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Abstract— This paper addresses the problem of density re-
construction in traffic networks with heterogeneous information
sources. The network is partitioned in cells in which vehicles
flow from their origin to their destination. The state of the
network is represented by the densities of vehicles in each cell.
Density estimation is of crucial importance in future Intelligent
Transportation Systems for monitoring, control, and navigation
purposes. However, deploying fixed sensors for this purpose can
be very expensive. Therefore, most of fixed sensors networks
are rather sparse. On the contrary, recent technologies have
enormously increased the availability of relatively inexpensive
Floating Car Data. A data fusion algorithm is then proposed
to incorporate the two sources of information into a single
observer of density of vehicles. The efficiency of the proposed
algorithm is shown in a real scenario using data from the
Grenoble Traffic Lab fixed sensor network and INRIX Floating
Car Data on the Rocade Sud in Grenoble.

Index Terms— Road Transportation systems; Dynamical flow
network; Density reconstruction; Floating Car Data.

I. INTRODUCTION

The increase of the number of vehicles observed in the last
decades has not been matched by a comparable extension
of roads infrastructure, therefore steering crucial highways
and arterial roads towards a state of near saturation and
exhibiting on a daily basis periods of congested traffic [1].
Congestion causes in turn increased travel times and stop-
and-go phenomena, leading to decreased safety, economi-
cal losses, and environmental and psychological hazards in
terms of pollution and road rage [2]. Physical constraints
prevent extension or construction of highways and other
arterial roads, which, by increasing road capacity, have
been in the past a standard way to cope with congestion
problems. Built upon recent technological and theoretical
advancements, Intelligent Transportation Systems (ITSs) are
expected to provide better and robust techniques for real-time
monitoring, prediction and actuation of traffic networks.

This paper is devoted to studying the problem of esti-
mating road usage in terms of density of vehicles in a traffic
network. The latter is commonly considered a good represen-
tation of the state of the system, and it is of fundamental im-
portance for 1) forecasting travel time and traffic evolution,
along with historical data; 2) informing in real-time drivers
about the state of the network through navigation systems; 3)
providing public authorities with statistical data to monitor
the state of the network and predict dangerous scenarios;
4) computing and actuating control actions through traffic
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lights, ramp metering and speed limits, or, in the future, lane
change and origin-destination suggestions [3], [4], [5], [6].

The main tools to estimate, or reconstruct, the state of the
network are fixed sensors, such as induction loops or mag-
netometers. These devices are able to 1) count the number
of vehicles that cross a certain section of road, 2) provide an
estimate of the density of the group of vehicles that crossed
the section (more precisely, their occupancy, see Section IV),
and 3) measure their average speed. While the so obtained
measurements usually exhibit high performance, deployment
or extension of a sensing network requires considerable ini-
tial investment and maintenance. As a consequence, sensing
networks are usually designed to be as sparse as possible.
The problem of trading off between performance and cost is
called Optimal Sensor Placement problem, and it is the focus
of the companion paper [7]. In the present paper, conversely,
we assume that the sensors’ locations are given and fixed.

In recent times, the enormous spread of wireless devices
has opened possibilities for sensing and communication
unforeseeable up to few years ago. In particular for the
traffic application, any vehicle equipped with devices able
to compute the position and the speed of the vehicle (such
as GPS location) and to communicate it to an ITS monitoring
system can act as a probe in the traffic and provide Floating
Car Data (FCD). In the scenario in which a non negligible
fraction of vehicles accepts to act as probe, the collected
data can be used to estimate of the evolution of speed
in the network. Due to privacy reasons, single vehicles
traces are usually not directly used, but rather aggregated
as average speed of vehicles in segments of road. Advanced
methodologies, such as the one employed by INRIX, ensure
a very fine spatial partition of the network, with segments
as short as 250 meters ([8]). Compared to fixed sensors, this
technology is less precise, due to location uncertainties and
to the fact that only a subset of vehicles is used to measure
speed, but since it exploits existing communication systems
it is relatively less expensive and, more important, already
covers all major traffic networks.

In this paper we propose an algorithm that aims to
reconstruct the traffic density by fusing fixed sensors mea-
surements and Floating Car Data. We employ a macroscopic
model, partitioning the network in cells and assigning to each
cell a density of vehicles. The latter evolves dynamically
according to a first order mass-conservation law.

