differentiable

for every i ∈ E, we associate a directed dual graph H(ρ, t) with node set coinciding with the

set of cells E and where there is a directed link from i to j if and only if
∂f inj
∂ρi

> 0 or
∂foutj

∂ρi
< 0.

We shall say that H(ρ, t) is rooted if, for all i ∈ E \ Ro, there is a directed path from i to

some j ∈ Ro.

Example 7. Consider the network shown in Fig. 4, and the non-FIFO policy presented

in Example 3. For any ρ and any time t in which the network is in free-flow, the graph

H(ρ, t) has a link (e, j) if and only if Rej > 0, i.e., τe = σj. In other words, in free-flow,

H(ρ, t) corresponds to a graph obtained by exchanging the roles of nodes and links of the

original physical graph. Indeed, the dual graph associated with the matrix J in the proof of

Proposition 1 is H(ρ∗). If cell 4 in Fig. 4 is congested, namely, its inflow is bounded by its

supply, then the directions of links (3, 4) and (6, 4) are reversed, and an additional link (3, 6)

appears due to the interdependence of the dynamics of 3 and 6. Both graphs are rooted,

since, for example, for every cell there is a directed path to at least one off-ramp.

We are now ready to state and prove the following Lemma, whose proof, being a bit

technical, is postponed to Appendix AppendixB.
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Lemma 2. Let (1) be a monotone dynamical transportation network with continuous inflow

vector λ(t) ∈ RR, λ ≥ 0.Let ρ(1)(t) and ρ(2)(t) be two solutions corresponding to initial

conditions ρ(1)(0), ρ(2)(0) ∈ S. Then, for all t ≥ 0 such that H(ρ(1)(t), t) is rooted and

ρ(1)(t) 6= ρ(2)(t), one has that

d

dt
||ρ(1)(t)− ρ(2)(t)||1 < 0 .

Lemma 2 is instrumental in proving the next result, which provides sufficient conditions

for reference trajectories, i.e., equilibria or periodic trajectories, to be globally asymptotically

stable.

Proposition 2. Let (1) be a monotone dynamical transportation network with continuous

inflow vector λ(t) ∈ RR, λ ≥ 0 such that fij(ρ, t) are independent of t for all i ∈ E \Ro and

j ∈ E \ R. Then,

(i) If ρ∗ is an equilibrium and H(ρ∗) is rooted, then ρ∗ is globally asymptotically stable;

(ii) If ρ∗(t) is a periodic solution and H(ρ∗(t), t) is rooted for some t ≥ 0, then ρ∗(t) is a

globally asymptotically stable periodic solution.

Proof. The two points are an immediate consequence of Lemma 2. In fact, assume ρ∗ is an

equilibrium and H(ρ∗) is rooted. Let ρ(t) be the trajectory of the system starting with an

arbitrary initial condition ρ0. Then

d

dt
||ρ(t)− ρ∗||1 < 0, ∀t

and thus ρ(t)
t→∞−→ ρ∗.

Similarly, let ρ∗(t) be a periodic solution. If there exists t̂ ∈ [0, T ) such that H(ρ∗(t̂ +

kT ), t̂+ kT ) is rooted for all integers k ≥ 0, then by continuity of the trajectory there exists

δ > 0 such that on each period [kT, (k+1)T ) the l1-distance between ρ∗(t) and ρ(t) decreases

by at least δ, i.e., for all k ≥ 0,

||ρ((k + 1)T )− ρ∗(t)||1 ≤ (1− δ)||ρ(kT )− ρ∗(t)||1 ,

so that dist(ρ(t), ρ∗(t))
t→∞−→ 0.
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Since the initial condition was arbitrary, the previous argument establishes that the

equilibrium or the periodic solution are globally attractive. Since stability is ensured by

Theorem 1, the claim is proved.

Remark 2. Notice that Proposition 2 is not limited to free-flow equilibria. In fact, even

though for FIFO policies, the only equilibrium that a transportation network can admit is

in free-flow, for other policies, such as those presented in Examples 3 and Example 4, the

network can admit equilibria in which some cells are congested, namely, their inflow is

bounded by their supply. Examples are provided in Section 5.

Proposition 2 can be used to generalize the property of local stability of free-flow equi-

libria in Proposition 1 to global stability, for monotone transportation networks, as stated

in the next result.

Theorem 2. Let (1) be a monotone dynamical transportation network with time-invariant

demand di(ρi) and supply function si(ρi) on every cell i ∈ E, and constant turning preference

matrix R and inflow vector λ ∈ RR+ . Extend λ to a non-negative vector in REby putting λi = 0

for all i ∈ E \ R, and let C ∈ RE be the vector of cells’ flow capacity. Then, if (13) holds

true, ρ∗i = d−1
i (f ∗i ), for all i ∈ E, is a globally asymptotically stable equilibrium.

Proof. The fact that ρ∗ is an equilibrium was proven in the proof of Proposition 1. By

the same proof, and as in Example 7, it is straightforward to see that the connectivity

assumption on the actual physical graph implies that H(ρ∗) is rooted. Then ρ∗ is globally

asymptotically stable by Proposition 2.

Remark 3. While Example 6 shows that, for FIFO policies, the free-flow equilibrium is

not globally asymptotically stable in general, Theorem 2 can be generalized to non-monotone

policies in some special cases. The key is that, while monotonicity is a sufficient condition

for the `1 contraction principle in Lemma 2 to hold true, it is not necessary. This happens,

e.g., when every node in the network is either a merge, or all its outgoing cells are off-ramps.

