
Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria
Doctoral Programme In Information Technology

Automatic Model Simplification

for Continuous and Discontinuous Systems

Doctoral Dissertation of:
Alessandro Vittorio Papadopoulos

Advisor:
Prof. Alberto Leva

Tutor:
Prof. Marco Lovera

Supervisor of the Doctoral Program:
Prof. Carlo Fiorini

2013 - XXVI

Acknowledgements

Many people helped and encouraged me in the last years, and if I managed
to reach this goal, it is only thanks to them.
First of all, I would like to thank my advisor Alberto. He has been a

great supervisor, mentor and man. The most important thing that he taught
me is to be a good researcher.
I would like also to thank Francesco. His help and his intelligence have

been of fundamental importance for the development of the core parts of
this work, especially the long discussion that we had in Vienna, which put
the basis of the first contribution of the thesis.
My stay in Lund totally changed my life, and made me grow up as a

researcher, also thanks to Johan, who not only gave me many opportunities
and fruitful contacts, but also great ideas and advices.
A special thanks goes also to Maria. She helped me a lot during those last

years, and she worked side by side with me to some parts of this dissertation,
continuously inspiring me with her great talent and precision. Moreover, she
has become more than a colleague, I would say a very good friend.
Speaking about friends, I would like to thank all the postdocs, PhD stu-

dent, and colleagues that I met in the last years, especially (in alphabetical
order) Andrea M., for all the laughs we had together, Daniela, for the deep
discussions about life, future and whatever, Fabio, who has become one of
my best friends, Marcello, for the long discussions at lunch time, Marco B.,
for the videos that we used to exchange, last but not least, Martina, who has
been (and will be) my PR, and who has been really inspiring for me, apart
from an undoubtedly good friend.
I would like to thanks also my friends Bea, Chiara and Carlotta, that

have been with me for more than ten years, always supporting and loving
me. Thanks Martina for always believing in me.
Finally, I would like to thank my family, especially my sister, who en-

couraged me a lot to make the big step of moving abroad. I am missing all
of you, and I will love you forever.

i

ii

I would really like to thank many other people, and since I am writing
these acknowledgements quite in a rush, I will forget someone for sure.
Sorry for that.

Alessandro,
Lund (SE), January 31st , 2014

Abstract

In the last years equation-based languages straightened and simplified the
way sophisticated models of complex physical systems are built. In partic-
ular, the object-oriented modelling paradigm allows to obtain such models
in an affordable way by focusing on the development of single “building
blocks,” i.e., the objects, and connecting them so as to obtain the overall de-
scription of the physical system. This often results in large and complicated
models, hard to simulate and in general to manage. The aim of the research
path to which this work belongs, is to provide methodologies and automatic
techniques to cope with said complexity, in order to simplify and streamline
the model analysis and simulation.

In the context just sketched, the thesis proposed several contributions.
The first one is the development of a simplification framework which in-
cludes most of the model manipulation techniques available in the litera-
ture and novel ones. Functional to this contribution is the proposal of a
technique called “Cycle Analysis”, able to perform a structural analysis of
a DAE system, and return a dependency graph representing the way the
dynamic variables are interacting, associating with each dynamic variable a
time scale. Such information can be used to ease and automate the partition
of a complex model into decoupled subsystems.

Novel indices are introduced to characterise some structural properties
of the system, like its stiffness, and to quantify “how much” a system is
suited to be partitioned in the sense above. Also, the results of the Cycle
Analysis are used for improving the simulation efficiency bymeans of mixed-
mode integration methods, and of a co-simulation (multi-rate) architecture,
showing the effectiveness of the approach on some applications of interest.

In addition, an extension to classical model order reduction techniques
conceived for continuous systems is here proposed for hybrid ones, focusing
on the switched affine case.

As a result of the above contributions, and moving from the methodolog-
ical to the technological side of the addressed matter, the integration of the

v

vi

proposed simplification framework in state-of-the-art modelling and simu-
lation tools is here considered, providing a viable and complete solution.

Riassunto

Negli ultimi anni, i linguaggi di modellazione basati su equazioni hanno sem-
plificato il modo di costruire modelli sofisticati di sistemi fisici complessi. In
particolare, il paradigma di modellazione object-oriented permette di ottene-
re tali modelli con uno sforzo accettabile, concentrandosi sullo sviluppo dei
singoli “blocchi costitutivi,” vale a dire, gli oggetti, e collegandoli in modo
da ottenere la descrizione del sistema fisico complessivo. Questo spesso si
traduce in modelli di grande dimensione e complessità, difficili da simulare
e, in generale, da gestire. L’obiettivo del percorso di ricerca a cui questo
lavoro appartiene è quello di definire metodologie e tecniche automatiche
per affrontare la suddetta complessità, al fine di semplificare e razionalizzare
l’analisi del modello e la sua simulazione.