Traffic models date back to the first half of the XXth
century. The most celebrated macroscopic model is the PDE
based Lighthill-Whitham and Richards (LWR) model [9],
which, based on fluid kinematics, is able to reproduce crucial



phenomena such as traffic shock waves. Discretization of
the LWR-PDE is not straightforward but stable numerical
schemes have been proposed, the most well known being
the Cell Transmission Model (CTM) [10], [11]. Huge efforts
have been put in the last 15 years to calibrate the CTM [12]
and to unveil its system-theoretical properties [13]. Fusion
of flow, density and speed measurements has also been
addressed, even though mostly considering single vehicles
traces. Approaches range from signal processing techniques
such as the generalized Treiber-Helbing filter [14], nonlinear
versions of the Kalman filter in the context of Lagrangian
sensing [15], and stochastic versions of the three-detector
model [16]. Recent approaches do not rely on discretization
of the LWR-PDE model and allow to cast problems of
estimation and control as convex problems [17].

We inherit from the CTM the assumption that the inflow
in a cell is a fixed linear combination of the outflows
of the preceding cells. Differently from CTM, however,
inflows and outflows in all the cells are estimated on the
basis of the available flow measurements only. In addition,
using the concept of Fundamental Diagram and the speed
measurements, we compute an instantaneous (namely, only
based on the latest available measurements) noisy estimate
of the density. These quantities are then the inputs for the
density observer. Finally, we propose a gradient descent
method to calibrate the Fundamental Diagram.

To summarize, the contributions of this paper are: 1)
we formalize the problem of data fusion of fixed sensors
measurements and Floating Car Data; 2) we propose an
easily implementable approach for density reconstruction;
3) we propose a gradient descent calibration algorithm; 4)
we implement the proposed solution using real fixed sensor
measurements from the Grenoble Traffic Lab [18], a sensing
network deployed along the Rocade Sud in Grenoble, France,
and speed FCD measurements provided by INRIX, one of
the most well known traffic solutions companies.

The remainder of the paper is organized as follows:
Section II formulates the problem and details the available
measurements. Section III describes the proposed solution,
while Section IV presents our numerical experiments. Fi-
nally, Section V draws the conclusions and presents several
future research directions.

A. Notation

The symbols Rn, Rn+ and Rn×m denote the sets of real
valued vectors of dimension n, of positive real valued vectors
of dimension n, and of real valued matrices of dimension
n×m, respectively. The symbol RA with A a finite set is to
be interpreted as the set of vectors indexed by elements of A.
The transpose of A ∈ Rn×m is denoted AT . For a vector x ∈
Rn, x ≥ 0 is meant component-wise. The symbol I denotes
the identity matrix of suitable dimensions. |A| denotes the
cardinality of the set A.

A graph G is a pair (V, E) where V is called the set of
nodes and E the set of edges. Edges are equipped with two
functions t : E → V and h : E → V , the head and tail
functions, respectively, so that e is the directed edge between

t(e) and h(e). We allow for parallel edges, namely, edges
having the same head and tail, but not for loops, namely,
edges whose head and tail coincide. A path of length n ≥ 2 is
a sequence of edges e1, . . . , en that are consecutive, namely,
such that h(ei) = t(ei+1) for i = 1, . . . , n − 1. A path of
length 1 is a path made of a single link.

II. PROBLEM FORMULATION

We model a Transportation Network as a graph G =
(V, E), in which junctions v ∈ V are interfaces between
cells e ∈ E . Roads with more than one lane are partitioned
in sequences of parallel cells on the parallel lanes; onramps
and offramps, namely, roads carrying vehicles in and out
from the network, respectively, are considered cells as well.
For physical reasons, we assume that for each cell e there is
at least one onramp j and one offramp k such that e is on a
path from j to k. Time is discrete and is slotted in intervals
of length T > 0. On each cell e ∈ E we denote by ρe(t) the
density of vehicles, in number of vehicles per km, during the
t-th time slot. The vector of densities ρ(t) = [ρe(t)]e∈E , the
state of the network, changes dynamically in time according
to the following first-order equation model

ρe(t+ 1) = ρe(t) +
1

`e
(f in
e (t)− fout

e (t)) (1)

where `e is the length of cell e, and f in
e (t) and fout

e (t) are
the inflow and the outflow at cell e during the t-th time slot.

