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Abstract
Linear consensus is a distributed algorithm which ensures that, under certain assumptions,
a set of agents reach asymptotically the same opinion over a certain variable. Moreover
this occurs with only a local exchange of information, namely the information exchange
takes place only between agents which are neighbors in a graph representing the system
communication architecture. Several performance metrics have been proposed for the evaluation
of this algorithm. Particularly interesting and challenging is to relate performance to the
communication topology. Different performance metrics may yield to different answers in
comparing alternative communication topologies. In this paper, we present a number of possible
performance metrics. Moreover, we show how these metrics are related to the communication
topology. In particular, when available, we present bounds by which it is possible to relate
performance and topology for general graphs, for graphs with symmetries, called Cayley graphs,
and for geometric graphs.

1. INTRODUCTION

Distributed algorithms are a growing field of research
in many scientific communities. The availability of an
enormous number of small, simple and cheap agents forces
researchers to enlarge their point of view from centralized,
fast and fully designable procedures, to algorithms which
should ensure a certain behavior without any leader, and in
which information can flow only according to a constrained
communication architecture. Interesting examples come
from coordinated control Cortes et al. (2006). In this
scenario some agents are required to move in a possibly
unknown environment maintaining a formation suitable
for their current objective. The absence of a leader can
be a big advantage in this application. Indeed, if the
environment is dangerous, we don’t want the failure of
the leader to yield the disruption of the entire formation,
neither we want a possible, slow, procedure of election
of a new leader. Instead, we want all the agents to be
on (almost) the same hierarchical level. Moreover, no
centralized control is desired, for many reasons: 1) if the
environment is large and communication is slow, delays
could well destabilize the system and 2) if the number
of agents is large, the computational effort required to
design the control could take too much time. This couple
of requirements gives the name to distributed algorithms.
The task to be accomplished, whatever it is, must be
distributed over the network, and each agent contributes
to build up the solution. Clearly, only in particular cases it
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is possible, via a distributed algorithm, to obtain the same
level of performance as in the centralized case.

Similar features characterize several other different appli-
cations, for example distributed estimation Olfati-Saber
(2005), load balancing Cybenko (1989), sensor calibration
for sensor networks Ganeriwal et al. (2003), distributed
optimization Nedic et al. (2010), distributed demodulation
Zhu et al. (2008).

In general, in all these problems it is given a set of agents
which can communicate each other. The information ex-
change is modeled via a communication graph G = (V, E),
where V = {1, 2, . . . , N} and E ⊆ V ×V . Each node of the
graph represents an agent, an edge (i, j) belonging to E
represents the possibility for the agent j to receive infor-
mation from agent i. In certain cases, the communication
graph is allowed to be time-variant. This is used in order
to model asynchronous working conditions or scenarios in
which two agents are not always able to communicate, due
to possible packet loss. The richness of such scenarios is
clear, since the enormous number of states that character-
ize such systems opens new frontiers in research in terms of
complexity of algorithms, of tasks to be accomplished, and
so on. Vice versa, the same complexity yields an extreme
difficulty for the designers, since many problems are known
to be NP-hard when the communication constraints are
imposed.

This difficulty forced researchers to spend much effort on
simple algorithms for simple tasks. One of the most studied
of these algorithms is the consensus algorithm. In general,
a consensus algorithm is a distributed strategy in which
each agent is initialized with a certain real number. The



goal for the agents is to reach, possibly in finite time, a
consensus value based on a suitable fusion of the initial
values that the agents possess. This fusion is obtained by
an information exchange. One way to accomplish this task
is to label each agent, gather the values via multi-hop
in the network, and combine them in the same way by
each node. However, this implies that each agent needs to
memorize the value of any other node, which can be hard
if the network is large.

A different strategy is to use a discrete time linear al-
gorithm consistent with the communication constraints.
Assume that each node u possesses a state xu(t) which is
initialized to a real number yu, namely xu(0) = yu, and
assume that u updates xu(t) according to the iteration

xu(t+ 1) = puu(t)xu(t) +
∑
v∈Nu

puv(t)xv(t)

where Nu := {v ∈ V \ {u} : (v, u) ∈ E} is the set
of neighbors of the agent u (not containing u itself). We
impose that puu(t) ≥ 0, puv(t) ≥ 0 and that puu(t) +∑
v∈Nu

puv(t) = 1 or, in words, that xu(t+ 1) is a convex
combinations of all the states available to the agent u. If
we stack all the states xu(t)’s in a vector x(t) ∈ RN and we
introduce the matrix P (t) ∈ RN×N having entries equal to
puv(t) in position u, v and zero elsewhere, we can rewrite
the previous iteration in the following compact form

x(t+ 1) = P (t)x(t). (1)

Notice that P (t) is consistent with the graph G, namely
that GP (t) is a subgraph of G, where we define the graph
GP (t) = (V, EP (t)), by letting EP (t) := {(u, v) ∈ V ×
V : P (t)u,v 6= 0}. The graph GP (t) is called the graph
associated with P (t). Moreover P (t) is row–stochastic,
namely it has non-negative entries and P (t)1 = 1, where
1 denotes a column vector with all entries equal to 1.

In this paper we will limit to time-invariant consensus
algorithms, namely to the case in which the iteration is
the following

x(t+ 1) = Px(t) (2)

where P is a row–stochastic matrix consistent with
a graph G. By Frobenius-Perron theorem Gantmacher
(1959), if we choose P to be aperiodic and irreducible 1 ,
then all the eigenvalues of P are strictly inside the unitary
disk, except just one which is equal to 1. Moreover the
eigenvalue 1 has algebraic multiplicity 1. Let πT be a left
eigenvector of P associated with the eigenvalue 1. Since
it can be proved that all the entries of π are positive, it
can be assumed with no loss of generality that πT1 = 1.
Under the above assumptions we can argue that

P t
t→∞−→ 1πT

This implies that

xu(t)
t→∞−→ α, ∀u = 1, . . . , N

with α =
∑N
u=1 πuxu(0) =

∑N
u=1 πuyu. Notice that, if

P is doubly stochastic, namely both P and PT are row–
stochastic, then π = 1

N 1 and so in this case the consensus
point α is equal to the average of the initial states.

1 P is aperiodic if the greatest common divisor of the lengths of
all cycles in its associated graph GP is one. The presence of a self-
loop implies aperiodicity. P is irreducible if GP is strongly connected,
namely, for all u, v ∈ V , there exists a path connecting u to v.