For such networks, it can be shown that the free-flow equilibrium from Theorem 2 is globally

asymptotically stable under the mixture model for sufficiently small θ ∈ (0, 1].
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4. Control of Dynamical Transportation Networks

In this section, we describe how to cast the equilibrium selection and the optimal control

of dynamical transportation networks as convex optimizations or linear programs. Through-

out, we will consider uncontrolled demand and supply functions, dui (ρi, t) , s
u
i (ρi, t) , i ∈ E ,

which are both concave and, respectively, strictly increasing and non-increasing in ρi. We

will measure the system performance through cost functions Ψ : RE+ → R+ that are convex,

and strictly increasing in each component. A relevant example is provided by the weighted

sum of cell-wise densities

Ψ(ρ) =
∑
i∈E

ηiρi , (15)

for non-negative weights ηi ≥ 0, i ∈ E , which recovers standard performance metrics such

as the Total Travel Time, e.g., see Gomes and Horowitz (2006). We will assume that the

controlled demand functions have the following form

di(ρi, t) = αi(t)d
u
i (ρi, t) , i ∈ E ,

where αi(t) ∈ [0, 1] are control parameters. In the context of freeway networks, a given αi(t)

can be realized through appropriate setting of speed limits. In particular, if the uncontrolled

demand function on cell i is linear as in (3), then its rescaling is equivalent to the modulation

of the free-flow speed vi(t) = vui (t)αi(t) Hegyi et al. (2005), where vui (t) could be interpreted

as the maximum possible speed due to, e.g., safety considerations.

We will consider two distinct settings combining the control of demand functions de-

scribed above with

(I) control of the turning preference matrix; or

(II) supply control.

By (I), we mean the capability of modifying an uncontrolled turning preference matrix

Ru(t) to a controlled one R(t) which still has nonnegative entries and row sums equal to

1, and satisfies the additional constraint di(ρi, t)Rij(t) ≤ dui (ρi, t)R
u
ij(t). In other words,
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demand control combined with control of the turning preference matrix amounts to the

ability of independently reducing the demand from cell i that intends to turn to cell j. On

the other hand, by (II) we refer to the possibility of saturating the supply functions

si(ρi, t) = min{sui (ρi, t), βi(t)} , i ∈ E ,

where sui (ρi, t), i ∈ E are the uncontrolled supply functions, and βi(t) ≥ 0, i ∈ E are control

parameters to be actuated, e.g., through metering.

We first present results on the optimal equilibrium selection for dynamical transportation

networks where the inflows, the uncontrolled supply and demand functions and turning

preference matrix are all time-invariant. Then, we will deal with the optimal control problem

for dynamical transportation networks with general time-varying parameters.

4.1. Equilibrium selection

We start by characterizing the set of all possible equilibria associated to the stationary

case, where the uncontrolled supply and demand functions, as well as the inflow vector and

the turning preference matrix are time-invariant. Consider the set F ⊆ RE+ × RE×E+ of pairs

(x, y) of a density vector x and a cell-to-cell flow matrix y satisfying the following constraints∑
i

yij ≤ suj (xj) ∀j ∈ E

yij ≤ Ru
ijd

u
i (xi) ∀i, j ∈ E∑

i

yij =
∑
i

yji ∀j ∈ E \ (R∪Ro)

λi =
∑
j

yij ∀i ∈ R∑
j

yji ≤ dui (xi) ∀i ∈ Ro

(16)

The following result guarantees that every equilibrium of the dynamical transportation net-

work belongs to the set F .

Lemma 3. Consider a dynamical transportation network where the uncontrolled supply and

demand functions, as well as the inflow vector and the uncontrolled turning preference matrix

are time-invariant. If ρ∗ ∈ S is an equilibrium, then (ρ∗, f ∗) ∈ F , where f ∗ = {fij(ρ∗)}i,j∈E .
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Proof. The conservation law (1) along with the definition of inflow and outflow (5) ensures

that f ∗ satisfies the last three constraints in (16). In particular, the last set of constraints is

satisfied with equality since at equilibrium
∑

j∈E−i fji(ρ
∗) = f in

i (ρ∗) = f out
i (ρ∗) = di(ρ

∗
i ) for

all offramps i ∈ Ro. Finally, f ∗ satisfies the first two constraints in (16) because of (7) and

(6).

Observe that the constraints that characterize F are convex. This implies that the

optimization

min
(x,y)∈F

Ψ(x) (17)

is a convex problem. Moreover, in the case of linear demand, affine supply, and linear

cost function (15), the optimization (17) is a linear program. Convexity and linearity are

extremely appealing properties of optimization problems, as convex and linear programs

are classes of problems for which efficient algorithms, solvers, and toolboxes have been

developed and tested. Indeed, in our simulations in Section 5 we use the Matlab package

CVX CVX Research (2012); Grant and Boyd (2008). A promising next step is to adapt the

Alternating Direction Method of Multipliers (ADMM) Boyd et al. (2011) to the problem

under analysis. ADMM is a popular approach to solve optimization problems on networks in

a distributed fashion, namely, the algorithm relies on a network of agents which perform local

computations and exchange information with nearest neighbors to solve the optimization

problem in an iterative manner. The computational complexity of ADMM scales nicely

with the size of the network too. We intend to pursue this direction in future research.

Concluding, the availability of off-the-shelf algorithms and solvers is the reason why we are

particularly interested in the case in which (17) is convex. However, notice that the proposed

control strategies would not change if convexity were lost, e.g., because the supply functions

are not concave. The only difference is that solving (17) in the non-convex case would be

computationally hard.

We now address the question of how to design control parameters such that the solution

of the optimization (17) is a (stable) equilibrium for the controlled dynamical transportation

network. We first consider case (I) where the demand control is combined with control of
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the turning preference matrix.

Proposition 3. Consider a dynamical transportation network where the uncontrolled de-

mand functions dui (·) and supply functions sui (·), as well as the inflow vector λ and the

uncontrolled turning preference matrix Ru are all time-invariant. Let (x∗, y∗) be a solution

of the optimization (17). Set time-invariant demand controls αi, controlled turning prefer-

ence matrix R, and supply control βi as follows

αi =


∑

k∈E+
i
y∗ik

dui (x∗i )
, if x∗i 6= 0

0, if x∗i = 0

∀i ∈ E \ Ro

Rij =


y∗ij∑

k∈E+
i
y∗ik
, if

∑
k∈E+i y

∗
ik 6= 0

1
|E+i |

, if
∑

k∈E+i y
∗
ik = 0

∀i, j ∈ E \ Ro, i 6= j

βi = +∞ ∀i ∈ E \ R

Then αiRij ≤ Ru
ij for all i, j ∈ E, and x∗ is a stable free-flow equilibrium for the controlled

dynamical transportation network. Moreover, if
∑

j∈E−i y
∗
ji < Ci for all i ∈ E, then x∗ is

locally asymptotically stable, and if, in addition, the dynamical transportation network is

monotone, then x∗ is globally asymptotically stable.