The fraction of vehicles on cell e that will turn into the cell
j is called the splitting ratio of the pair (e, k) and is denoted
Rej ≥ 0. If j does not physically follow e, then Rje = 0, and
moreover

∑
j∈E Rej ≤ 1, with strict inequality at offramps.

Using the splitting ratios, the inflow in a cell e is a function of
the outflows from the preceding cells, f in

e =
∑
j∈E Rjef

out
j .

Stacking inflows and outflows into vectors f in and fout, we
can rewrite the previous relation in matrix form as

f in = RT fout (2)

where the matrix R = [Rej ] is the matrix of splitting ratios.
In this paper we assume that the matrix of splitting ratios is
fixed and predetermined. Methods for its calibration, which is
closely related to the estimation of Origin-Destination pairs,
will be the focus of future research.

Well known macroscopic models such as the CTM postu-
late that the outflow fout

e on cell e depends on the density of
vehicles on cell e as well as on the density of other cells, in-
cluding those immediately following cell e. This assumption
descends by the Godunov scheme for discretization of the
LWR-PDE model, and expresses the fact that while vehicles
on cell e want to proceed further into subsequent cells, the
latter could be too congested to let more vehicles in.

While these models can reproduce important phenomena,
such as shockwaves, there is no universal agreement on
which is the best. For this reason, we adopt a different point
of view and renounce to explicitly determine the flow-density
relation. The unique assumption that we make is the standard

fout
e = ρeve(ρ),∀e ∈ E (3)



namely that the outflow from a cell is the product of density
and average speed of vehicles on the same cell. While in
the CTM the speed is a function of the density of vehicles
around cell e, we will leave it unmodelled. The reason is that,
as it will be clarified in the following, we assume having
measurements of speed in each cell, so there is no need
to model its dependence on the state of the network. We
shall consider from now on the dynamics of the real system
to be dictated by Eqs. (1)-(3), where ve(ρ), e ∈ E , is an
unmodelled function of the local state of the network.

For data fusion and estimation purposes, we make a further
simplifying assumption, writing

ϕe = ϕe(ρe),∀e ∈ E (4)

where ϕe is the flow of vehicles at the sensor locations.
The graph of the function ϕe(·) is called the Fundamental
Diagram on cell e, and it is usually supposed to be a concave
function with ϕ(0) = ϕ(ρjam) = 0, where ρjam is the jam,
or stopping, density (standard values for ρjam vary from 200
to 300 vehicles per km).

A. Available measurements

As already mentioned, in this paper we consider a scenario
in which heterogeneous measurements are available.

1) Flow and density measurements: Measurements of
flows and of density are obtained by fixed sensors, such as
classical loop detectors, magnetometers, radar traffic detec-
tors, or video detection systems. These devices count the
number (flow) and estimate the density of the vehicles that,
during a time slot, cross the section of road where they are
placed. Sources of noise range from temporary inability to
detect changes of the magnetic field, too fast or too slow
vehicles, blurred videos, etc. For sake of simplicity, we
assume from now on that a new set of flow and density
measurements is available at every time slot. This is done
without any loss of generality and for the sole sake of
simplifying the notation. We can thus write

ϕme (t) = fout
e (t) + ωϕe (t), e ∈ Em

ρme (t) = ρe(t) + ωρe (t), e ∈ Em (5)

where ϕme (t) and ρme (t) are flow and density estimates at
time t, and ωϕe (t) and ωρe (t) are measurement errors whose
stochastic properties depend on the performance of the sensor
as well as on road and weather conditions, and Em ⊆ E is
the set of cells equipped with sensors. Due to installation
and maintenance costs, usually |Em| << |E|.

2) Speed measurements: Vehicles embedded with com-
munication and tracking devices (navigation systems, smart-
phones, etc) can communicate their speed to public or private
ITS monitoring systems in the form of Floating Car Data,
including their position, speed and travel direction (traces).
Since for privacy reasons traces of private vehicles cannot be
stored and used, data are then aggregated in average speed.
In particular, roads are divided into segments, let S denote
the set of all segments, and one average speed is provided for
each segment s ∈ S. Notice that the resulting measurement is
an average of the speed of a fraction of vehicles in the road.

e j

k

Rej

Rek

FCD segment s(e) = s(j) = s(k)

Fig. 1. A stretch of road partitioned in cells and FCD segments. Splitting
ratios are shown from a cell e to following cells, j and k. A FCD segment
including, among others, cells e, j and k, is also shown.