One of the pioneering works in distributed algorithms for
estimation is Tsitsiklis (1984), and much work has been
done along the entire following decade. At the beginning
of the last decade, motivated by a problem of formation
control constrained by local information only, a number of
papers proposed linear consensus as an effective algorithm
to solve the problem Olfati-Saber and Murray (2003); Jad-
babaie et al. (2003), showing convergence of the algorithm,
relation with Markov chains via the row–stochastic matrix
P , and proposing control-oriented criteria (e.g., Nyquist
criterion) in order to ensure stability Fax and Murray
(2004).

Many papers included in the model more realistic scenar-
ios, such as packet-drop communication and delays Olfati-
Saber et al. (2004, 2007); Fagnani and Zampieri (2009).
A number of papers was also devoted to the study of
randomized consensus algorithms Ren and Beard (2005);
Boyd et al. (2006).

As the classical theory suggests (see Section 4), the typical
trajectory which the states draw while approaching con-
sensus value is exponential in the time. Many papers have
been devoted to study the exponential rate of convergence,
both for structured graphs Carli et al. (2008b); Delvenne
et al. (2009), and in terms of optimization problems Xiao
and Boyd (2004); Boyd et al. (2004).

Since moreover consensus is often considered an algorithm
which has a direct application to many sensor network
problems, much effort has been spent trying to understand
how consensus behaves under some typical constraints
in communications, such as quantization of information
and noisy channels Frasca et al. (2008); Rajagopal and
Wainwright (2008); Kashyap et al. (2007); Lavaei and
Murray (2009a,b).

To conclude, an increasing interest is devoted to the prob-
lem of designing an effective distributed Kalman-type esti-
mation algorithm. A possible, simple way, has been found
by an application of the consensus averaging procedure
Alriksson and Rantzer (2006); Carli et al. (2008a); Olfati-
Saber (2005).

One relevant issue concerning consensus algorithms is re-
lated to the choice a performance metrics which allows the
comparison among several possible choices of the matrix
P and of the associated graph GP . Several different perfor-
mance metrics have been proposed in the literature. One
important aspect of the performance evaluation is how
the communication topology, namely the graph, influences
performance. More precisely, taken two different graphs
topologies G1 and G2, one can wonder if it may happen
that G1 is better than G2 if compared through a cer-
tain performance metric, but the reverse occurs when the
comparison is done through another performance metric.
In other words the question is whether all the relevant
performance metrics are coherent in comparing different
topologies or not. Recent papers gave some partial answers
to this question, and the answer is that topology does
play a fundamental role, which should be an important
guidance in the design process.

The aim of this paper is to give a survey on this sub-
ject focusing on four performance metrics: the rate of
convergence to asymptotic value, L2-norm of the error



between the current state and its final value, the H2-norm
of the discrete time system which models the consensus
algorithm and a cost related to an application of consensus
to distributed Kalman filtering. Each of these metrics will
be presented as the solution of a specific problem, and each
will be computed in relation to some important families of
graphs, namely general graphs, graphs with symmetries
(called Cayley graphs) and geometric graphs.

2. SOME PRELIMINARIES ON GRAPH THEORY

A graph is a quadruple G = (V, E , s, t) where V is called
the set of nodes, E is called the set of edges, and s and t
are two functions s : E → V and f : E → V . If s(e) = u we
say that the edge e starts in u, or that u is the tail of e. If
t(e) = v we say that the edge e ends in v, or that v is the
head of e. In this paper we consider only graphs in which
there does not exist different edges having the same tail
and head. Hence, if an edge E is such that s(e) = u and
f(e) = u, then we can simply write e = (u, v) and write
G = (V, E), where E is a subset of V × V . We say that a
graph is undirected if (u, v) ∈ E ⇐⇒ (v, u) ∈ E . A graph
is directed, or it is a digraph, if it is not directed.

Given a node u ∈ V , we denote by N in
u = {v : e =

(v, u), ∃ e ∈ E} = s(f−1(u)) 2 the in-neighbor set of u,
namely the set of nodes such that there exists an edge
starting in such nodes and ending in u. Analogously, we
denote by N out

u = {v : e = (u, v), ∃ e ∈ E} = f(s−1(u))
the out-neighbor set of u, namely the set of node such
that there exists an edge ending in such nodes and starting
from u. Clearly, for an undirected graph the two notions
coincide, so we will generically talk about the neighbor set
Nu of u.

Given a graph G = (V, E), let N := |V | and M := |E|. We
define the incidence matrix A ∈ {0,±1}M×N as follows

Aeu =


−1 if u = t(e)

1 if u = s(e)

0 otherwise

,

so the e-th row, related to directed edge e, has a −1
in correspondence with the ending node, and a 1 in
correspondence with the starting node. Another matrix
related to a graph is the adjacency matrix F ∈ {0, 1}N×N ,
which is defined as

Fuv =

{
1 (u, v) ∈ E
0 otherwise

.

For undirected graphs, the adjacency matrix is symmetric.

We will be interested in weighted graphs, namely couples
(G, w) where G is a graph and w is a function w : E → R
which associates to each edge a value. For example, if G is
the graph underlying a Markov chain, the function w(e) =
w(u, v) represents the transition probability from u to v.
For the consensus algorithm the value w(u, v) represents
the weight the node u gives to the information it receives
from node v, so that with the above notation we have
w(u, v) = puv. Finally, if we consider an electrical network,
the value w(u, v) can be interpreted as the resistance, or
the conductance, of the edge (u, v).

2 Here f−1(u) is the preimage of u.

Figure 1. Two examples of Cayley graphs.

2.1 Cayley graphs

Cayley matrices and Cayley graphs are highly structured
matrices and graphs which present a number of symme-
tries, and that are defined through groups.

Definition 2.1. Let G be an Abelian finite group of order
N = |G|. A matrix P ∈ RG×G is said to be a Cayley
matrix over the group G if

Pi, j = Pi+h, j+h, ∀, i, j, h ∈ G. (3)

It is easy to see Carli (2008) that there exists a function
g : G → R such that Pij = g(i − j). Note that g can be
read from any row of P . A graph G is a Cayley graph if its
adjacency matrix is a Cayley matrix. With this definition
it is obvious that the graph associated with a Cayley
matrix is automatically a Cayley graph. A Cayley graph
is completely determined by giving the group G and a set
S ⊆ G. Indeed, the set of edges E of a Cayley graph is
such that (i, j) ∈ E if and only if j − i ∈ S.

