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Abstract— This paper addresses the problem of Optimal
Sensor Placement in Road Transportation Networks. The per-
formance of the sensors is measured in terms of estimation
error covariance of the Best Linear Unbiased Estimator of
cumulative flows in the network over a long period. Sensors
are to be placed in such a way that the sum of the error
covariance and of a cost penalizing the number of sensors is
minimized. The problem, inherently combinatorial, is relaxed
using the concept of Virtual Variance. The resulting problem
can be cast as a convex problem, whose computational load is
much lower than the original combinatorial problem. Several
variations are discussed, and the algorithm is applied to a
regular grid network, for which an explicit comparison with
the true optimum is offered, and, using data from the Grenoble
Traffic Lab sensor network, to the real-world scenario of
Rocade Sud in Grenoble, France.

Index Terms— Road Transportation systems; Flow recon-
struction; Convex relaxation; Sensor placement.

I. INTRODUCTION

In the last decades the increase of the number of passenger
and commercial vehicles, unmatched by a parallel extension
of roads infrastructures, has steered several crucial highways
and arterial roads towards a state of near saturation and has
caused, as a consequence, the emergence of periods of highly
congested traffic on a daily basis [1]. Traffic congestion is
responsible for the increase of travel times and for stop-
and-go and other oscillatory phenomena, leading in turn
to decreased safety, economical losses, and environmental
and psychological hazards in terms of pollution and road
rage [2]. Standard practice to solve congestion problem, by
augmenting road capacity through extension or construction
of highways and other arterial roads, is often infeasible due
to physical constraints, roads passing through densely built
up areas, and social opposition. Among alternative solutions,
Intelligent Transportation Systems (ITSs) are expected to
provide better and more robust techniques for real-time
monitoring, prediction and actuation of traffic networks via
exploitation of recent technological and theoretical advance-
ments.

Of paramount importance is Transportation Network mon-
itoring, meant as the ability to reconstruct the state of the
network. Such an information is fundamental in ITSs as
it is used to forecast traffic evolution, to inform drivers in
real-time through navigation systems, to provide statistical
information to public authorities to detect in a timely fashion
accidents and predict hazardous scenarios (such as, situations
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in which accidents are more frequent), and finally to compute
controls and to actuate the network through traffic lights,
ramp metering and speed limits, or, in the future, lane change
and origin-destination suggestions [3], [4], [5], [6].

A primary source of information on the state of the
network are fixed traffic detectors, namely, devices able to
measure density, flow and average speed of vehicles crossing
the section of the road where they are placed. Along with
other sources of information, such as Floating Car Data, the
measured quantities information can be used as inputs to
observers for traffic system, such as the one designed in the
companion paper [7].

Motivated by the importance of good quality monitoring,
in this paper we address the Optimal Sensor Placement prob-
lem, namely, the problem of finding the best location where
to physically place sensors. This is based on trading off
between two contrasting objectives: the first, to maximize the
performance of state reconstruction; the second, to minimize
the total economic cost of the network. In fact, due to the
considerable initial investment and planning efforts, as well
as expensive and time consuming maintenance to keep the
system performance above certain level, sensing networks
are required to be as sparse as possible.

The performance of the state reconstruction is usually
related to the ability to properly estimate the density of
vehicles in the roads. The latter is a time-varying quantity
whose dynamics can be represented via partial differential
equations models, such as the celebrated Lighthill-Whitham
and Richards (LWR) model [8], or via their discretizations,
as in the well known Cell Transmission Model [9], [10],
[11]. Unfortunately, density reconstruction is a hindered by
the complexity and nonlinearity of such macroscopic traffic
models. Furthermore, providing performance guarantees and
relate them to the topology of the traffic network and to the
position of the sensors is a very difficult task.