While there are specific classes of vehicles, such as taxis and
buses, that do not have privacy requirements, but we will not
consider them in the present paper, leaving the possibility to
exploit this additional information in future research.

Floating Car Data are usually much less expensive than
fixed sensors as they leverage on the existing communication
architecture, which also make them available on great part of
the main freeways and roads. As drawbacks, their precision is
not as high as fixed sensors, being related to the penetration
rate of the ITS provider, and they do not distinguish among
vehicles in different lanes. Finally, the information provided
via FCD is usually averaged over a relatively long period of
time. For example, while the GTL sensor network provides
flow, density, and speed measurement every 15 seconds,
FCDs are aggregated by INRIX every minute, standard
practice being around 5/10 minutes. We will assume that
new speed aggregate data is available every N time instants,
i.e., at times N , 2N , 3N , . . . , corresponding to the average
speed in the periods [0, N−1], [N, 2N−1], etc., respectively.
As such, speed measurements can be formally written as

vFCD
e (t) =

{
vff
e , t ∈ [0, N − 1]

vFCD
s(e) (k), t ∈ [kN, (k + 1)N − 1]

(6)

where
• vff

e > 0 is the freeflow speed on cell e, namely, the
speed of vehicles in low density regime;

• vFCD
s(e) (k) is given by

vFCD
s(e) (k) =

1

N |s(e)|
∑

j∈s(e),τ∈It

vj(τ) + ωFCD
s(e) (k)

where s(e) denotes the segment of which e is one of the
cells (see Figure 1), ωFCD

s(e) (k) is a measurement error
whose stochastic properties depend on the performance
of the sensor as well as on road and weather conditions,
and It = {τ : b tN c − 1 ≤ τ

N < b tN c}.

III. A NONLINEAR OBSERVER FOR TRAFFIC NETWORKS

We observe that Eqs. (1)-(2) could be directly used to
observe the system only in the ideal scenario in which
the traffic monitoring system has precise measurements of
the outflows fout

e (t), for all e ∈ E and for all times
t ≥ 0, and of the initial conditions of the system. Real
systems are never error free, however, and it is clear from
Eq. (1) that while errors in the initial conditions remain as
offsets during the evolution of the system, errors in the flow
measurements enter in the dynamics integrated, therefore



possibly producing unbounded estimation errors. Therefore,
Eqs. (1)-(2) cannot be used as they are to observe the system.

To overcome this difficulty, we consider the follow-
ing standard Luenberger-like observer, in which ϕm(t) =
[ϕme (t)]e∈Em and vFCD(t) = [vFCD

e (t)]e∈E are the stacked
versions of the above described measurements,

ρ̂e(t+ 1) = ρ̂e(t) +
1
`e
(f̂ in
e (t)− ˆfout

e(t))

+κ(ρ̃e(t)− ρ̂e(t))
f̂ in
e (t) = f̂ in

e (ϕm(t))

f̂out
e (t) = f̂out

e (ϕm(t)))

ρ̃e(t) = ρ̃e(ϕ
m(t), vm(t))

∀e ∈ E

(7)
where
• ρ̂e(t) is the estimate of the density on cell e at time t;
• f̂ in

e (t), f̂out
e (t) are estimates, based on the flow mea-

surements, of inflow and outflow in cell e at time t;
• ρ̃e(t) is an instantaneous estimate, based on flow and

speed measurements, of the density on cell e at time t;
• κ is a tunable gain trading off between flow and instan-

taneous density estimates. Notice that it should not be
too large, as to avoid meaningless negative densities.

The problem that we tackle in this paper is how to design
the maps

f̂ in = {f̂ in
e }e∈E : RE

m

+ → RE

f̂out = {f̂out
e }e∈E : RE

m

+ → RE

ρ̃ = {ρ̃e}e∈E : RE
m

+ × RE+ → RE

in such a way that the observer provides a good estimate of
the real density of the system.