Proof. Let (x∗, y∗) ∈ arg min(x,y)∈F Ψ(x) be a solution of the optimization in (17) and set the

control signals as in (18). Notice that βi = +∞ implies that no supply control is used. The

choice of control parameters implies that y∗ij = αiRijd
u
i (x
∗
i ) = Rijdi(x

∗
i ) for all i, j ∈ E \ Ro,

i 6= j. Then, for all j ∈ E \ R,∑
i∈E−j

Rijdi(x
∗
i ) =

∑
i∈E−j

αiRijd
u
i (x
∗
i ) =

∑
i∈E−j

y∗ij ≤ suj (x
∗
j)

where the last inequality is implied by the first constraint in (16).

Since this holds for all i, (8) guarantees that fij(x
∗) = Rijdi(x

∗
i ), and hence fij(x

∗) = y∗ij,

for all i, j. Then, the third and fourth constraints in (16) imply that

f in
i (x∗) = f out

i (x∗) , (18)
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for every cell i ∈ E \Ro. For off-ramps, (18) follows from the fact the last constraint in (16)

is necessarily satisfied with equality, for otherwise, if
∑

k y
∗
ki < dui (x

∗
i ) for some i ∈ Ro, a

small decrease in x∗i would reduce the value of the objective function without violating any

constraints.

Finally, since fji(x
∗) = Ru

jidj(x
∗
j) for all (j, i), x∗ is an equilibrium in free-flow. To

conclude, let
∑

j∈E−i y
∗
ji < Ci for all i ∈ E . Local stability of x∗ follows from Proposition 1,

and the global asymptotic stability, for monotone networks, follows from Theorem 2.

We now turn our attention to case (II), where the turning preference matrix cannot be

controlled, but, in addition to demand functions, supply functions can also be controlled.

Our main result, stated below, is restricted to the case of monotone dynamical transportation

networks where each node is either a merge, i.e., it has one outgoing cell, or a diverge, i.e.,

it has one incoming cell and multiple outgoing cells. Note that a node with one incoming

and one outgoing cell will be referred to as a merge node.

Proposition 4. Consider a monotone dynamical transportation network where the uncon-

trolled demand functions dui (·) and supply functions sui (·), as well as the inflow vector λ

and the uncontrolled turning preference matrix Ru are all time-invariant. Assume that each

node is either a merge or a diverge. Let (x∗, y∗) be a solution of the optimization (17). Set

time-invariant demand controls αi, supply controls βi, and matrix of turning preferences R

as follows

αi =



y∗ij
dui (x∗i )

, if x∗i > 0, τi is a merge, {j} = E+
i

0, if x∗i = 0, τi is a merge

1, if τi is a diverge

∀i ∈ E \ Ro

Rij = Ru
ij ∀i, j ∈ E \ Ro, i 6= j

βi =

y
∗
ji, σi is a diverge , {j} = E−i

+∞, σi is a merge

∀i ∈ E \ R

Then, x∗ is a stable equilibrium for the controlled dynamical transportation network.
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Proof. Let (x∗, y∗) ∈ arg min(x,y)∈F Ψ(x) be a solution of the optimization in (17). Set the

control parameters as in (19), and notice that the turning preferences are not modified by

the present control strategy, and βi = +∞ implies that no supply control is used.

As in the proof of Proposition 3, we shall prove that fij(x
∗) = y∗ij for all i, j. This in

turn implies that x∗ is an equilibrium for the system. Stability is ensured by point (ii) of

Theorem 1.

To this aim, let v be a merge node with {j} = E+
v . If αi is computed according to (19),

then (notice Rij = 1 for all i ∈ E−v )∑
i∈E−v

di(x
∗
i ) =

∑
i∈E−v

αid
u
i (x
∗
i ) =

∑
i∈E−j

y∗ij ≤ suj (x
∗
j)

where the last inequality is implied by the first constraint in (16). Therefore, (8) guarantees

that fij(x
∗) = di(x

∗
i ) = αid

u
i (x
∗
i ) = y∗ij, for all i ∈ E−v .

Let instead v be a diverge node with {i} = E−v . First of all, we claim that the mono-

tonicity conditions in (14) imply that fij(x) = min{Rijdi(xi), sj(xj)} for any x ∈ S. We

study two cases:

• Rijdi(xi) ≤ si(xj): by (6), fij(x) ≤ Rijdi(xi). If fij(x) = Rijdi(xi), the claim is proved,

so assume by contradiction fij(x) < Rijdi(xi). Let x̂ such that x̂i = xi, x̂j = xj, and

x̂k ≤ xk, k ∈ E+
v , j 6= k, such that Rikdi(xi) = Rikdi(x̂i) ≤ sk(x̂k), for all k ∈ E+

v .

Then (8) implies fij(x̂) = Rijdi(xi). Let γ := {θx + (1 − θ)x̂ : θ ∈ [0, 1]} be a path

from x̂ to x. Then

fij(x) = fij(x̂) +

∫
γ

∇fij(ξ)dξ ≥ fij(x̂)

where the inequality follows by monotonicity since, the components of the state chang-

ing (increasing) along γ do not include j. Thus, fij(x) ≥ fij(x̂) = Rijdi(xi) and

fij(x) < Rijdi(xi), a contradiction. Therefore, if Rijdi(xi) ≤ si(xj), then fij(x) =

Rijdi(xi).

• Rijdi(xi) > sj(xj): by (7), fij(x) ≤ sj(xj). If fij(x) = sj(xj), the claim is proved, so

assume by contradiction fij(x) < sj(xj). Let x̂ be such that x̂k = xk for all k ∈ E+
v and
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x̂i < xi be such that Rijdi(x̂i) = sj(x̂j) = sj(xj). Then, making explicit the depen-

dence of fij(x) on the i-th component of the state by writing fij(x) = fij(xi, {xk}k∈E+v ),

we obtain

fij(x) = fij(x̂) +

∫ xi

x̂i

∂

∂ξi
fij(ξi, {xk}k∈E+v )dξi ≥ fij(x̂) = sj(x̂j) = sj(xj)

where the inequality holds again by monotonicity since
∂fij(x)

∂xi
≥ 0. Thus fij(x) <

sj(xj) and fij(x) ≥ sj(xj), once again a contradiction. Therefore, if Rijdi(xi) > sj(xj),

then fij(x) = sj(xj).