In order to simplify the setting, we consider the related
problem of reconstruction of flows in a static setting. In
particular, we consider as performance metric the error
covariance of an estimator of the cumulative flows in the
network over a long period of time. The Optimal Sensor
Placement problem can be then seen as trading off between
the performance of such a flow estimator, and a cost that
depends on the dimension of the sensing network. Since
this is a combinatorial problem, we relax it using a method
that we call Virtual Variance algorithm, based on the idea
to associate to each sensor a virtual variance which is
large when the sensor is not needed for good reconstruction
of the flow vector. Interestingly enough, the only input



that the algorithm needs is the matrix of splitting ratios,
that prescribes how vehicles split at each junction, and the
nominal variance of each sensor. Furthermore, we discuss in
detail two extensions of the proposed algorithm dealing with
important scenarios. In the first, Optimal Sensor Placement
with Location constraints, we address the scenario in which
sensors cannot be placed in a subset of cells of the network.
In the second, Optimal Sensor Placement with Number of
Sensors constraints, we deal with the case in which the
maximum number of sensors is pre-specified, for example
due to budget limitations.

Optimal Sensor Placement is an ubiquitous problem that
has received a high degree of attention in several communi-
ties due to its importance for network design. Indeed, in fault
detection, its importance lies in the possibility to detect as
early as possible failure or malfunction of equipments [12],
and, in robotics, in the possibility to observe the system
with the highest possible precision [13]. In Transportation
Systems, it is of interest both in the dual-problem of best
placement of hubs for cost-efficient transportation of goods
and people [14] and Origin-Destination coverage [15], [16].
In these works, and differently from the present paper,
the problem is cast as a mixed integer problem which
corresponds to determine the minimal set of locations from
which the flows on the whole network can be determined,
and sensor measurements are assumed to be perfect.

The contributions of this paper are the following: 1) we
clearly formulate the problem of Optimal Sensor Placement
in terms of positions of sensors in a network when sensors are
noisy; 2) we describe the Virtual Variance algorithm and we
show how it can be regarded as a relaxation of the (combina-
torial) Optimal Sensor Placement problem; 3) we show the
prowess of the devised technique in two cases: a regular grid,
for which we offer a comparison between the solution found
with our approach and the true optimal placement, found by
exhaustive search, and a real-world scenario consisting of the
freeway “Rocade Sud” in Grenoble, France.

The rest of the paper is organized as follows: after present-
ing some notation, Section II formulates the Optimal Sensor
Placement problem. Section III presents a solution based on
the concept of Virtual Variance, while Section IV presents
our two numerical experiments. Finally, Section V draws the
conclusions and presents several future research directions.

A. Notation

The symbols Rn, Rn
+ and Rn×m denote the sets of real

valued vectors of dimension n, the set of positive real
valued vectors of dimension n, and of real valued matrices
of dimension n × m, respectively. The set Dn ⊂ Rn×n

denotes the set of diagonal matrices of dimension n × n.
A positive definite (positive semidefinite, negative definite,
negative semidefinite) matrix A ∈ Rn×n is denoted A > 0
(A ≥ 0, A < 0, A ≤ 0), and for A,B ∈ Rn×n A > B means
A − B > 0 (and similarly for ≥, <, ≤). The symbol RA
with A a finite set is to be interpreted as the set of vectors
indexed by elements of A. |A| denotes the cardinality of the
set A. The transpose of A ∈ Rn×m is denoted AT . The

symbols I and 1 denote the identity matrix and the all-one
vector of suitable dimensions, respectively.

A graph G is a couple (V, E) in which V is called the
set of nodes and E the set of edges. Edges are equipped
with two functions t : E → V and h : E → V , the head
and tail functions, respectively, such that e is though to the
directed edge between t(e) and h(e). We allow for parallel
edges, namely, edges having the same head and tail, but not
for loops, namely, edges whose head and tail coincide. A
path of length n ≥ 2 is a sequence of edges e1, . . . , en
that are consecutive, namely, such that h(ei) = t(ei+1) for
i = 1, . . . , n − 1. A path of length 1 is a path made of a
single link.