In Fig. 1 two Cayley graphs are presented. On the left,
G = Z7 and S = {±1, 0} generate the circle with N = 8
nodes, in which each agent communicates with the node on
the left and on the right. On the right, G = Z20×Z10 and
S = {(−1, 0), (1, 0), (0, 1), (0,−1)} generates the torus
with N1 = 20 circles of N2 = 10 nodes each, where each
agent communicates with the nodes on the left, on the
right, above and below.

Notice that any Abelian group G is isomorphic to the
group Zn1

×· · ·×Znd
. In order to simplify the notation, in

this paper we will restrict to Cayley graphs with respect
to groups of the type Zdn. More precisely we will consider
families of Cayley graphs with respect to that group in
which n varies while the dimension d is fixed and a positive
δ is fixed (small enough compared with n) such that 3

(i, j) ∈ E only if ||j − i|| ≤ δ. This constraint describes
the assumption that each node can not communicate with
nodes that are too ”far” from it.

2.2 Geometric graphs

Roughly speaking a geometric graphs is a perturbation of
a regular grid in d dimension, for instance by moving the
nodes and removing or adding some edges. There exists
several different mathematical definitions of geometric
graphs Doyle and Snell (1984); Gupta and Kumar (2000);
Franceschetti and Meester (2007). Here we have chosen the
model proposed in Doyle and Snell (1984); Barooah and
Hespanha (2005) because it is, in our opinion, simpler and
rather general.
3 Here we are assuming that the entries of i, j in Zn are represented
by the integers −n/2+1, . . . ,−1, 0, 1, . . . , n/2 in case n is even or by
the integers −(n− 1)/2, . . . ,−1, 0, 1, . . . , (n− 1)/2 in case n is odd
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Figure 2. An example of geometric graph in 2 dimensions.

Consider an hypercube Q ⊂ Rd with edge length `,
namely Q = [0, `]d ⊆ Rd. Let G = (V, E) be a connected
undirected graph such that V ⊂ Q and |V | = N .

Following Doyle and Snell (1984); Barooah and Hespanha
(2005), the following parameters can be defined:

• the minimum Euclidean distance 4 between any two
nodes

s = inf
u, v∈V, u6=v

{dE(u, v)} ; (4)

• the maximum Euclidean distance between any two
connected nodes

r = sup
(u, v)∈E

{dE(u, v)} ; (5)

• the radius γ of the largest ball centered in Q not
containing any node of the graph

γ = max {r|B(x, r) ∩ V = ∅, ∀x ∈ Q} ; (6)

• the minimum ratio between the Euclidean distance of
two nodes and their graphical distance

ρ = min

{
dE(u, v)

dG(u, v)
| (u, v) ∈ V × V

}
. (7)

Such a graph is called a geometric graph with parameters
(Q, s, r, γ, ρ, N). The problems we will consider will
involve class of geometric graphs with increasing number
N of nodes and with increasing length ` of the hypercube
edge, but with bounded parameters s, r, γ and ρ.

2.3 De Bruijn’s graphs

De Bruijn’s graphs constitutes a very particular class
of graphs. Nevertheless we introduce them here because
they are fast mixing digraphs in which, if the weights
are chosen in a clever manner, it is possible to reach
consensus in a minimum finite number of steps. The paper
Delvenne et al. (2009) gives detailed and general results
on these graphs and provides several useful properties and
characterizations. We will restrict here to a particular case.
Let k and n be two positive integers, and consider the
graph whose adjacency matrix is the following

F = 1⊗ I ⊗ 1T

where the column vector 1 is k dimensional and the
identity I is kn−1 dimensional. Its associated graph, GF ,
4 Given a generic graph G = (G, E) and two nodes u, v ∈ G deployed
in Rd, we will denote by dE(u, v) the Euclidean distance between u
and v (in Rd), and with dG(u, v) their graphical distance (in G),
namely the length of the shortest path between them.
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Figure 3. A de Bruijn graph with N = 8 nodes.

is called de Bruijn’s graph de Bruijn (1946), and it is
displayed in Figure 3 in the case k = 2, n = 3.

3. ELECTRICAL NETWORKS

It has been firstly stated in Doyle and Snell (1984) the
remarkable and deep analogy between reversible Markov
chains and electrical networks. Given a Markov chain in
the form of its transition matrix P and its left invariant
measure πT (namely, the vector such that πTP = πT and
πT1 = 1), we say that it is reversible if it holds

ΠP = PTΠ,

where Π is the diagonal matrix with diagonal entries equal
to the entries of π. We focus our attention on Markov
chains with symmetric P , which are clearly a particular
case of reversible chains.

Define a resistive electrical network as a pair (G, C), or
equivalently (G, R), where:

• G is an undirected graph (without self-loops), with N
vertices, and M edges;
• C and R are two functions C : E → [0,+∞) and
R : E → [0,+∞). They both associate with each
edge of the graph a strictly positive number, called
respectively the conductance and the resistance of the
edge, one the inverse of the other.

Actually, we can assume that any non-existing edge has
zero conductance or infinite resistance.

Recall that in a undirected graph to any connected pair
of nodes corresponds two directed edges, one for each
direction. For this reason we start from a map C : E →
[0,+∞) such that C((u, v)) = C((v, u)). We define the
matrix C ∈ RM×M as a diagonal matrix with diagonal
entries equal to the conductances on the edges, namely
Cee = C(e) for all e ∈ E . We denote the Laplacian of the
network by LC := ATCA. Notice that LC1 = 0. Using the
notion of incidence matrix, it is immediate to obtain that

[LC ]uv = [ATCA]uv =


2cu if u = v

−2C(e) if (u, v) = e ∈ E
0 if (u, v) /∈ E

,

where cu :=
∑
e|u=t(e) C(e) is the sum of all the conduc-

tances of the edges incoming into u.

We define the effective resistance between two nodes u and
v in the electrical network (G, C) as the quantity

Ruv(G, C) =
vu − vv

I
, (8)



where vu and vv are the potentials at the nodes u and v
when we inject a current of value I into u and we extract
the same from v.