In conclusion, fij(x) = min{Rijdi(xi), sj(xj)} for all x, and thus in particular for x∗.

For the supply control computed according to (19), we have (recall Rij = Ru
ij for all (i, j)

and αi = 1 since τi = v is a diverge, so that di(·) = dui (·))

fij(x
∗) = min{Rijdi(x

∗
i ), sj(x

∗
j)} = min{Ru

jid
u
i (x
∗
i ), s

u
j (x
∗
j), y

∗
ij}

Then, the constraints in (16) yield y∗ij ≤ Ru
ijd

u
i (x
∗
i ) and y∗ij ≤ suj (x

∗
j), thus establishing that

fij(x
∗) = y∗ij, for all j ∈ E+

v .

We end this subsection by considering a restriction of case (II), where the demand and

supply functions cannot be controlled over a subset of cells Eu, i.e., αi ≡ 1 and βi ≡ +∞ if

i ∈ Eu. For simplicity, we again focus on the case where each node is either a merge or a

diverge. In this case, the equilibrium selection problem under partial control can be written

as

min
(x,y)∈F

Ψ(x)

s.t. yij = suj (xj), ∀j ∈ Eu, {i} = E−j , σj is diverge (19)

yij = dui (ρi), ∀i ∈ Eu, {j} = E+
i , τi is merge

Observe that the feasible set of (19) is a subset of the feasible set of (17). Therefore,

in general, a solution of (19) will have a greater cost in comparison to the solution of (17).
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The possibility of implementing the optimal solution (x∗, y∗) of the original optimization in

(17) using partial control is left to future study. The constraints of the type yij = suj (xj)

and yij = dui (xi) are convex only if suj (·) and dui (ρi) are affine. This condition is satisfied for

the standard linear demand and affine supply functions as in (3) and (4) respectively. The

following result is the analogous of Proposition 4 for the partial control case. The proof,

which relies on setting the control signals α and β as in (19), is omitted.

Proposition 5. Consider a monotone dynamical transportation network where the demand

functions dui (·) and supply functions sui (·), as well as the inflow vector λ and the uncontrolled

turning preference matrix Ru are all time-invariant. In addition, assume that each node is

either a merge or a diverge, and that demand and supply functions on uncontrolled cells are

affine. Let (x∗, y∗) be an optimal solution of (19). Set time-invariant demand controls αi,

supply controls βi, and matrix of turning preferences R, as in (19). Then x∗ is a stable

equilibrium for the controlled dynamical transportation network.

4.2. Optimal control

In this subsection, we study the problem of optimal control for dynamical transportation

networks. We consider the general case where uncontrolled supply functions sui (ρi, t) and

demand functions dui (ρi, t), as well as the inflow vector λ(t) and the turning preference matrix

R(t) are Lipschitz continuous functions of time. Throughout, we shall discuss the control

strategy corresponding to case (I), where we allow control of turning preference matrix and

speed limits. The strategy corresponding to case (II) of controlling speed limits and supply

function, can be developed in a totally analogous way, and is therefore omitted.

The optimal control framework of this subsection can be used as a basis for model

predictive control strategy for dynamical transportation networks, e.g., see Hegyi et al.

(2005), as follows. The network state ρ0 = ρ(t0) is observed at some initial time t0 and the

future arrival rate λ(t) over some interval [t0, t0 +H] is estimated, possibly using historical

information. It is desired to compute control actions which can be applied in an open loop

fashion from t0 to t0 + H (or earlier), at which point new observations and estimations

are made and the process is repeated. Notice that, in standard model predictive control
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(MPC), the control is only applied in the interval [t0, t0 + H ′), for some H ′ < H, and then

it is recomputed for the next horizon [t0 +H ′, t0 +H ′ +H]. For the sake of simplicity, and

without loss of generality, in this paper we consider the case when H ′ = H. Analogous to

(16), let FH(t0, ρ0) be the set of triple (x(t), y(t), t) ∈ RE+×RE×E+ × [0, H) that are continuous

in t and satisfy the following constraints∑
i

yij(t) ≤ suj (xj(t), t) ∀j ∈ E , t ∈ [t0, t0 +H)

yij(t) ≤ Ru
ij(t)d

u
i (xi(t), t) ∀i 6= j ∈ E , t ∈ [t0, t0 +H)

ẋj =
∑
i

yij −
∑
i

yji ∀j ∈ E \ (R∪Ro), t ∈ [t0, t0 +H)

ẋj = λj −
∑
i

yji ∀j ∈ R, t ∈ [t0, t0 +H)

ẋj ≤
∑
i

yij − duj (xj, t) ∀j ∈ Ro, t ∈ [t0, t0 +H)

x(t0) = ρ0

(20)

We consider the following optimal control problem:

min
(x(t),y(t),t)∈FH(t0,ρ0)

∫ t0+H

t0

Ψ(x(s), s) ds (21)

where Ψ(·, t) is convex and strictly increasing in each component for every t ∈ [t0, t0 + H].

The cost function in (21) can be chosen to penalize the transient as well as the terminal

state. Possible examples are Ψ(x(s), s) =
∑

e Lexe(s), where Le is the length of cell e,

representing the total volume of vehicles in the network, or, as in evacuation problems,

Ψ(x(s), s) = −∑e∈Ro de(xe(s)) Li et al. (2014), aiming to maximize the total outflow from

the network in the given time horizon.

Remark 4. Problem 21 is a convex problem in a set of continuous functions, as can be

easily seen using concavity of demand and supply functions, and linearity of the derivative

operator. However, since the variables are taken from an infinite dimensional space, its

solution is not as straightforward as in the stationary case. A simple strategy, which we use

in our simulations in Section 5, is to discretize the time with a small enough step size ∆t.

A first order discretization can be easily seen to maintain the convexity properties because
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expressions such as ẋj are replaced with
xj(t+∆t)−xj(t)

∆t
. After discretization, the variables of

the problem are xi(k∆t) for all i ∈ E and yij(k∆t) for all (i, j), and all integer k ∈ [0, H
∆t
−1].