Nel contesto appena delineato, questa tesi propone diversi contributi. Il
primo è lo sviluppo di un framework di semplificazione in grado di com-
prende la maggior parte delle tecniche di approssimazione disponibili in
letteratura oltre ad altre nuove. Funzionale a questo contributo è la proposta
di una tecnica chiamata “ Cycle Analysis,” in grado di eseguire un’analisi
strutturale di un sistema algebrico-differenziale e di restituire un grafo di
mutue dipendenze che rappresenta il modo in cui le variabili dinamiche
interagiscono, associando ad ogni variabile dinamica una scala temporale.
Tali informazioni possono essere utilizzate per facilitare e automatizzare la
partizione di un modello complesso in sottosistemi disaccoppiati.

Nel lavoro vengono anche introdotti indici innovativi in grado di ca-
ratterizzare alcune proprietà strutturali del sistema, come la sua stiffness, e
di esprimere “quanto” un sistema si presta ad essere partizionato. Inoltre,
i risultati della Cycle Analysis sono utilizzati per migliorare l’efficienza di
simulazione mediante metodi di integrazione mixed-mode e di un’architet-
tura co-simulazione (multi-rate) che mostra l’ efficacia del metodo in alcune
applicazioni significative.

Si propone inoltre un’estensione per tecniche di riduzione d’ordine clas-
siche, concepite per sistemi continui, al caso di sistemi ibridi, concentrandosi

vii

viii

sul caso switched affine.
Come risultato dei contributi di cui sopra, e spostando l’attenzione dal

lato metodologico dell’argomento a quello tecnologico della questione affron-
tata, il lavoro tratta l’integrazione del framework di semplificazione proposto
in tool di modellazione e simulazione corrispondenti all’attuale stato dell’arte,
fornendo una soluzione valida e completa.

Contents

1 Introduction and background 1

1.1 Dynamic modelling and simulation 2
1.2 Modelling and simulation technologies 4

1.2.1 General concepts . 4
1.2.2 A brief overview of current tools 5
1.2.3 A brief review of modelling languages and paradigms 9

1.3 The life cycle of a simulation model 14
1.4 The enabling power of simplification 18
1.5 Motivation and contributions of the thesis 19

2 Related Work and Problem Statement 23

2.1 Literature review . 23
2.1.1 The Modelica compilation and simulation process . 23
2.1.2 The manipulation toolchain: a novel view 26
2.1.3 Alternatives Approaches 27
2.1.4 A Brief Comparison 29
2.1.5 “Simpler models” from the modeller viewpoint . . . 30

2.2 Model simplification from a general viewpoint 34
2.2.1 Terminology and preliminary definitions 34

3 Dynamic Decoupling 37

3.1 Introduction . 37
3.2 Dynamic decoupling . 39
3.3 Cycle analysis . 41

3.3.1 Preliminaries and definitions 41
3.3.2 The analysis technique 45
3.3.3 A possible analysis implementation 47
3.3.4 Cycle analysis and eigenvalue analysis 48

3.4 Separability indices . 53
3.4.1 Separability analysis 56

ix

x CONTENTS

3.4.2 Exploiting the partition 57
3.5 Mixed-mode integration . 58

3.5.1 Exploiting by integration methods 58
3.5.2 Exploiting by simulation architecture 62

3.6 Application-oriented remarks 64

4 Dynamic Decoupling: simulation examples 69

4.1 DC motor . 69
4.2 Mechanical system with brake 72
4.3 Triangle of masses . 76
4.4 Counterflow heat exchanger 80
4.5 Power supply with electric loads 86
4.6 Discussion . 89

5 Model Order Reduction for Hybrid Systems 91

5.1 Balanced truncation for linear systems: a brief review 92
5.2 Modeling framework . 94
5.3 System reduction . 95

5.3.1 Reformulation of the SA system as a SL system with
state reset . 96

5.3.2 Reduction of the SL system 97
5.3.3 Reconstruction of the SA system output 102

5.4 A randomised method for model order selection 102
5.5 A numerical example . 105

5.5.1 Model description 106
5.5.2 The switching control policy 107
5.5.3 The considered system 107
5.5.4 Proposed model reduction method 110
5.5.5 Discussion . 110

5.6 Concluding remarks . 112

6 Model manipulation toolchain 115

6.1 The manipulation process 115
6.2 Advantages and disadvantages of EOO languages 117
6.3 The technological solution: Functional Mockup Interface . . 118
6.4 An example toolchain implementation 120
6.5 A Unifying Manipulation Toolchain 120