We are now going to obtain the effective resistance between
two nodes in terms of a matrix depending on LC . This
procedure is quite well known, see for example Wu (2004).
Consider any vector i ∈ RN such that 1T i = 0, and assume
to inject (or extract if negative) the current iu into the
node u of the network, for any node. Since 1T i = 0,
the total current injected into and extracted from the
network is zero and this is a necessary condition for the
problem to be well-posed. The current i injected into the
network induces the potentials v ∈ RN at the nodes and
the currents j ∈ RM on the edges. Since potentials and
currents mush satisfy both Kirchhoff’s current law and
Ohm’s law, it can be obtained the following system{

AT j = i
CAv = j

(9)

which implies LCv = ATCAv = i. We solve the electrical
equations of the network if we are able to find v and j
from i. It is clear that v is not uniquely determined by
(9), since, if v is a solution, then also v+α1 is a solution.
We have to impose a constraint on v in order to ensure the
solution to be unique. We will assume in this paper that
v has zero mean, namely we impose vT1 = 0. In this way
we can rewrite (9) and the constraint on v in the following
matrix form [

LC 1
1T 0

] [
v
0

]
=

[
i
0

]
. (10)

In order to find v, we introduce the so called Green matrix
of LC , or of the electrical network, which is the unique
matrix XC such that{

LCXC = I − 1

N
11T

XC1 = 0
. (11)

We can write XC in closed formula as follows

XC = (LC +
1

N
11T )−1 − 1

N
11T . (12)

The following lemma rewrites this expression in terms of
power series.

Lemma 3.1. Let α ≥ 1
2λmax, where λmax is the largest

eigenvalue of the symmetric positive semi-definite matrix
LC . Then

XC =
1

α

∑
t≥0

(
(I − 1

α
LC)t − 1

N
11T

)

Proof. For any α ∈ R \ {0}, we can rewrite (12) as

XC =
1

α

[
(

1

α
LC +

1

N
11T )−1 − 1

N
11T

]
.

The condition α ≥ 1
2λmax ensures that all the eigenvalues

of I − 1
αLC −

1
N 11T lie in the interval (−1, 1), so we can

write in power series

(
1

α
LC +

1

N
11T )−1 =

∑
t≥0

(
I − 1

α
LC −

1

N
11T

)t
.

The thesis now follows from the fact that LC1 = 0.

By construction, the Green matrix can be directly used to
obtain v in (10), yielding

v = XCi. (13)

Assume now that i = eu − ev. This corresponds to inject
1 Ampere into the node v and extract 1 Ampere from the
node u. Since vu − vv = vT i, by definition (8) we can
conclude that

Ruv(G, C) = vT i = (eu − ev)TXC(eu − ev).

Consider now a symmetric, row–stochastic, irreducible and
aperiodic matrix P ∈ RN . We build an electrical network
taking N nodes and setting C((u, v)) = Puv. If Puv = 0,
we assume that there is not an edge between u and v.
Notice that this definition implies that there are possibly
nonzero conductances in the self loops. However, it can be
seen that they to not contribute to LC .

From this definition of the electrical network, it is easy
to obtain the following relation between P and and the
Laplacian LC of the network

P = I − 1

2
LC .

This relation implies that the largest eigenvalue of LC
satisfies λmax ≤ 4. Thus we can use Lemma 3.1 with α = 2,
thus obtaining

XC =
1

2

∑
t≥0

(
(I − 1

2
LC)t − 1

N
11T

)
,

and, in terms of P ,

XC =
1

2

∑
t≥0

P t − 1

N
11T .

We can thus compute the effective resistance between two
nodes u and v in the network build from P as follows

Ruv(G, P ) =
1

2
(eu − ev)TX(eu − ev),

where we define

X :=
∑
t≥0

P t − 1

N
11T ,

and where we use the notation Ruv(G, P ) in order to
underline the role of P .

This relation, which is of interest by itself, will be used
in order to analyze two performance metrics, namely the
rate of convergence and the H2 cost (resp. Section 4 and
Section 6).

4. THE RATE OF CONVERGENCE

The most classical performance index evaluating the con-
vergence of an iterative algorithm is the speed of con-
vergence of the algorithm output towards its asymptotic
value. It is well known from classical system theory that
the rate of convergence of the state x(t) to its asymptotic
value is exponential. The exponential rate of convergence
is then defined as

R := lim
t→∞

(||x(t)− x(∞)||)1/t

where || · || denotes the 2-norm of a vector. Assume we are
given an aperiodic and irreducible stochastic matrix P .



By standard linear algebra it can be seen that R = ρ(P )
where ρ(P ) is the essential spectral radius of P

ρ(P ) = max{|λ| : λ ∈ Λ(P ) \ {1}}, (14)

where Λ(P ) is the set of all the eigenvalues of P .

The relation between the essential spectral radius of P
and the topology of the graph GP associated with P is a
problem which has been widely studied both in the Markov
chains community and in the spectral graph community.
In Markov chain theory ρ(P ) is related to the so called
mixing time of the Markov chain having P as the transition
matrix Levin et al. (2008). Spectral graph theory instead
studies the geometric properties of weighted graphs using
the so-called Laplacian L matrix of the graph. This matrix
is related to P via P = I − L, so that Λ(P ) = 1 − Λ(L)
and the spectral properties of the two matrices essentially
coincide. An extensive treatment of these topics can be
found in Chung (1997).

Example: de Bruijn’s graphs

Consider the de Bruijn’s graph with N = kn we defined
previously, and assume that each node uniformly weights
all its neighbors, namely the consensus matrix is

P =
1

k
1⊗ I ⊗ 1T

where the column vector 1 is k dimensional and the
identity I is kn−1 dimensional. Notice that P defined in
this way is not symmetric but it is doubly stochastic and
that the number of neighbors of each agent is exactly k. A
simple computation shows that

Ph =
1

N
11T , ∀h ≥ k

where column vector 1 is here N dimensional. This means
that with this matrix the state converges to consensus in
at most k steps. It is possible to show moreover that there
does not exists nk×nk stochastic matrix for which we have
faster convergence. Notice finally that P has the minimum
possible essential spectral radius since ρ(P ) = 0.

4.1 Bounds on the convergence rate for general graphs

One of the major issues in research on consensus and
Markov chains is to understand how to bound the essential
spectral radius of P in terms of geometric parameters of
the network.

In the sequel we will briefly recall some classical results (see
Diaconis and Stroock (1991), Diaconis and Saloff-Coste
(1993) Fulman and Wilmer (1999) and Jerrum and Sinclair
(1989)). For simplicity we will restrict our attention to
symmetric stochastic matrices. If P is symmetric, then
its eigenvalues are real. In the sequel we will assume
that the eigenvalues of P are ordered in such a way that
1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λN−1. Notice that in this case
we have that

ρ(P ) = max{λ1,−λN−1}
If we find upper bounds on λ1 and on −λN−1 we can get
an upper on ρ(P ). Applying Gershgorin circle theorem we
can argue that

−λN−1 ≤ 1− 2 max
i
{Pii}.