The following results state that FH(t0, ρ0) contains all the trajectories starting at t0

with initial condition ρ0, and conversely that there exist control signals such that a solution

{(x∗(t), y∗(t), t) : t ∈ [t0, t0 +H)} of (21) is a feasible trajectory for the controlled dynamical

transportation network. The proof is very similar to the proof of Lemma 3 and Proposition 3,

and is therefore omitted. In particular, the control signals in Proposition 6 are to be set

according to the following, for all t ∈ [t0, t0 +H):

αi(t) =


∑

k∈E+
i
y∗ik(t)

dui (x∗i (t))
, if x∗i (t) 6= 0

0, if x∗i (t) = 0

∀i ∈ E \ Ro

Rij(t) =


y∗ij(t)∑

k∈E+
i
y∗ik(t)

, if
∑

k∈E+i y
∗
ik(t) 6= 0

0, if
∑

k∈E+i y
∗
ik(t) = 0

∀i, j ∈ E \ Ro, i 6= j

βi(t) ≡ +∞, ∀i ∈ E \ R .
Lemma 4. Consider a dynamical transportation network where the uncontrolled demand

and supply, as well as the inflow vector and the uncontrolled turning preference matrix are

Lipschitz continuous functions of the time. If {ρ∗(t) : t ∈ [t0, t0 + H)} is a trajectory of

the system with initial condition ρ∗(t0) = ρ0, then {(ρ∗(t), f ∗(t), t) : t ∈ [t0, t0 + H)} ∈
FH(t0, ρ0), where f ∗(t) = {fij(ρ∗(t))}i,j∈E .

Proposition 6. Consider a dynamical transportation network where the uncontrolled de-

mand and supply, as well as the inflow vector and the uncontrolled turning preference matrix

are Lipschitz continuous functions of the time. Let {(x∗(t), y∗(t), t) : t ∈ [t0, t0 + H)} be a

solution of the optimization (21). Set the piecewise continuous time-varying demand controls

αi(t), controlled turning preference matrix R(t), and supply controls βi(t), as in (22). Then

αi(t)Rij(t) ≤ Ru
ij(t) for all i, j, and {x∗(t) : t ∈ [t0, t0 + H)} is a trajectory in free-flow for

the controlled dynamical transportation network.

Finally, optimal control over a fixed time horizon can be easily recast as periodic trajec-

tory selection. Indeed, let inflows and turning preference matrix be periodic of period T ,
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i.e., λ(t) = λ(t+T ) and R(t+T ) = R(t) for all t ≥ 0. In this case, let FT be given as in (20)

with t0 = 0, H = T and where the last equality constraint is replaced with x(0) = x(T ). The

periodic trajectory selection problem can be formally defined in the same way as (21), and

a solution is again provided by Proposition 6, setting t0 = 0 and H = T . In this case, the

solution is a periodic trajectory for the controlled system with period T , whose stability can

be studied using the tools provided by Proposition 2. The difference between the two cases is

that while optimal control is a on-line feedback strategy that relies on measurements of the

actual state of the network to compute the controls, the periodic trajectory selection problem

can be solved off-line and the corresponding controls can be applied in open-loop. As such,

it can be seen as an appealing solution to find optimal controls on the basis of periodic daily

or weekly data, as an alternative to standard strategies in which each day is partitioned into

different time periods, such as the classical night-commuting-afternoon-commuting cycle,

for each of which static controls are computed.

5. Simulation Studies

In this section, we illustrate the theoretical findings of Sections 3 and 4 with simulation

studies performed on a transportation network loosely inspired by the freeway system in

the southern region of Los Angeles. In particular, the network that we chose consists of the

state routes 91 and 46, and interstate highways I-110, I-710 and I-405, as shown in Fig. 5.

Along with the main lines of the freeway system, the network consists of several on- and

off-ramps, e.g., see the right panel of Fig. 5. We consider only a subset of actual ramps for

the sake of illustration.

Every combination of on- and off-ramp is represented by three cells: the two ramps,

and a section of the main line between the ramps. Consistent with the real network, the

off-ramp is always located before the on-ramp. For example, the on- and off-ramps of I-405

at Carson St are represented by the cells 57-84-58 in the northbound direction, and 59-85-

60 in the southbound direction. In addition to actual on- and off-ramps, sections of the

main lines that arrive to or depart from the transportation network under study are also

considered as on- and off-ramps, respectively. For example, cells 1 and 12, though being
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part of the mainline of I-110, will be considered as on- and off-ramps, respectively. Finally,

interconnections between main lines are represented by a set of merge and diverge nodes.

For example, the interconnection between state route 91 and I-110 is represented by the tail

and head nodes of cell 69. Overall, the network under study consists of 91 cells, including

22 on-ramps and 22 off-ramps.
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Figure 5: Left: map of the area of interest in the southern Los Angeles region, with the portions of state

routes and interstate freeways that are used for our simulation study, shown in blue. Right: the corresponding

directed graph representation.

Remark 5. As mentioned in Remark 1, in this section we interpret the state ρe(t) of the

cell e as the volume of vehicles on e at time t, rather then its density. As such, demand and

supply functions need slight modifications. In particular, the network parameters are selected

as follows. For every cell, we use time-invariant linear demand functions de(ρe) = ve
Le
ρe and

affine supply functions se(ρe) = we

Le
(Be−ρe), where Le is the length, ve is the free-flow speed,

we is the wave-speed, and Be is the jam volume of cell e. The values of these parameters are

adapted from the PeMS website Choe et al. (2001), and summarized in Table 1.
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Type of cell L v w B/L

Main line 2 mi 65 mph 13 mph 200 veh/mi

Intersections of main lines 0.2 mi 65 mph 13 mph 500 veh/mi

Segments between ramps on main lines 0.5 mi 65 mph 13 mph 200 veh/mi

On- and off-ramps 0.5 mi 25 mph 13 mph +∞/200 veh/mi

Table 1: Values of lengths, free-flow speed, wave speed and jam density for different types of cells used in

the simulation.