A. Proposed solution

This section is devoted to describing the proposed solu-
tion. The procedure consists of two steps, namely offline
calibration and online update.

1) Offline calibration: In this section we propose a simple
solution for calibrating the Fundamental Diagram, namely,
for estimating the function ϕe(·) on the cells e ∈ Em. For
cells in E \ Em the Fundamental Diagram can be then ob-
tained by extending the parameters by convex interpolation.

In this paper we consider a the following type of Funda-
mental Diagram

ϕe(ρ) =

{
vff
e ρ, ρ ≤ ρce
aeρ

2 + beρ+ ce, ρ > ρce

where
• ρce is the critic density, which separates the freeflow low-

density region [0, ρce), in which vehicles do not influence
one each other, from the high-density congested region
(ρce, ρ

jam
e ], in which speed decreases with density;

• ρjam
e is the jam density, at which vehicles stop;

• vff
e > 0 is the freeflow speed on cell e;

• the flow in congested region is a convex quadratic func-
tion of the density, and for consistency the parameters

ae, be and ce satisfy
ae (ρ

c
e)

2
+ beρ

c
e + ce = vff

e ρ
c
e

ae
(
ρjam
e

)2
+ beρ

jam
e + ce = 0

ae > 0

The previous choice is driven by the empirical observation
that the standard triangular diagram, in which the flow is
a piecewise linear affine function of the density, tends to
overestimate the flow in congestion. Alternative solutions
include employing the so called inverted-λ fundamental
diagram [19], but in this case the number of parameters to
be estimated grows and the resulting model becomes more
complex, involving hysteresis. Since, in any case, determin-
istic Fundamental Diagrams are rough representations of the
relation between flow and density (see Section IV), we chose
the quadratic function because it allows for reasonably good
performance despite being relatively simple to calibrate.

Let e ∈ Em be a cell equipped with sensors, and denote
by {(ρk, ϕk)}k∈K, K = 1, . . . ,K, the set of K density and
flow measurements used as learning set. Calibration of the
Fundamental Diagram involves two steps (we write ρc and
C instead of ρce and Ce for sake of notation)

• Gradient descent algorithm for estimation of ρc and
C = vffρc: in the first step, we estimate the critical
density ρc and the capacity C, namely, the nominal
maximum flow, by solving the non-linear and non-
convex minimization problem

min(ρc,C) V(ρc,C) =
∑
k(ϕk − ϕ(ρc,C)(ρk))

2

s.t. 0 < ρc < ρjam

C > 0

ϕ(ρc,C)(x) =

{
C
ρcx, x ≤ ρc
C(ρjam−x)
ρjam−ρc , x > ρc

(8)
To solve (8) we propose the following gradient descent
with diminishing stepsize algorithm

– Basic step: initialize ρc0, C0. A possible choice is
ρc0 = 20 (vehicles start influencing each other when
their relative distance is less than 50 meters), and
C0 = vlimit

e ρc0, where vlimit
e is the speed limit on

cell e normalized by the sampling time T ;
– n-th step: let (ρcn, Cn) descend along the gradient

of the cost, namely

ρcn+1 = ρcn +
δ

n
∇ρcV(ρc,C)

Cn+1 = Cn +
δ

n
∇CV(ρc,C)

with

∇ρcV(ρc,C) =
∑

k∈IFF(ρcn)

− Cn−1

(ρcn−1)
2
ρk

+
∑

k 6∈IFF (ρcn)

Cn−1
ρjam − ρk

(ρjam − ρcn−1)
2



∇CV(ρc,C) =
∑

k∈IFF(ρcn)

ρk
ρcn−1

+
∑

k 6∈IFF(ρcn)

ρjam − ρk
ρjam − ρcn−1

IFF(ρc) = {k ∈ K : ρk ≤ ρc}

where the gradients ∇ρcV(ρc,C) and ∇CV(ρc,C) are
computed at (ρc, C) = (ρcn−1, Cn−1), and δ > 0 is
a fixed initial step size;

– Stopping criterion: stop if ||
[
ρcn
Cn

]
−
[
ρcn−1

Cn−1

]
|| < ε

for some small threshold ε > 0.
• Calibration of the congested part: once (ρc, C) have

been estimated, the problem of calibrating the quadratic
function for the congested region can be cast as the
following quadratic problem

min(a,b,c)

∑
k∈IFF(ρc)(ϕk − (aρ2

k + bρk + c))2

s.t. a (ρc)
2
+ bρc + ce = C

a
(
ρjam

)2
+ bρjam + c = 0

a ≥ 0
(9)

where the last constraint ensures that the quadratic
function is convex. The problem (9) can be readily
solved using off-the-shelf tools.