II. PROBLEM FORMULATION

We model a Transportation Network as a graph G =
(V, E), in which junctions v ∈ V are interfaces between
links, or cells, e ∈ E . Origin cells, which carry vehicles in
the network from the external world, and destination cells,
which on the contrary let vehicles exit the network, will be
referred to as onramps and offramps, respectively. We assume
that for every cell there are at least one path from an origin
to the cell, and a path from the cell to an offramp.

Let O ⊆ E and D ⊆ E denote the set of onramps and
offramps, respectively. Vehicles flow through the cells of
the network from their origin to their destination splitting
at each junction according to deterministic splitting ratios.
In particular, Rej ≥ 0 denotes the fraction of vehicles
that exiting from cell e want to enter into cell j. As such,∑

j Rej = 1 if e is not an offramp, and
∑

j Rej = 0
otherwise. We assume that the splitting ratios are fixed and
perfectly known, and we gather them in a matrix R =
[Rej ] ∈ Rn×n where n = |E|.

The next sections are devoted to deriving some properties
of the cumulative flows, to providing a simple linear model
for the flows, and to formalizing the problem that we address.

A. Flow linear constraints

Let f ∈ Rn
+ be the vector of cumulative flows, namely, the

total flow, through the links of the network over a period of
time [t0, t1], for example the total flow over a period of one
day. Let ρe(t) denote the density of vehicles in cell e at time
t, and `e the length of cell e. Then the definition of splitting
ratios yields the relation `eρ̇e(t) =

∑
j∈E Rjeφj(t) − φe(t)

for each non onramp cell, where here φe(t) denotes the
instantaneous flow through cell e. Integrating over [t0, t1]
yields fe =

∫ t1
t0
φe(s)ds and

`e(ρe(t1)− ρe(t0)) =
∑
j∈E

Rjefj − fe, e ∈ E \ O

Assume now that [t0, t1] is a long period of time and that at
both times t0 and t1 the number of vehicles in the network is
low, e.g., let t0 and t1 correspond to consecutive midnights.
Then the magnitude of the vector of differences of vehicles
{`e(ρe(t1) − ρe(t0)}e∈E\O is negligible compared with the



cumulative flows in the network, and the following matrix
relation holds approximately

L̄f ≈ 0 , (1)

where L̄ ∈ Rm×n, m = |E \ O|, is the matrix obtained
by removing from L = RT − I the rows corresponding to
onramps.

As already mentioned in the Introduction, estimation of
flows needs in principle to be coupled to a dynamical
model for densities to realistically monitor a Transportation
Network. Since it is however rather difficult to assess the
performance of the observer of the density, in the present
paper we simplify the problem by limiting our attention
to the estimate of a vector of cumulative flow satisfying
Eq. (1). As such, determining the best position of sensors
to maximize the performance of a static estimator flows is
considered in this paper as a proxy for the true problem
of placing the sensors to maximize the performance of the
estimator of the dynamic model.

B. Linear measurement model and the Optimal Sensor
Placement problem

We study in this section the performance of a linear
estimator of the cumulative flows, and we relate it with the
problem under analysis. Let Em ⊆ E be a generic set of
cells in which sensors are placed, and consider the following
simple linear measurement model

y = HEmf + η (2)

where
• ys is the measurement of the s-th sensor, namely fe+ηs

if the s-th sensor is located on link e;
• HEm ∈ {0,+1}p×n, p being the number of sensors,

with [HEm ]se = 1 if the s-th sensor is located on link
e, and [HEm ]se = 0 otherwise, so that HEm1 = 1 and
1THEm1 = p;

• η is a random noise vector with zero mean and covari-
ance matrix Σnom. For sake of simplicity, we assume
that noise components are independent with same vari-
ance σ2

nom, so that Σnom = σ2
nomI .