We let the inflow on actual on-ramps be λ = 2 vehicles per minute, and that on-ramps

corresponding to the main lines entering from the external world be λ = 20 vehicles per

minute. The turning preference matrix is also time-invariant, and for every node with

multiple outgoing cells, it is chosen so that Rij = 0.1 if j is an actual off-ramp, and 1−Rij is

split uniformly between the remaining outgoing cells. For example, R69,2 = R69,12 = R69,14 =

R69,20 = 0.25, whereas R18,53 = 0.1 and R18,74 = 0.9.

Finally, the continuous-time system (1) is discretized with a first-order Euler method with

step size ∆t = 10 seconds, which is sufficiently small to satisfy the Courant-Friedrichs-Lewy

condition maxe
ve∆t
Le
≈ 0.9 ≤ 1 Work et al. (2010); LeVeque (1992).

5.1. Stability of free-flow equilibrium and response to traffic incidents

We first report results to illustrate the stability of dynamical transportation networks

under non-monotone policies. In particular, we compare the performance under the mixture

model from Example 4 for (i) θ = 0, which corresponds to the non-FIFO policy in Example 3;

(ii) θ = 1, which corresponds to the FIFO policy in Example 2; and (iii) θ = 0.8. We run two

sets of simulations: in the first set, we investigate the effect of θ on stability of equilibrium

ρ∗, as suggested by Remark 3, and in the second set, we investigate the ability of the network

to respond to traffic incidents for different θ.
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5.1.1. Stability of free-flow equilibrium under non-monotone policies

One can show that, independent of θ ∈ [0, 1], there exists a free-flow equilibrium ρ∗ with

ρ∗e = d−1
e (f ∗e ) with f ∗ = (I −RT )−1λ.

In order to investigate stability of ρ∗, we consider trajectories starting from ρ(0) = 0,

ρ(0) = 3ρ∗, and ρ(0) = B, except ρe(0) = 100 vehicles if e is an on-ramp. The results are

shown in Fig. 6 and Fig. 7. In Fig. 6, we show the evolution of the volumes of vehicles, ρe,

only on cells 1, 27, 54 and 84 (for the sake of brevity in presentation) for θ = 0, i.e., under

the non-FIFO policy in Example 3. These results illustrate the global asymptotic stability

result of Theorem 2.

In Fig. 7, we show the evolution of ‖ρ(t)− ρ∗‖1 under non-FIFO and FIFO policies, i.e.,

for θ = 0 and θ = 1, comparing evolutions with initial conditions ρ(0) = 0 and ρ(0) = 3ρ∗

(left panel), and ρ(0) = 0 and ρ(0) = B (right panel). These results illustrate Remark 3.

Indeed, while in the former case the network under both policies converges to the free-flow

equilibrium, thus illustrating global asymptotic stability under non-monotone policies, in the

latter the large initial condition prevents the non-monotone FIFO policy to steer the network

to equilibrium. In fact, on the contrary, the trajectory of the system under FIFO policy grows

unbounded, thus numerically showing that non-monotone policies cannot guarantee global

asymptotic stability of the free-flow equilibrium for general networks, as already discussed

in Example 6.

5.1.2. Response to traffic incidents

We considered a congestion scenario in which a bottleneck is present since t = 0 on cell

27, modeled by reduction of the free-flow speed from v27 = 65 mph to v27 = 4 mph. As a

consequence, the flow capacity on cell 27 drops to C27 = 10 vehicles per minute. We plot the

resulting evolution of
∑

e∈E ρe(t), i.e., the total number of vehicles in the system for θ = 0,

θ = 1 and θ = 0.8 for initial condition ρ(0) = 0, in Fig. 8. In Fig. 9, we plot the evolution

of ‖ρ1(t) − ρ2(t)‖1 where ρ1(t) and ρ2(t) are the evolutions for initial conditions ρ1(0) = 0

and ρ2(0) = B, except ρ2,e(0) = 100 vehicles if e is an on-ramp.

First of all, under non-FIFO policy, it can be seen that the bottleneck on cell 27 causes
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Figure 6: Evolution of the trajectories of the dynamical transportation network starting from ρ(0) = 0

(solid), and ρ(0) = 3ρ∗ (dashed), where ρ∗ is the free-flow equilibrium, under the non-FIFO policy in

Example 3. For brevity, we show evolution of volumes of vehicles only on cell 1, 27, 54 and 84.
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Figure 7: Evolution of ‖ρ(t)− ρ∗‖1 for the dynamical transportation network under θ = 0 (top) and θ = 1

(bottom), for initial condition ρ(0) = 3ρ∗ (left panel) and ρ(0) = B, except ρe(0) = 100 vehicles if e is an

on-ramp (right panel).

the cells 27 and 84 to be congested at equilibrium, namely, their inflows to be bounded by

their supplies. Congestion is however limited to these cells and does not spread in the rest

of the network. This phenomenon is due to the fact that under such a policy vehicles that

cannot proceed along the preferred path are rerouted towards off-ramps or other freeways.
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Figure 8: Evolution of the total number of vehicles,
∑

e∈E ρe(t) after the introduction of bottleneck on cell

27 at t = 0, causing its capacity to drop to C27 = 10 vehicles per minute, for θ = 0 (solid), θ = 1 (dotted)

and θ = 0.8 (dashed). All the trajectories start from ρ(0) = 0.

0 500 1000 1500 2000
0

1

2
x 10

4

Time t [min]

||
ρ
1
(t
)
−
ρ
2
(t
)|
| 1

Non−FIFO

0 500 1000 1500 2000
0

5

10
x 10

4

Time t [min]

||
ρ
1
(t
)
−
ρ
2
(t
)|
| 1

FIFO

0 500 1000 1500 2000
0

1

2
x 10

4

Time t [min]

||
ρ
1
(t
)
−
ρ
2
(t
)|
| 1

Mixed

Figure 9: Evolution of ‖ρ1(t)− ρ2(t)‖1 for the dynamical transportation network under θ = 0 (top), θ = 1

(middle), and θ = 0.8 (bottom), where ρ1(t) and ρ2(t) are the evolutions of the volumes of vehicles with

initial conditions ρ1(0) = 0 and ρ2(0) = B, except ρ2,e(0) = 100 vehicles if e is an on-ramp, respectively.