Therefore, finding an upper bound on ρ(P ) reduces to find-
ing an upper bound on λ1, the second largest eigenvalue
of P . To this aim the well-known Rayleigh-Ritz theorem
(see Horn and Johnson (1990)) proves to be a helpful
tool. Rayleigh-Ritz theorem in our case coincides with the
following variational characterization of λ1

λ1 = max

{
xTPx

xTx
,x 6= 0 and x ⊥ 1

}
. (15)

This characterization is the basis of several results relating
geometric parameters of the graph associated with the
stochastic matrix P to its second largest eigenvalue. We
will briefly review two among the most important ones,
namely the Poincarè and the Cheeger inequalities. For the
proof of both of them, we refer to Diaconis and Stroock
(1991).

Poicarè inequality Let P be a symmetric stochastic
matrix and let GP = (V, E) be the undirected graph
associated with P . For any couple (x, y) ∈ V 2, x 6= y,
let γxy be a path from x to y. Namely, γxy is a set of edges
γxy = {e0, . . . , el} such that e0 = (x, u1), ei = (ui, ui+1)
∀ i = 1, . . . , l − 1 and el = (ul, y). In a path a vertex can
be touched many times, while an edge may appear at most
once. We define the following weighted length of the path
γxy

|γxy|P =
∑
e∈γxy

P (e)−1

where e are the edges forming γxy and P (e) = Pu,v if
e = (u, v).

Let Γ be a collection of such paths, one for each couple
(x, y). We associate to Γ the following quantity

κ = κ(Γ) = max
e∈E
{
∑
γxy3e

|γxy|P } (16)

namely κ is the maximum, as e varies over E , of the sum
of |γxy|P for all the paths γxy in which e appears as an
edge.

This value has an immediate, intuitive, interpretation. We
take, for any edge, the measure of the flow of information
through that edge. Then, we minimize it over the edges,
obtaining thus a measure of the bottleneck in the network.
This bottleneck influences the rate of convergence to the
asymptotic distribution of the states as stated in the
following theorem.

Theorem 4.1. The second largest eigenvalue of P satisfies

λ1 ≤ 1− N

κ
, (17)

with κ defined in (16).

This inequality is fundamentally an edge-perspective
bound. It links geometric properties of paths along the
network with the rate of convergence to the asymptotic
measure. Intuitively, less information can flow along the
paths considered, the slowest is the convergence.

In the following section the interest is switched from paths
to “surfaces”, giving the definition of Cheeger ratio, as
well as the relation between such quantity and the second
largest eigenvalue. Unfortunately, even if the computation
of the bound is someway simpler, this approach has been
proved to offer less effective results over large families of



graphs if compared with the Poincarè inequality Fulman
and Wilmer (1999).

Cheeger inequality Let P be a symmetric stochastic
matrix and let GP = (V, E) be the undirected graph
associated with P . Take a proper subset S ⊆ V of the
nodes. It is rather intuitive that the flow in information
from the set S to its complement SC = V \S is linked to the
probability transition from S to SC . We can thus consider
the conditional expectation of crossing the boundary of
S given that we started from S, and minimize it over any
possible set S. We obtain in this way the so called Cheeger
ratio

h(P ) = min
S:|S|≤N

2

{
P (S × SC)

|S|

}
, (18)

where S ⊆ V and P (S × SC) =
∑

(x, y)∈S×SC Pxy.

This quantity can be used in order to derive both an upper
and a lower bound on the second largest eigenvalue, as
stated in the following result.

Theorem 4.2. The second largest eigenvalue of P satisfies
the following inequalities

1− 2h(P ) ≤ λ1 ≤ 1− h(P )2, (19)

with h(P ) defined in (18).

An electrical based inequality The electrical analogy
proposed in Section 3 offers a bound on the second largest
eigenvalue in terms of electrical quantities.

In fact, from Rayleigh-Ritz theorem we have that

λ1 = max
i:||i||=1

{iTP i : i ⊥ 1}.

Observe that the vector i which maximizes the quantity
iTP i can be chosen as the normalized eigenvector relative
to λ1. Rayleigh-Ritz theorem can be applied to the matrix
P t too, and we obtain

λt1 = max
i:||i||=1

{iTP ti : i ⊥ 1}.

Since the eigenvector of P t relative to the eigenvalue λt1
is the same for any power of P , the maximum is reached
exactly for the same i ∈ RN . So we can write

1

1− λ1
=
∑
t≥0

λt1 =
∑
t≥0

max
i:||i||=1

{iTP ti : i ⊥ 1}

(a)
= max

i:||i||=1
{
∑
t≥0

iTP ti : i ⊥ 1}

(b)
= max

i:||i||=1
{iT (

∑
t≥0

P t − 1

N
11T )i : i ⊥ 1}

= max
i:||i||=1

{iTXi : i ⊥ 1}

= max
i:||i||=1

{2iTXCi : i ⊥ 1},

where (a) holds because the maximum is attained at the

same vector i and (b) holds because iT1 = 0, and where
we recall that

XC =
1

2
X =

1

2

∑
t≥0

P t − 1

N
11T .

Since we know that v = XCi is the potential at the
nodes obtained by injecting iu Ampere into the node

u, ∀u ∈ V , and that the total power dissipated in the
electrical network is P = vT i, we end up with

λ1 = 1− 1

2Pmax
where Pmax is the maximum dissipated power in the
network by injecting a vector i of currents such that
||i|| = 1.

We can moreover give a bound using the maximum effec-
tive resistance Rmax := max{Ru,v : u, v ∈ V }. Notice in
fact that

max
i:||i||=1

{2iTXCi : i ⊥ 1} ≥ max
(u, v)
{(eu − ev)TXC(eu − ev)T }

= Rmax,
since the maximization on the right is made over i =
1√
2
(eu − ev), so in a smaller set. So we can argue that

λ1 ≥ 1− 1

Rmax
.

However, this estimate proves to be not very effective for
our purposes, as we will see in the following section.