The first step in our analysis is to consider a matrix V ∈
Rn×r, r = rank{L̄}, whose columns are an orthonormal
basis of the right kernel of L̄T , i.e., L̄TV = 0 and V TV = I .
Since f belongs to the kernel of L̄ by Eq. (1), there exists
a vector z ∈ Rr such that f = V z. As a consequence, the
measurement model becomes

y = HEmV z + η . (3)

We consider a linear estimator ẑ = Kzy+ qz , Kz ∈ Rr×p

and qz ∈ Rr. The Best (minimum variance) Linear Unbiased
Estimator of z is then obtained solving

minKz,qz E[(z − ẑ)(z − ẑ)T ]
s.t. E[z − ẑ] = 0

ẑ = Kzy + qz

(4)

Standard and straightforward computations show that (4)
is equivalent to

minKz
KzΣnomK

′
z

s.t. KzHEmV = I
(5)

and qz = 0. The solution to the previous problem is

Kz = (V THT
EmΣ−1

nomHEmV )−1V THT
EmΣ−1

nom ,

with error covariance E[(z − ẑ)(z − ẑ)T ] =
(V THT

EmΣ−1
nomHEmV )−1. Consequently, the BLUE

estimator of f is

f̂ = Kfy = V (V THT
EmΣ−1

nomHEmV )−1V THT
EmΣ−1

nomy

and its error covariance is

Vp(Em) = E[(f − f̂)(f − f̂)T ]

= V (V THT
EmΣ−1

nomHEmV )−1V T .

The quantity Vp(Em) depends on the matrix of splitting
ratios and on the nominal variance of the sensors, two given
quantities, and on the positions of the sensors, namely on
Em. In the following, we use indeed Vp(Em) as a metric to
measure the performance of the placement Em. Clearly, with
no additional constraint, the optimal placement is simply to
equip every cell with a sensor. These devices, however, have
a non-negligible purchase and maintenance cost, which has
to be considered when designing a sensor network. In this
paper, we make the simplifying assumption that the cost of
a network over the lifetime of the network is proportional to
the number of sensors via a coefficient c > 0.

The problem that we want to address is the following
Optimal Sensor Placement problem

minEm trace {Vp(Em)}+ c|Em| (6)

The optimal solution of the previous problem trades off
between network performance, measured as the trace of the
estimator error covariance, and the total cost of the network:
while the former tends to increase the number of deployed
sensors, and also to position them properly, the latter aims
to reduce it as much as possible.

The problem is inherently combinatorial, and the optimal
positions of the sensors, namely, the optimal Em, is generally
hard to find, the problem becoming intractable even for very
low network dimensions. In this paper we propose a different
strategy, detailed in the next section, after a brief discussion
on the minimum required number of sensors.

C. On the minimum number of sensors

Before proceeding, we quickly prove that the minimum
number of sensors to estimate the vector of flows is equal to
the number of onramps of the system. Assume by relabelling
the cells that origin cells are the first 1, . . . , |O| cells. Then
the matrix L can be partitioned as

L =

[
−I 0
Lon Lnn

]
and notice that L̄ =

[
Lon Lnn

]
. Consider the dual graph

Gd = (Vd, Ed) in which Vd = E \ O and (e, j) ∈ Ed if



Lej 6= 0. Then it is easy to see that LT
nn is a sublaplacian

of Gd, namely, it is a Metzler matrix with
∑

j Lej ≤ 0. The
following result is adapted from [17].

Lemma 1: Let G = (V, E) be a graph and J ∈ RV×V be
a weighted sublaplacian of G. Then all the eigenvalues of
J have negative real part except possibly eigenvalues in 0.
Moreover, if S is the set of nodes v for which

∑
u Jvu < 0,

then J is Hurwitz if for every u there exists a directed path
in G from u to a node v ∈ S.

In our case, J = LT
nn and S is the set of cells directly

following an origin cell. Since by assumption for every cell
e there exists an origin j ∈ O and a path from j to e,
then there must also exist a k ∈ S and a path from k to
e, so that the assumptions of Lemma 1 are thus satisfied.
Therefore, Lnn is Hurwitz and thus invertible, and in turn L̄
is a full rank matrix, with rank m = |E \ O|, the number of
non-onramp cells, and its kernel has rank r = |O|, namely
rank {V } = r = |O|.