In this case, vehicles on cell 26 are rerouted to off-ramp 57 instead of entering the congested

cell 84. The network therefore does not become unstable due to the bottleneck, and the

system reaches a new non free-flow equilibrium. Since it can be shown by inspection that
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the dual graph is rooted, such a non free-flow equilibrium is globally asymptotically stable

by Proposition 2.

Conversely, under FIFO policy vehicles are constrained to follow the turning preference

matrix and to form queues when they encounter congestion. Since cell 27 cannot accept the

flow prescribed by the turning preference matrix, which is given by f ∗27 = [(I −RT )−1λ]27 ≈
15 > 10 = C27 vehicles per minute, congestion spills back upstream until it reaches the

on-ramps, on which vehicles queue up unbounded, see Figure 8.

Finally, although most of the vehicles tend to follow the fixed turning preference matrix,

the system is stable under mixed policy too, and moreover both evolutions starting with

empty and congested networks reach the same equilibrium (lower panel, Figure 9). The

consequence of the reduced flexibility with respect to the pure non-FIFO policy can be

finally observed in terms of total volume of vehicles in the network at equilibrium, which is

higher in case of mixed policies, see Figure 8.

5.2. Equilibrium selection

We now report simulation results to illustrate the findings from Section 4.1. We consider

the same setup as in Section 5.1.2 involving introduction of bottleneck on cell 27 at t = 0.

In the present case, we consider the possibility of introducing controls in response to this

incident. We consider controls of type (I). The cost function is assumed to be Ψ(ρ) =∑
e∈E ρe, i.e., the total number of vehicles at the new equilibrium. The evolution of the

system under controlled and uncontrolled cases is shown in Fig. 10.

By inspecting the optimum control signals, it can be seen that R72,36 = 0, namely, the

optimal control prevents vehicles from taking the 26-84-27 branch of I-405, consequently

avoiding the bottleneck on cell 27. Fig. 10 shows improvements in network performance

at the new equilibrium after the traffic incident, under the proposed control in comparison

to the uncontrolled case. In particular, the controlled equilibrium does not exhibit high

congested volumes of vehicles and its asymptotic total volume is reduced by a factor of

around 4 with respect to the uncontrolled equilibrium.
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Figure 10: Simulation with bottleneck on cell 27 and corresponding capacity drop to C27 = 8. Left panel:

trajectory of the uncontrolled (solid line) and uncontrolled (dashed line) volumes of vehicles on cells 1, 26,

27, 84 with initial condition ρ(0) = 0. Right panel: trajectory of the total volume of vehicles in the network.

5.3. Optimal control

We now report simulation results to illustrate the findings from Section 4.2. We consider

the setup of Section 5.1.1, where there is no bottleneck on cell 27. We consider the evolution

of system trajectory starting from initial condition ρe(0) = B/2 vehicles for all e ∈ E , except

ρe(0) = 50 vehicles if e is an on-ramp, and solve the optimal control problem in (21) for

H = 5 minutes, with the cost function being
∑

e∈E
∫ H

0
ρe(s) ds.

The solution of this optimization is used to control the system as follows. At t = 0,

the control is computed for the horizon [0, H], and executed over [0, H]. At time H, the

optimization is solved again to compute control over [H, 2H]. The procedure is repeated

over a period of 3 hours, namely, up to [35H, 36H]. Increasing the horizon to, say H = 30

minutes, would yield better performance, but it would also increase the computational cost

of finding the optimal control. The evolution of the cost for the trajectory for uncontrolled

and controlled systems is shown in Fig. 11. As in the case of equilibrium selection, the

controlled system performs significantly better than the uncontrolled one.

6. Conclusions

We considered dynamical transportation networks, where the dynamics are governed

by the demand and supply functions on cells that relate densities and flows, merging and
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Figure 11: Optimal trajectory selection. Sum of the trajectories of the uncontrolled (solid line) and uncon-

trolled (dashed line) systems with initial condition ρe(0) = B/2 vehicles for all e ∈ E , except ρe(0) = 50

vehicles if e is an on-ramp.

splitting rules at junctions, and inflows at on-ramps. In particular, this framework includes

extensions of the classical Cell Transmission Model to arbitrary network topologies. We

provide sufficient conditions for stability of equilibria and periodic orbits for such networks,

in terms of the connectivity of a state-dependent dual graph. We also formulated an optimal

control synthesis problem, and identified sufficient conditions under which this formulation

is convex.

Future research directions include generalization of the results in this paper to non mono-

tone dynamics, as suggested by Remark 3, robustness analysis along the lines of our previous

work Como et al. (2013a,b), and developing scalable implementations of the optimal control

solutions.
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AppendixA. Nonlinear dynamical sytems

In this brief appendix, we gather some basic concepts and definitions from nonlinear

dynamical systems. We refer to Khalil (2002) for a thorough treatment. A dynamical
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system with state x ∈ X is a system of the type

ẋ = g(t, x) . (A.1)

If g(t, x) = g(x) does not depend on time, the system said to be autonomous and the

evolution does not depend on the initial time. Otherwise, the system is said to be non-

autonomous.

An element x∗ ∈ X is an equilibrium for (A.1) if g(x∗, t) = 0 for all t ≥ t0, so that the

solution with initial condition x∗ is such that x(t) = x∗ for all t ≥ t0. A solution x(t) is a

nontrivial periodic solution if there exists T > 0 such that x(t+ T ) = x(t) for all t ≥ t0. A

solution x(t) is converging if lim
t→+∞

x(t) ∈ X exists.

For an autonomous system, an equilibrium x∗ is

• stable, if, for each ε > 0, there exists δ(ε) > 0 such that

||x(t0)− x∗|| < δ ⇒ ||x(t)− x∗|| < ε,∀t ≥ t0

for some norm || · || in X ;

• locally asymptotically stable, if it is stable and there exists δ > 0 such that

||x(t0)− x∗|| < δ ⇒ lim
t→∞

x(t) = x∗

• globally asymptotically stable, if it is stable and, for any x(t0) ∈ X

lim
t→∞

x(t) = x∗

For an autonomous system, a periodic trajectory xp(t) with xp(t + T ) = xp(t) for all

t ≥ t0 is

• stable, if, for each ε > 0, there is δ = δ(ε) such that

||x(t0)− xp(t0)|| < δ ⇒ ||x(t)− xp(t)|| < ε,∀t ≥ t0

for some norm || · || in X ;
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• locally asymptotically stable, if it is stable and there exists δ > 0 such that

||x(t0)− xp(t0)|| < δ ⇒ lim
t→∞
||x(t)− xp(t)|| = 0

• globally asymptotically stable, if for any x(t0) ∈ X

lim
t→∞
||x(t)− xp(t)|| = 0

AppendixB. Technical results

AppendixB.1. `1 contraction principle

The next result is a simple adaptation of the `1 contraction principle for monotone

dynamical systems with mass conservation that is proven in Como et al. (2014).