4.2 Bounds on the convergence rate for Cayley graphs

In this section we will present the results about the rate
of convergence for the class of graphs known as Cayley
graphs. Details and proofs can be found for example in
Carli et al. (2008b); Diaconis and Saloff-Coste (1993).
Consider a class of Cayley graphs with respect to the group
Zdn where we assume the dimension d fixed and n variable.
Let δ be a positive constant such that (i, j) is an edge of
the graph only if ||j − i|| ≤ δ. Assume that in the Cayley
graphs there are the self loops and assume moreover that
they are strongly connected.

Theorem 4.3. Let P be a stochastic Cayley matrix with
respect to the group Zdn whose associate graph is in the
previous class of Cayley graphs. Assume that all the
nonzero entries of P lie in an interval [pmin, pmax]. Then

1− C ′ 1

n2
≤ ρ(P ) ≤ 1− C 1

n2

where the two strictly positive constant C ′ and C depend
only on d, δ and on pmin and pmax, but not on n.

We can see here that the result obtained in the previous
section using the maximum effective resistance does not
give a good estimate of λ1. Consider in fact a Cayley
matrix with respect to the group ZN . It is rather intuitive
that the maximum effective resistance coincides with the
effective resistance between the two nodes that are at the
maximum graphical distance, and that this grows in N as
Rmax = kN , where k is a constant. The bound using the
effective resistance is hence

λ1 ≥ 1− 1/k

N
while the correct order is given by Theorem 4.3, and is

λ1 ≥ 1− C

N2
.

4.3 Bounds on the convergence rate for geometric graphs

In this section we analyze the essential spectral radius
of stochastic matrices consistent with a geometric graph



characterized by the parameters (Q, s, r, γ, ρ, N). The
analysis is similar to that proposed in Boyd et al. (2006).
In this paper, the authors consider the well known random
geometric graph in dimension d, which is a probabilistic
model for geometric graphs Gupta and Kumar (2000).
The authors show that the essential spectral radius of
stochastic matrices consistent with such graphs is, with
high probability, the same as the essential spectral radius
of stochastic matrices consistent with d-dimensional regu-
lar grids. Notice that the regular grids behave with respect
to the essential spectral radius similarly to Cayley graphs.
Here we show that a similar result holds for the class of
geometric graphs proposed here.

A lower bound The following theorem offers a lower
bound for the optimal stochastic matrix consistent with
a geometric graph G, namely the matrix having the lowest
essential spectral radius. Since this bound holds for the
optimal stochastic matrix, it will hold for any stochastic
matrix consistent with G.

Theorem 4.4. Consider a geometric graph G characterized
by the parameters (Q, s, r, γ, ρ, N). Then, if PG is the
row–stochastic, irreducible and aperiodic matrix consis-
tent with G which minimizes the essential spectral radius,
and we denote by ρ(PG) its value, it holds

ρ(PG) ≥ 1− C

N2/d
(20)

where C is a constant only dependent on the parameters
(s, r, γ, ρ), and on the nonzero entries of PG .

An upper bound The following theorem offers an upper
bound for the essential spectral radius of a stochastic
matrix consistent with a geometric graph. We assume that
all the nonzero entries of the stochastic matrix P lie in an
interval [pmin, pmax].

Theorem 4.5. Consider a geometric graph G characterized
by the parameters (Q, s, r, γ, ρ, N). Then, if P is a row–
stochastic, irreducible and aperiodic matrix consistent
with G, it holds

ρ(P ) ≤ 1− C ′

N2/d
(21)

where C ′ is a constant only dependent on the parameters
(s, r, γ, ρ), and on pmin.

5. TIME-DEPENDENT H2 COST

To introduce the time-dependent H2 cost we will refer to
a possible practical application of consensus, related to
static estimation. More details can be found in Garin and
Zampieri (2009). We assume that N sensors are deployed
in an environment and that they are all able to measure a
certain value θ, which is corrupted by noise, namely each
sensor i gets yi which is

yi = θ + ni, i = 1, . . . , N.

We assume that ni ∼ N (0, σ2). In order to improve the
value of the sensor estimates, we run a consensus setting
xi(0) = yi in order to average away the noise. Each sensor
knows xi(t) which can be considered an estimate that i has
of the parameter θ. We want to analyze the evolution of
the estimation error as a function of the time t, which can
be considered as a rough evaluation of the computational
and communication resources employed by the algorithm.

While for the rate of convergence, the increase of the
number of agents always yields a performance degradation,
this is not automatically true for the performance index
considered in this section. Indeed in this case a larger
number of sensors should cause, on the one hand, a
more difficult communication, but, on the other, a better
estimate. In this section we try to correctly highlight this
trade-off.

In order to do this, we take as measure of performance
the variance of the difference between the state x(t) and
the true value θ, normalized over the number of agents,
namely we want to compute

JH2
(P, t) =

1

N
E
[
e(t)Te(t)

]
(22)

where e(t) = x(t) − θ1. Observe that this is a good
performance metrics because E[e(t)] = θ, so the estimator
is unbiased.

It turns out that

JH2(P, t) =
1

N
Tr (PT )tP t =

1

N

∑
λ∈Λ(P )

|λ|2t

where the second equality holds if P is normal (e.g., if it
is symmetric).

No bounds for this cost are known for P consistent with
a generic graph. It is nonetheless known, in some special
cases, how to use the structure of the graph in order to
obtain bounds on such cost.

Example: de Bruijn’s graphs

In the case of de Brujin’s graphs with N = nk, we have

JH2(P, t) =


1

nt
, 0 ≤ t < k

1

N
, t ≥ k

(23)

so the finite time convergence of the algorithm to the
steady state can be seen also in such performance cost.
Notice, in fact, that JH2(P, t) ≥ 1

N for any P and any t.

5.1 Bounds on the H2 time-dependent cost for Cayley
graphs

We start from a simple example. Consider the following
consensus matrix

P =



1/3 1/3 0 · · · · · · 1/3
1/3 1/3 1/3 · · · · · · 0
0 1/3 1/3 1/3 · · · 0
...

...
. . .

. . .
. . .

...
0 · · · · · · 1/3 1/3 1/3

1/3 · · · · · · 0 1/3 1/3

 (24)

whose associate graph is shown in Fig. 1. The essential
spectral radius of P is 1 − C/N2. This shows that, as N
grows, the convergence of the algorithm tends to be very
slow. Nonetheless we expect that, in case of distributed
estimation, the presence of more sensors should instead
improve performance. Figure 4 depicts JH2

(P, t) as a
function of t, for various values of N .