Once calibration has been performed on cells e ∈ Em,
the Fundamental Diagrams can be extended on cells e ∈
E \Em by convex interpolation of the parameters ρc, C, a, b
and c, using the corresponding parameters calibrated in the
closest cells e ∈ Em, with weights proportional to the relative
distance among the cells.

2) Online density reconstruction algorithm: Assume that
Fundamental Diagrams have been calibrated or extended on
all cells e ∈ E , and that the matrix of splitting ratios has
been pre-specified or estimated on the basis of field surveys.

The algorithm proceeds as follows
• at the beginning of the t-th time slot

– receive the measurements {ϕme (t)}e∈Em . The vec-
tor of estimate of the outflows f̂out(t) is then com-
puted as the solution of the following minimization
problem

minf̂out ||(I −RT )f̂out||2

+γ
∑
e∈Em(f̂out

e − ϕme (t))2

s.t. f̂out ≥ 0
(10)

which aims, on the one side, to match outflows and
measurements, and, on the other side, to balance
outflows according to the splitting ratios, as if the
network were at steady state. The parameter γ
trades off between the two: the higher, the more
flows on cells in Em will be forced to match the
measurements, the lower, the more the solution
will be as if the system were at steady state. The
vector of estimate of the inflows is finally computed
following Eq. 2, f̂ in(t) = RT f̂out(t).

– receive the measurements {vme (t)}e∈E when avail-
able, or hold the previous measurements;

– For each cell e, assume that the outflow can be
approximated by the local flow ϕe = ϕe(ρe)
determined by the Fundamental Diagram. As such,
compute the two possible densities ρ1

e (freeflow)
and ρ2

e (congested) corresponding to flow f̂out
e (t);

– For each cell e, compute the two corresponding
velocities ve(ρ1

e) =
f̂out
e

ρ1e
and ve(ρ2

e) =
f̂out
e

ρ2e
;

– Set

ρ̃e(t) = arg min
i=1,2
{|ve(ρie)− vme (t)|}

This is a first estimate of the density, only based on
latest measurements of flows and speed, and thus
very noisy, especially in congestion regime. For this
reason, we don’t use it directly;

– For each cell e ∈ E , let the density estimate evolve
according to the observer equation (7).

IV. DENSITY RECONSTRUCTION - EXPERIMENTAL
RESULTS

Our experimental setting is the Grenoble Traffic Lab
(GTL) [18], a network of sensors deployed for monitoring
and research purposes along the “Rocade Sud”, a peri-urban
12 km long freeway connecting the two highways A41
(north-west) to A480 (south-east) in the town of Grenoble in
the south of France, see Figure 2, upper panel. The network
consists of 135 magnetometers buried in the asphalt along the
main line of the freeway, on both lanes every 250 meters (on
average), on each onramp and offramp, and on three queues
carrying vehicles from the urban network to three onramps,
totalling 68 sensing locations. Figure 2, upper panel, shows
the position of each of the 22 sections of the main line
in which there are sensing locations on both slow and fast
lanes (and usually a ramp). Except for the queues and one
onramp, each sensing location consists of two magnetometers
deployed in pairs at a fixed distance of d = 2.5m. On each
sensing location and every T = 15 seconds, the system
counts the number ϕme of vehicles that crossed the location,
their average speed vme , and the average occupancy ome of
the location, defined as the percentage of the last period of
T = 15 seconds a vehicle was sitting over the sensors. The
latter is approximatively related to the density of vehicles by
the relation ρe ≈ oe

100`ave
, where `ave is the average length

of a vehicle (in km). For this reason, we shall assume that
sensors are able to measure density directly. Figure 2, lower
panel, shows a stylized representation of the Rocade Sud,
including ramps and queues, the positions of the 68 sensing
locations, and the distance between consecutive measurement
sections along the main line. For a detailed report on the
GTL, we refer to [18].