This can be interpreted in two ways:
• Assume that flow measurements of flows are perfect,

and that one wants to compute the vector of cumulative
flows by solving the system of equations{

L̄f = 0

fs(i) = φms(i), i = 1, . . . , p

where p flows in position s(1), . . . , s(p) have been
fixed (namely, measured through a sensor). Then if the
number of measured flows is less than |O| the system
is undetermined;

• Assume that measurements are noisy and the BLUE is
adopted to estimate the flows. Since rank {V } = r =
|O|, it is straightforward to see that if |Em| < |O|
(namely, if the number of sensors is less than |O|)
then rank

{
HT
EmΣ−1

nomHEm
}
< |O| = rank {V }, which

implies rank
{
V THT

EmΣ−1
nomHEmV

}
< |O|. Since

V THT
EmΣ−1

nomHEmV ∈ R|O|×|O|, the matrix is singular,
and the trace of the error covariance is unbounded.

III. RELAXATION VIA VIRTUAL VARIANCES

It is easy to realize that links in which sensors are not
present can be though of as links with sensors whose variance
is infinite. Indeed, if by convention we consider +∞ to be
an admissible variance, the previous problem is equivalent
to assigning a virtual variance σ2

e to each sensor, and decide
for which it should be σ2

e = σ2
nom, and for which it should

be σ2
e = +∞. With this interpretation, we can set Em = E ,

so that HEm = I .
Let Σ be the (diagonal) matrix of virtual variances, and let

the corresponding trace of error covariance be denoted, with
an abuse of notation, Vp(Σ). Our approach is based on the
intuitive idea that by increasing the variance on the sensors
that are not in the solution to Eq. (6) the quantity Vp(Σ)
does not increase much.

More formally, we consider thus the following problem

minΣ∈Dn
trace

{
V (V T Σ−1V )−1V T

}
+ f(Σ)

s.t. Σ ≥ Σnom
(7)

where f(Σ) is a decreasing function of the diagonal elements
of Σ. Notice that Σ is the optimization variable in (7): by
reducing the virtual variances, namely, the diagonal elements
of Σ, the trace of the error covariance decreases and the term
f(Σ) increases, and viceversa.

For sake of simplicity, let f(Σ) = 1T Σ−11. With the
change of variables Ω = Σ−1, Ω > 0 diagonal, and noticing
that trace

{
V (V T Σ−1V )−1V T

}
= trace

{
(V T Σ−1V )−1

}
by known properties of the trace and because V TV = I , we
obtain the following problem

minΩ∈Dn
trace

{
(V T ΩV )−1

}
+ γ1T Ω1

s.t. 0 ≤ Ω ≤ Σ−1
nom

(8)

Once a solution Ω is found, we obtain the solution of (7) by
Σ = Ω−1; then, we discard all links whose virtual variance
is above a certain threshold. We refer to this procedure as
the Virtual Variance algorithm. Notice that if the solution
provides high virtual variances at locations where sensors
are redundant then this is effectively a way to select the
most important cells where to place sensors.

This strategy is however not enough to solve the problem.
Indeed, numerical simulations have shown that the solution
of (8) often consists in distributing low virtual variances over
all sensors of the network, rather than keeping it low in some
of them and high in others.

In order to enhance diversity between sensors, we en-
rich the cost of the previous optimization problem with a
further term that penalizes homogeneity and is reminiscent
of works on dissensus (as opposed to consensus) in multi
agent networks. Our choice in this paper is the following:
let W ∈ Rn×n−1 be an orthonormal base of the subspace
orthogonal to 1. The additional considered term is then
proportional to e−1

TW∗Ω1, which is, as required, a function
that decreases as the diagonal elements of Ω become more
and more different one each other.