For any fixed N , we have evolutions which exponentially
converge (with rate ∼ (1 − C/N2)) to a constant value
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Figure 4.H2 time–dependent cost, an example for a Cayley
graph.

1/N . The different curves become lower as N grows, and
their envelope, which corresponds to the limit for N →∞,
converges to zero for t→∞.

The bounds stated below for general Cayley matrices
show that indeed the asymptotic behavior of JH2

(P, t)

in this example is given by max
{

1
N ,

1√
t

}
. In particular,

limN→∞ JH2(P, t) converges to zero as 1/
√
t. This result

shows that increasing N does not have the disadvantages
predicted by observing that the essential spectral radius of
P tends to 1 as N tends to infinity. Nevertheless, a further
look at Figure 4, gives a caveat against the choice of too
large values of N . Indeed, when the number of iterations
t is finite, there is a bound on the number of nodes being
truly useful, after which there is no improvement in adding
new nodes. This is intuitive, as at time t there is no way
for a node to use information coming from other agents
further than t steps apart.

We give now the general result which has been proposed in
Garin and Zampieri (2009). Consider the group G = Zdn.
Consider a class of Cayley graphs with respect to the group
Zdn where we assume the dimension d fixed and n variable.
Let δ be a positive constant such that (i, j) is an edge of
the graph only if ||j − i|| ≤ δ Assume that in the Cayley
graphs there are the self loops and assume moreover that
they are strongly connected.

Theorem 5.1. Let P be a stochastic Cayley matrix with
respect to the group Zdn whose associate graph is in the
previous class of Cayley graphs. Then

C max

{
1

N
,

1

td/2

}
≤ JH2

(P, t) ≤ C ′max

{
1

N
,

1

td/2

}
,

(25)
where two constants, C and C ′ depend on d, δ and on the
minimum and the maximum values of the nonzero entries
of P , but not on n and t.

6. H2 COST

The performance cost we are going to present and analyze
in this section arises in a consensus problem with additive
noise Bamieh et al. (2009); Carli et al. (2009); Frasca
et al. (2008). Consider a consensus iteration corrupted by
additive noise

x(t+ 1) = Px(t) +w(t),

in which w(t) is an i.i.d. process with zero mean and
variance E[w(s)w(t)T ] = Rδst, where δst is the Kroenecker
delta function. For sake of simplicity, assume R = I.
Assume moreover x(0) and w(s) are uncorrelated for all
s ≥ 0. Define the error from the actual average as

x̃(t) = x(t)− xA(t) := x(t)− 1

N
11Tx(t) = Ωx(t)

where Ω = I − 1
N 11T . The vector x̃(t) is the dispersion

of x(t) around its center of mass and so it describes
the distance from consensus. A reasonable performance
metrics is given by

JH2(P ) =
1

N
lim sup
t→∞

E[||x̃(t)||2],

Observe that

x̃(t) = P tx̃(0) +

t−1∑
i=0

P t−1−iΩw(i)

and thus, if x(0) is zero mean, E[x̃(t)] = 0, ∀ t ≥ 0.
Denote by Σ(t) = E[x̃(t)x̃(t)T ] the variance of the error.
Notice that JH2

(P ) = Tr Σ(∞). The matrix Σ(t) can be
computed as follows

Σ(t) = P tΣ(0)(PT )t +

t−1∑
i=0

P iΩΩT (PT )i.

Since ΩΩT = Ω and since P tx̃(0) converges to zero, we
can argue that

Σ(∞) =
∑
t≥0

P tΩ(PT )t.

and hence

JH2
(P ) =

1

N
Tr
∑
t≥0

P tΩ(PT )t. (26)

If P is symmetric, the previous cost can be rewritten as

JH2
(P ) =

1

N

∑
λ∈Λ(P ), λ 6=1

1

1− |λ|2
. (27)

This cost can be used to describe a different feature
of the consensus algorithm. In classic control a way to
describe the transient performance of a control system is
through the position of the dominant eigenvalue. This is
analogous to taking the essential spectral radius of P as a
performance index of the consensus algorithm. In control
however there are other choices of indices for evaluating
the transient of a control system, such as, for instance, the
L2 norm of the error. If we do the same for the consensus
algorithm, namely we take the usual consensus iteration
(1), we assume that the initial state x(0) is a random
variable with E[x(0)x(0)T ] = I and we take the index

1

N

∑
t≥0

E[x(t)− x(∞)]22 =
1

N

∑
t≥0

E[x̃(t)]22,

It can be shown that this cost coincides with
1

N
Tr
∑
t≥0

(PT )tΩP t.

which, in case P is symmetric, is the same as (26).

6.1 Bounds on the H2 cost for Cayley graphs

Concerning Cayley graphs, from Carli et al. (2009) we
know the following interesting result. Consider the group



G = Zdn. Consider a class of Cayley graphs with respect to
the group Zdn where we assume the dimension d fixed and
n variable. Let δ be a positive constant such that (i, j)
is an edge of the graph only if ||j − i|| ≤ δ Assume that
in the Cayley graphs there are the self loops and assume
moreover that they are strongly connected.

Theorem 6.1. Let P be a stochastic Cayley matrix with
respect to the group Zdn whose associate graph is in the
previous class of Cayley graphs. Then

Cdf(N, d) ≤ JH2
(P ) ≤ C ′df(N, d) (28)

where

f(N, d) =


N, d = 1

logN d = 2

1, d ≥ 3

,

where the two strictly positive constants, Cd and C ′d
depend on d, S and on the minimum and the maximum
values of the nonzero entries of P , but not on n.

6.2 Electric analogy and bounds on the H2 cost for
geometric graphs

Recall from Section 3 that there is a relation between
a symmetric stochastic matrix and a suitable electrical
network. In particular, by exploiting the relation between
the effective resistance and the Green matrix of the electric
network, we obtain the following theorem. For the details
and the proof of the theorem see Lovisari et al. (2010). A
similar result, applied to a different problem, can be found
also in Ghosh et al. (2008).

Theorem 6.2. Given a stochastic, symmetric, aperiodic
and irreducible matrix P , the associated LQ cost defined
in (26) is equal to

JH2
(P ) = R(GP 2 , P 2) :=

1

N2

∑
u6=v

Ruv(GP 2 , P 2). (29)

Namely, JH2(P ) is the average of the effective resistances
in a network build from P 2.