We partition the network in cells in such a way that each
cell comprises the space between two consecutive sensing
locations. As such, the numbered circles in Figure 2, lower
panel, also represent cells. In addition to fixed sensors, we
will use Floating Car Data provided us by INRIX, one of
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Fig. 2. The experimental setting: the town of Grenoble and the Rocade
Sud (upper panel), and a stylized version of the freeway (lower panel). The
positions along the main line of the 22 sections of the main line in which
sensors have been placed is shown as red pin. The positions of the 68 fixed
sensing locations are shown in the stylized map. Each sensing location also
corresponds to a cell. Light blue circles denote fixed sensors that are used
in our implementation. Each rectangles represents one FCD segment, often
providing average speed measurements over more than one cell.

the main navigation and traffic monitoring companies. The
Rocade has been partitioned into several FCD segments,
and, by gathering speed information from vehicles travelling
along the freeway, the average speed is computed in each
FCD segment every 1 minute. FCD segments cover the whole
main line of the Rocade and most onramps and offramps.
Lanes are not distinguished along the main line due to the
inherent uncertainty in localizing vehicles using tools such as
GPS. FCD segments are represented in Figure 2 as rectangles
encircling several sensing locations/cells.

For our experiments, in order to prove that the method
shows good performance even with sparse equipment, we
decided to consider a very limited subset of all sensors
available in the network. In particular, we only use the
sensors on the 9 sections shown in light blue in Figure 2,
of which 8 correspond to sections of the Rocade in which
loops inductors have been deployed by the Government
Agency Centre national d’information routière (CNIR) [20]
for monitoring purposes. As a consequence, we don’t use

any information on flow or speed on the ramps.
We used for calibration of the Fundamental Diagram the

data from April 10th, 2014, a working day (a Thursday)
exhibiting very standard traffic pattern:
• very limited night time traffic;
• a peak of congestion in the morning (8:00 - 10:00), trig-

gered by vehicles entering in the city from the Rocade
at the offramp of Eybens (sensing locations 37/38) and
spilling back until Meylan, and a second, smaller peak
of congestion triggered by vehicles entering in A480
at Rondeau (unable to do so due to the high traffic on
A480), and spilling back until around Libération;

• a third, smaller, congestion triggered around Eybens
around 14:00-15:00;

• in general, medium/heavy but fluid traffic from 10:00
to 16:00

• a second peak of congestion in the afternoon, again
triggered by congestion at Rondeau at around 16:00,
spilling back on the whole freeway in around 60 min-
utes, and lasting around two hours.

The matrix of splitting ratios is set as follows:
• let e be a fast lane cell, and j and k be the following

fast and slow lane cells. Then Rej = Rek = 0.5;
• let e be a slow lane cell, and j and k be the following

fast and slow lane cells. If among the cells that follow
e there is not an offramp, then Rej = Rek = 0.5.
Otherwise, Rej = Rek = 0.4 and Rer = 0.2, where
r is the offramp cell that follows e;

• if e is an onramp cell and j is the following slow ramp
cell, then Rej = 1.

In words, vehicles split uniformly in the cells on the main
line, and at each offramp approximatively 10% of vehicles
exit from the freeway, while the remaining 90% continue on
the main line.

A. Validation

To validate our method, we chose another Thursday work-
ing day, April 24th 2014. A typical result of calibration of
the Fundamental Diagram at sensing locations is illustrated in
Figure 3, which shows in thick black the linear-convex Fun-
damental Diagram, in dashed thick black the corresponding
standard linear Fundamental Digram in congestion regime,
and as crosses the pairs (density, flow) measured on April
24th, 2014. As standard and well known, data in freeflow
regime are in good accordance with the linear part, while
data in congested regime are much more scattered. As it
can be observed, a standard bilinear Fundamental Diagram
would overestimate the flows in congested regime (dashed
think line), while the convex quadratic curve seems to better
capture the average flow-density relation. Nonetheless, it
remains a very crude approximation of such a relation, for
which a stochastic description seems much more suitable.
Investigation of the latter possibility will be the focus of
future research.