Following this idea, we propose the following optimization
problem to solve the original combinatorial problem

minΩ∈Dn
trace

{
(V T ΩV )−1

}
+

γ1T Ω1 + κe−1
TW∗Ω1

s.t. 0 ≤ Ω ≤ σ−2
nomI

(9)

which, notice, is convex in the diagonal entries of Ω. Here
γ, the total variance weight, and κ, the discrepancy weight,
are tunable parameters. In particular, notice that high γ
indirectly penalizes the number of sensors, thus yielding to
solutions with higher virtual variances at the expense of poor
performance. As already mentioned, the cells over which a
sensors is to be placed are those whose virtual variance,
computed via Σ = Ω−1, is below a certain threshold.
Numerical simulations have shown that the resulting virtual
variances are distributed in a highly bimodal way, the low and
the large ones being different by several orders of magnitude,
thus making easy to distinguish among the two groups.

A. Optimal Sensor Placement with Location constraints

It can be the case, due for example to physical constraints,
that some cells cannot be equipped with sensors. We show



in this section that the proposed approach can be adapted to
this case.

In particular, let Eam ⊆ E , |Eam| = k, be the subset of
available cells, and let HEam

∈ {0,+1}k×n be built as in
Section II-B. Then the following problem

minΩ∈Dk
trace

{
(V THT

Eam
ΩHEam

V )−1
}

+

γ1T Ω1 + κe−1
TW∗Ω1

s.t. 0 ≤ Ω ≤ σ−2
nomI

(10)

is (9) once we constrain sensors to be place on cells in Eam
only, and the diagonal entries of Ω are the inverse of the
virtual variances on the cells in Eam. The matrix W is defined
as in the previous section, but with suitable dimension (k ×
k−1). As in the general problem, cells are chosen only if the
corresponding virtual variance is below a certain threshold,
and clearly cells that are not in Eam cannot be chosen.

Remark 1: By the discussion in Section II-C, the mini-
mum number of sensors is r = |O|. As such, if |Eem| < |O|
the problem (10) is not well posed and the solution will only
have very high virtual variances. Clearly, such a solution is
not acceptable and should be discarded.

B. Optimal Sensor Placement with Number of Sensors con-
straints

The second scenario that we discuss consists in imposing
a constraint on the maximum number of chosen sensor, a
constraint that might come for example from hard budget
constraints.

We propose a solution based on the following iterative
approach:
• Initialization: set γ(0) and κ to chosen nonnegative

values; tmax to the maximum number of iterations;
nmax to the maximum number of sensors;

• At the t-th step
– Solve (9) with γ(t);
– If the Virtual Variance algorithm yields a solution

with number of sensors less than nmax, or if t ≥
tmax, stop;

– Otherwise, set γ(t + 1) = g(γ(t)), where g is an
increasing function of its argument, and iterate.

Since, as discussed in the previous sections, γ weights
the penalty to low variances, by iteratively increasing it the
solution to (9) tends to exhibit more and more high virtual
variances, thus reducing the selected number of sensors.

Remark 2: Again by the discussion in Section II-C, the
specified maximum number of sensors cannot be be less
than r = |O|. If this is not the case the algorithm either
does not find a solution and simply cycles until the last
iteration step tmax, or finds a solution with an extremely
high trace

{
(V THT

Eam
ΩHEam

V )−1
}

, which is due to the
fact that the number of sensors with small virtual variances
are less than r. As in the case discussed in Remark 1, such
a solution is not acceptable and should be discarded.

IV. NUMERICAL EXPERIMENTS

In this section we present the results of two numerical
experiments. In the first, we solve the problem of Optimal
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Fig. 1. The regular grid network used in the numerical experiment.
The green dots correspond to the 8 cells selected by the Virtual Variance
algorithm with γ = 2 and κ = 20. The red dots correspond to cells selected
via exhaustive search when the number of possible sensors is 8.

Sensor Placement in a small (but not trivial) regular grid
over which we run an exhaustive search, thus allowing
us to explicitly compare the result of the Virtual Variance
algorithm with the optimal solution; in the second, we apply
the procedure to the real-world case of the peri-urban freeway
“Rocade Sud” in Grenoble, France.