Lemma 5. Let g : Rm
+ × R+ → Rm, (x, t)→ g(x, t) be a Lipschitz map such that

∂

∂xj
gi(x, t) ≥ 0 , ∀ i 6= j ∈ {1, . . . ,m},∀t ≥ 0 (B.1)

and that ∑
1≤i≤m

∂

∂xj
gi(x, t) ≤ 0 , ∀ j ∈ {1, . . . ,m} (B.2)

for every x ∈ Rm
+ , t ≥ 0. Then∑
1≤i≤m

sgn (xi − yi) (gi(x, t)− gi(y, t)) ≤ 0, ∀x, y ∈ Rm
+ , t ≥ 0 . (B.3)

AppendixB.2. Proof of Lemma 2

Let ρ(1)(·) and ρ(2)(·) be two solutions of (1) starting at time t with initial conditions

ρ(1)(t) = ρ(1) and ρ(2)(t) = ρ(2), and assume H(ρ(1), t) to be rooted. Let

ρc = ρ(1) − ε

||ρ(1) − ρ(2)||1
(ρ(1) − ρ(2))

for ε > 0 small enough. Then it holds

||ρ(1) − ρc||1 = ε

||ρ(1) − ρ(2)||1 = ||ρ(1) − ρc||1 + ||ρc − ρ(2)||1
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Let ρc(·) be the solution of the system starting at time t with initial condition ρc, namely

ρc(t) = ρc. Then by the triangle inequality and Theorem 1,

||ρ(1)(t+ h)− ρ(2)(t+ h)||1 ≤ ||ρ(1)(t+ h)− ρc(t+ h)||1 + ||ρc(t+ h)− ρ(2)(t+ h)||1
≤ ||ρ(1)(t+ h)− ρc(t+ h)||1 + ||ρc − ρ(2)||1
= ||ρ(1)(t+ h)− ρc(t+ h)||1 + ||ρ(1) − ρ(2)||1 − ||ρ(1) − ρc||1

so (recall that ρ(1)(t) = ρ(1) and ρc(t) = ρc)

||ρ(1)(t+h)−ρ(2)(t+h)||1−||ρ(1)(t)−ρ(2)(t)||1 ≤ ||ρ(1)(t+h)−ρc(t+h)||1−||ρ(1)(t)−ρc(t)||1

hence d
dt
||ρ(1)(t)− ρ(2)(t)||1 < 0 if we prove that d

dt
||ρ(1)(t)− ρc(t)||1 < 0, namely, that∑

i

sgn
(
ρ

(1)
i − ρci

)
(gi(ρ

(1), t)− gi(ρc, t)) < 0 .

To this aim, for A ⊆ E , put Ac := E \ A, and gA(z) :=
∑

i∈A gi(z). Let I = {i : ρ
(1)
i > ρci},

J = {i : ρ
(1)
i < ρci}. Let ξ ∈ S be such that ξi = ρ

(1)
i for i ∈ I and ξi = ρci for i ∈ Ic.

Consider the segments γI from ρc to ξ and γJ from ρ(1) to ξ. For A ⊆ E , and B ∈ {I,J },
define the path integral

ΓAB :=

∫
γB

∇gA(z) · dz .

Then

gI(ρ
(1))− gI(ρc) = ΓII − ΓIJ = −ΓI

c

I + ΓEI − ΓIJ (B.4)

gJ (ρ(1))− gJ (ρc) = ΓJI − ΓJJ = ΓJI + ΓJ
c

J − ΓEJ . (B.5)

It thus holds true∑
i

sgn
(
ρ

(1)
i − ρci

)
(gi(ρ

(1), t)− gi(ρc, t)) = gI(ρ
(1))− gI(ρc)− gJ (ρ(1)) + gJ (ρc)

= −ΓI
c

I − ΓIJ − ΓJI − ΓJ
c

J + ΓEI + ΓEJ

where notice that by monotonicity ΓI
c

I ≥ 0, ΓIJ ≥ 0, ΓJI ≥ 0 and ΓJ
c

J ≥ 0, and that since,

for any ρ ∈ S,
∑

i∈E gi(ρ, t) =
∑

i∈R λi −
∑

i∈Ro di(ρi), then ΓEI ≤ 0 and ΓEJ ≤ 0.
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Let ε > 0 be small enough so that H(ρ, t) = H(ρ(1), t) for all ρ ∈ γI ∪ γJ . Moreover,

let E be partitioned as E = E1 ∪ E2 ∪ . . . Er, and the sets Ek be defined iteratively as follows:

E1 = Ro, the set of offramps. Let E1, . . . , Ek be given. Ek+1 is the set of all j ∈ E such that

there exists i ∈ Ek and (j, i) is an edge of H(ρ(1), t), but (j, e) is not an edge of H(ρ(1), t) for

all e ∈ El, l < k. Since H(ρ(1), t) is rooted, E1 ∪ E2 ∪ . . . Er is indeed a partition of E . Then

• if ρ
(1)
i 6= ρci for some i ∈ E1, then at least one among ΓEI and ΓEJ is strictly negative;

• assume that ρ
(1)
i = ρci for all i ∈ E1 ∪ · · · ∪ Ek−1 and ρ

(1)
i 6= ρci for some i ∈ Ek. Then,

by the rooted assumption, at least one among ΓI
c

I and ΓJ
c

J is strictly positive.

In both cases,
∑

i sgn
(
ρ

(1)
i − ρci

)
(gi(ρ

(1), t)− gi(ρc, t)) < 0 as required.
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