The result of this theorem can be indeed significantly sim-
plified using the following argument. Assume that all the
nonzero entries of P lie in an interval [pmin, pmax] and that
the maximum degree of the agents in the network is dg.
By exploiting the properties of the effective resistance (see
Doyle and Snell (1984); Barooah and Hespanha (2005))
it is possible to bound from above and from below the
average effective resistance R(GP 2 , P 2) in the following
way

c1R(GP ) ≤ R(GP 2 , P 2) ≤ c2R(GP ),

whence the cost is bounded by

c1R(GP ) ≤ JH2
(P ) ≤ c2R(GP ). (30)

In these inequalities c1 and c2 denote two strictly positive
constants depending only on pmin, pmax and dg, andR(GP )
denotes the average effective resistance in an electrical
network whose graph is that associated with P and having
all resistances set to 1 Ohm. This result is particulary
interesting because we can focus our attention to the graph
GP , rather than on the particular matrix P . Indeed, we can
achieve in this way the following result.

Theorem 6.3. Assume P to be a stochastic, symmetric,
aperiodic and irreducible matrix, associated with a geo-
metric graph GP = (V, E) characterized by the parameters

(Q, s, r, γ, ρ, N). Assume moreover that all the nonzero
entries of P lie in an interval [pmin, pmax]. Then

C1f(N, d) ≤ JH2
(P ) ≤ C2f(N, d) (31)

where

f(N, d) =


N, d = 1

logN d = 2

1, d ≥ 3

,

and where the two strictly positive constants C1 and C2

depend only on Qs, r, γ, ρ, pmin and pmax.

The proof of the theorem is based on the following rea-
soning. Consider a geometric graph which satisfies the
assumptions in Theorem 6.3. Then there exist two regular
Cayley-type graphs, L1 and L2 (intuitively, a rougher and
a finer version of GP ), such that

k1 + q1R(L1) ≤ JH2
(P ) ≤ k2 + q2R(L2), (32)

where q1, q2, k1 and k2 depend on s, r, γ, ρ, and on
pmin and pmax only. Theorem 6.3 is thus derived from
Theorem 6.2 and Theorem 6.1 by estimating R(L1) and
R(L2) as the cost of Cayley graphs.

7. KALMAN FILTER

In this section we present again an estimation algorithm
based on consensus, but, differently from what we did in
the previous sections, we switch from the static to the
dynamic case. This application of the consensus algorithm
can be found in Carli et al. (2008a). In this paper, the
authors consider a set of N agents measuring a random
walk corrupted by noise{

x(t+ 1) = x(t) + w(t)

yi(t) = x(t) + ni(t)
(33)

where w(t) and n(t) are zero mean i.i.d. gaussian processes
with E[w(t)2] = q and E[ni(t)

2] = r. We assume moreover
that x(0) is a zero mean gaussian random variable with
E[x(0)2] = σ2 and that E[w(t)x(0)] = E[ni(t)x(0)] = 0 for
all t ≥ 0 and for all i = 1, . . . , N .

We assume each agent i has in its memory an estimate
x̂i(t) of x(t) and that the agents can communicate only
through an assigned communication graph G = (V, E). In
order to update its estimate x̂i(t) using measurement yi(t)
and merging information from the other nodes, three steps
are proposed:

• Prediction step: each agent propagates its state one
step ahead, obtaining x̂Pi (t) = x̂i(t);
• Estimation step: each agent updates its estimate us-

ing its measurement by computing a convex combi-
nation of x̂Pi (t) and yi(t)

x̂Ei (t) = (1− `)x̂Pi (t) + `yi(t)

• Communication step: in the centralized algorithm,
it can be shown that the optimal way to combine
all the estimates is to average over them. In the
proposed algorithm, the agents combine the estimates
performing a number of a consensus iterations

x̂(t+ 1) = Pmx̂E(t)

where we stacked all the estimates x̂Ei (t) and x̂i(t+1)

in the vectors x̂E(t) and x̂(t+ 1). The value m is the
number of times the agents are allowed to exchange
information between two measurements.



Notice that for this model the prediction step is irrelevant.
The estimation is thus described by the following iteration

x̂(t+ 1) = (1− `)Pmx̂(t) + `Pmŷ(t). (34)

At first glance, one could take as performance cost just the
second eigenvalue of P and assume m is large enough. In
this way, during the time interval between two measure-
ments, the estimates are able to converge to the centralized
estimate, which is the optimum.

However, a more natural performance index can be con-
sidered. Let x̃(t) := x̂(t) − x(t)1 be the error between
the estimates and the value to be estimated. Let Σ(t) :=
E[x̃(t)x̃(t)T ] be the error covariance matrix. Then we
define

JK(P,m) := lim sup
t→∞

Tr Σ(t).

We try now to evaluate JK(P,m). Assume for sake of
simplicity E[x(0)] = 0 and E[x(0)2] = 1. Then is easy
to see that E[x̃(t)] = 0 and that Σ(t) evolves according to
the following equation

Σ(t) = (1− `)2t11T + q

t−1∑
s=0

(1− `)2s11T

+ r`2
t∑

s=0

(1− `)2sP (s+1)m(PT )(s+1)m.

Therefore we have that

JK(P,m) =
q

1− (1− `)2

+
r`2

N

∑
s≥0

(1− `)2s TrP (s+1)m(PT )(s+1)m

and so, using the fact that P is symmetric, we can argue
that

JK(P,m) =
q

1− (1− `)2
+
r`2

N

∑
λ∈Λ(P )

|λ|2m

1− (1− `)2|λ|2m
.

Observe now that, similarly to what happen to the H2

costs, JK(P,m) depends on the entire spectrum, not only
on the second largest eigenvalue. Observe moreover that
the parameter m in the index JK(P,m) plays a similar role
played by the parameter t in the cost JH2

(P, t) presented
in Section 5. In fact, by the trivial fact that 0 ≤ |λ|2m ≤
1, ∀λ ∈ Λ(P ), we can easily obtain

JK(P,m) ≥ q

1− (1− `)2
+
r`2

N

∑
λ∈Λ(P )

|λ|2m

JK(P,m) ≤ q

1− (1− `)2
+

r`2

N(1− (1− `)2)

∑
λ∈Λ(P )

|λ|2m

and so we can conclude that there exists three constants
depending only on the variances of process and measure-
ment noises, and on the gain `, such that

k1 + q1JH2
(P, m) ≤ JK(P,m) ≤ k1 + q2JH2

(P, m).

For this reason we can use the bounds we know for
JH2

(P, t) for also analyzing the cost JK(P,m).
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