A. Regular grid

We consider the 25 cells regular grid illustrated in Fig-
ure 1. We assume that all sensors have a nominal variance
of σ2

nom = 1 and that the cost of each sensor is c = 1.
First of all, we solve by exhaustive search the problem

(6) for |Em| = 4, 5, 6, . . . , 21, considering for each possible
number of sensors all possible combinations of cells and
finding that which minimizes Vp(Em). Then, we run the
proposed Virtual Variance algorithm with total variance
weight γ = 2 and discrepancy weight κ = 20, setting the
lower threshold on the virtual variance for discarding a sensor
to Td = 100.

The results are shown in Figures 1 and 2. In the former,
we mark the 8 cells chosen by the Virtual Variance algorithm
with a green dot, and the optimal cells when the number of
possible sensors is 8 with a red dot. As it can be seen, both
procedures place the majority of the sensors at the boundary
of the network. The cost between the two solutions is not
very different, as it can be observed in Figure 2. Here, we
plot with crosses the cost V (h) = trace {Vp(h)} + ch for
h = 4, 5, 6, . . . , 21, where Vp(h) is Vp(Em) with |Em| =
h and Em is the optimal placement. The optimal trade off
between cost and performance is in this case 6, as further
increasing the number of sensors is not beneficial. The figure
also shows that the solution of the Virtual Variance algorithm
has 8 sensors, and plots as a circle the corresponding cost
trace {Vp} + 8c. As it can be seen, not only the Virtual
Variance algorithm finds a solution with a number of sensors
that is close to the true optimum, but also, for that number
of sensors, is able to place them almost in the optimal way.
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Fig. 2. Results of the exhaustive search and of the virtual variance
algorithm.

B. Rocade Sud

Our second experimental setting is the Grenoble Traffic
Lab (GTL) [18], a network of sensors deployed for monitor-
ing and research purposes along the “Rocade Sud”, a peri-
urban 12 km long freeway connecting the two highways A41
(north-west) to A480 (south-east) in the town of Grenoble in
the south of France, see Figure 3. The network consists in
135 magnetometers buried in the asphalt along the main line
of the freeway, on both lanes every 250 meters (on average),
on each onramp and offramp, and on three queues carrying
vehicles from the urban network to three onramps, totalling
68 sensing locations. For our purposes, each sensing location
will correspond to one sensor. For a detailed report on the
GTL, we refer to [18].

We partition the Rocade in cells in such a way each cell
includes one sensor; furthermore, and for sake of simplicity,
we do not consider onramps and offramp, limiting our atten-
tion to the main line of the Rocade Sud. The corresponding
network consists of 46 cells, and a stylized version of it is
shown in Figure 4. Notice that since we have sensors on all
lanes, the graph of the network is essentially made of several
groups of parallel edges.

To estimate the matrix of splitting ratios R, we considered
a period of data from the ten days 1st - 10th of April, 2014
(excluding the 5th and the 6th, weekend days), all typical
working days, during the six hours time period 6:00 - 12:00.
We gathered the cumulative measured flows in all 68 cells
and we used them to estimate the matrix R as follows: for
each junction v, let E−v and E+

v the incoming and outgoing
cells, respectively. Also, let f−v (d) and f+

v (d) be the vectors
of cumulative flows on the incoming and outgoing flows at
junction v for day d, namely, f−v (d) = [fe(d)]e∈E−v , and
analogously for f+

v (d). Let F−v = [f−v (1), . . . , f−v (8)] and
F+
v = [f+

v (1), . . . , f+
v (8)] be the collection in matrices of

such flows. Also let Rv ∈ RE−v ×E+v be the local matrix of
splitting rations, namely, let [Rv]ej be the splitting ratio of
cell e ∈ E−v towards cell j ∈ E+

v .

Fig. 3. The Grenoble Traffic Lab sensor network in Grenoble.