We implemented the proposed algorithms in Matlab on
a non dedicated commercial laptop with 2.1 GHz i7-4600U
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Fig. 3. Calibration of the Fundamental Diagram on the cell Eybens exit
- slow lane. The linear-convex Fundamental Diagram, calibrated using data
from April 10th, 2014, is shown in thick line. Dashed thick line represents
the corresponding linear Fundamental Diagram in congested regime. Each
cross is a (flow, density) pair measured on April 24th, 2014, one for each
time slot of T = 15 seconds during the whole day. Flow is the number
of counted vehicles crossing the sensing location, density is the measured
density of vehicles, during the time slot.

CPU and 8 GB RAM. The optimization problems whose
solution is required for calibration and density reconstruction
are solved using standard Matlab functions and the modelling
and optimization system CVX [21], [22]. Calibration time of
the Fundamental Diagram is between 30 and 40 seconds,
and reconstruction of the whole day is done in around 6.30
minutes, for an average of around 1.1 ms per time slot.

The results are reported in Figure 4. For validation pur-
poses only, density measurements from all GTL fixed sensors
are considered ground truth. As such, the upper panel shows
the evolution of the “true” measured density in all the cells
on the main line, over the whole day. On the x-axis, the 46
sensing locations along the main line (numbers correspond
to the labels in Figure 2), on the y-axis, the 5760 time
slots over the whole validation day (one slot every T = 15
seconds). Colors vary from green to yellow to red as density
increases, with a minimum of 0 vehicles per km (green)
to a maximum of ρjam = 200 vehicles per km (red). In
the lower panel, we show, in the same format, the results
of the density reconstruction. As it can be observed, the
estimation algorithm captures the four congestions described
above in a reasonably good way, given the limited amount
of information employed; in particular, one can appreciate
the fact that the two small congestions at Rondeau during
the morning and at Eybens during early afternoon are both
detected.

The performance of the algorithm is further illustrated in
Figure 5, which shows the percentage of pairs (time, cell)
(x-axis) in which the relative error between measured and
estimated densities is less than δ% (y-axis),

r(t, e) = 100

∣∣∣∣ρe(t)− ρ̂e(t)ρ̂e(t)

∣∣∣∣ ≤ δ
It can be seen that 90% and 95% of (time, cell) pairs show
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Fig. 4. Numerical results of density estimation on all cells: measured
densities (upper panel) and estimated densities (lower panel).

a relative error between measured and estimated densities
which is less than 1.7% and 3.5% respectively, and only less
than 2% of the pairs have a relative error larger than 14.2%.
We can therefore conclude that the estimated densities cap-
ture in large part the evolution of the measured densities.

The biggest discrepancy between estimates and measured
data is around Eybens (cells 37-38) and can be easily
explained: as mentioned, we avoid using ramp data in order
to show the robustness of the method and the possibility
to employ a very limited number of sensors. However, as
observed above, the exit of Eybens is a critical point at which
many vehicles exit the Rocade, and that point belongs to a
long FCD segment running from Saint-Martin-d’Hères (cells
32-33) to Eybens entrance (cells 41-42), thus providing a
unique, rather low speed measurement, not distinguishing
between the stretches of road before Eybens exit (congested,
low speed) and after Eybens exit (uncongested, high speed).
The low speed measurement causes the algorithm to believe
that the density of vehicles is high over the whole segment.
A second obvious discrepancy is the smoothness of the
reconstructed densities in congested regime compared with
more scattered density measurements. The latter can be
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Fig. 5. Numerical results of density estimation on all cells: relative error
between measured and estimated densities.

explained with the high rate of measurement of densities,
implying that the state of single cells rapidly oscillates
between stopped vehicles and low, but non negligible, speed
(stop-and-go phenomena).

V. CONCLUSIONS

In this paper we have formalized the problem of data fu-
sion of heterogeneous sources of information for density re-
construction, and we have proposed an easily implementable
solution that employs sparse fixed sensor measurements of
flow and density and ubiquitous average speed measurements
computed on the basis of Floating Car Data. Calibration
algorithms for the Fundamental Diagram are also discussed.
Future research directions include and are not limited to
estimation of statistical properties of measurement noises
from real data and development of stochastic models for
the relation between flows, speed and densities (possibly on
different cells) aiming to design Kalman-like filters for min-
imization of mean-square reconstruction error, calibration of
the matrix of splitting ratios, and extension of the considered
numerical scenario to part of the town of Grenoble.
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