Then using Eq. (1) we have RT
v F
−
v ≈ F+

v , so we can cast,
for each v ∈ V , the problem of estimation of the matrix of
splitting ratios as the optimization problem

minRv ||RT
v F
−
v − F+

v ||2
s.t. Rv1 = 1

[Rv]ej ≥ 0,∀e ∈ E−v , j ∈ E+
v

(11)

Once this is done, the actual matrix of splitting ratios is
projected over a matrix consistent with the graph made of the
cells on the main line only, simply deleting rows and columns
corresponding to non-main line cells, and renormalizing the
rows of the resulting matrix in such a way that the row
sum is 1. Notice that in real application a pre-existing
sensor network is often unavailable. Possible alternatives
are field surveys with operators visually counting vehicles,
a technique commonly employed for calibration of traffic
software , or temporary non-invasive equipment such as radar
traffic detectors.

We did not run an exhaustive search due to the relatively
high dimension of the network, making it too heavy in terms
of computational load. Instead, we compare the results with
the locations of fixed loops installed for monitoring purposes
by the Government Agency Centre national d’information
routiére (CNIR) [19]. These loops are placed on the cells
marked with a red dot in Figure 4.

We run the Virtual Variance algorithm in three scenarios:
1) unconstrained scenario with total variance weight γ = 0.2
and discrepancy weight κ = 20; 2) unconstrained scenario
with γ = 1 and κ = 20; 3) constrained scenario with number
of sensors at most 10, initial γ = 0.2, and κ = 20. We
assume that σ2

nom = 1 and that the cost per sensor is c = 1.
The results are summarized in Figure 4 and Table I.

In the table we provide the optimal number of sensors
computed via the Virtual Variance algorithm, as well as the
corresponding estimator error covariance Vp(Em) and the
total cost V (Em) = Vp(Em) + c|Em|. In Figure 4, cells
found in the unconstrained scenario with γ = 0.2 are denoted
using a green dot. As can be seen in Table I, our algorithm
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Fig. 4. Stylized representation of the main line part of the Rocade Sud.
White ovals represents junctions of the graph. The selected positions of 17
fixed sensors by CNIR are marked by red dots, those and of 14 sensors by
the virtual variance algorithm by green dots.

Scenario γ
optimal

# sensors Vp(Em) V (Em)

Fix 17 3.8072 20.8072
Unconstrained 0.2 14 3.6867 17.6867
Unconstrained 1 8 5.6822 13.6822
Constrained, # ≤ 10 0.43 10 4.6703 14.6703

TABLE I
RESULTS OF THE FOUR CONSIDERED SCENARIOS.

requires 3 sensors less than the network deployed by CNIR,
while the error covariance increases only very slightly. In the
constrained scenario and in the unconstrained scenario with
high γ (which, as explained above, indirectly penalizes the
number of sensors), the error covariance Vp(Em) increases,
as expected. Interestingly, the chosen cells in the latter two
cases are subsets of the cells chosen in the unconstrained
case: in particular, in the constrained scenario all cells are
kept except 8, 11, 20 and 41, and in the unconstrained
scenario with high γ the algorithm further discards cells 17
and 20. Whether this is a feature of the present case study
or a more general property will be matter of investigation in
further research.

V. CONCLUSIONS

This paper addresses the problem of optimal placement
of sensors for reconstruction of flows in transportation net-
works. The problem, combinatorial by nature, is relaxed into
a convex problem using the concept of virtual variance.
Numerical studies show the prowess of the approach for
a regular grid network and for the freeway Rocade Sud in
Grenoble, France. Future research includes and is not limited
to 1) addressing the case of uncertain matrix of splitting
ratios, 2) providing theoretical guarantees on the robustness
of the proposed approach, such as, performance degradation
under sensor failure, and 3) considering different installation
and maintenance costs in different locations, resulting in cost
penalties that are higher in certain cells than in others.
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http://www.bison-fute.gouv.fr/.