7 Conclusion and open problems 125

7.1 Open problems . 126
7.2 Future work . 126

CONTENTS xi

A Additional Examples on Dynamic Decoupling 129
A.1 Automotive suspension . 129
A.2 Double-mass, triple spring-damper 133
A.3 A small smart grid . 137

Bibliography 141

Chapter 1

Introduction and background

Computer simulation is nowadays a fundamental activity in the day by day
work of scientists and engineers, who are respectively focused on observing
and understanding the world, and on devising and designing technological
solutions to improve it. Both attitudes and professions require to turn knowl-
edge, comprehension, and ingenuity into something quantitative, so as to
verify the correctness of explanatory theories for the observed phenomena,
and to aid the decision processes that permeate any design activity.
In the scientific and technical literature, the task of creating suitable rep-

resentations of the world for purposes like those just mentioned, is called
modelling. The task of employing models to provide the required quantita-
tive data is conversely called simulation.

“
The process of modeling concerns itself with the extraction of
knowledge from the physical plant to be simulated, organiz-
ing that knowledge appropriately, and representing it in some
unambiguous fashion.

Cellier and Kofman [2006]

This dissertation is part of a long-term research on modelling and sim-
ulation. The particular problem addressed herein is that of aiding the scien-
tist/engineer (hereinafter “the modeller” or “the analyst” to better evidence
the aspects of her/his activity that are of concern for this work) obtain mod-
els with exactly the complexity degree that is adequate for answering the
numerous and different questions arising along a scientific or engineering
process.
Assuming that the model of the phenomena of interest is initially created

at the maximum conceivable complexity degree, obtaining from this single
model all those required to answer the numerous questions above, is a matter
of simplification. We could thus say, at least at the introductory level of this
chapter, that this thesis is concerned with model simplification.

1

1. Introduction and background

Quite intuitively, however, the simplification problem has a number of
facets. Some of these are related to the nature of the phenomena to be
handled. Others conversely refer to the technology and tools used for mod-
elling and simulation. Others, finally, come from the necessity of making
the power of modelling and simulation, which ultimately relies on very so-
phisticated mathematical concepts, available to analysts who are experts of
the addressed physical domain, not of the mentioned mathematical theories.
We could further specify the scope of this thesis as devising simplification
techniques that are general with respect to the physical domain, easy to inte-
grate in state-of-the-art tools, and as transparent as possible for the analyst.
The rest of this chapter is devoted to giving a more precise and formally

qualified idea of the concepts exposed above in a very abstracted way. To
this end, it is first necessary to introduce the fundamental concepts of dy-
namic modelling and simulation, and then describe how modern modelling
and simulation tools are conceived and what are their present technological
development trends. This will lead us to discuss the life cycle of a dynamic
simulation model in the context of scientific and engineering projects, and as
a consequence, to evidence the parts of that life cycle that naturally appear
of interest for the application of model simplification techniques. Once, this
introductory excursus is completed, the chapter ends by outlining which of
the mentioned aspects are the subject of the presented research, and conse-
quently by describing how the rest of the thesis is organised.

1.1 Dynamic modelling and simulation

In extreme synthesis, modelling means writing the equations that rule the
phenomena of interest. Some of these equations will invariantly be differen-
tial. As a consequence, the most natural form of a model for our purposes
is that of a Differential and Algebraic Equation (DAE) system. Also, given
the presence of differential equations, the solution of such a system for given
initial conditions and exogenous stimuli, the computation of which is dy-
namic simulation, will invariantly require integration, most frequently to be
performed numerically given the complexity of the encountered problems.
The adjective “dynamic” attributed to the considered systems indicates that
their condition at any particular moment in time depends on the past his-
tory of exogenous stimuli, and on the initial condition of the system itself.
For brevity, we shall sometimes omit the adjective dynamic, but the reader
should bare in mind that many system of scientific and engineering interest,
enjoys that property.
Modelling and simulation are important in a huge number of contexts.

2

1.1. Dynamic modelling and simulation

Just to give some examples, much of climate science is wholly based on sim-
ulation models, that given the impossibility of obtaining certain experimental
data are sometimes the only available decision aid. Simulation methods are
also common in various disciplines of social sciences, management [Pidd and
Carvalho, 2006], and what is more important for the purpose of this work,
in engineering applications. These range from energy systems [Casella and
Leva, 2003, Ordys et al., 1994], through robotics [Hast et al., 2009, Žlajpah,
2008], up to automotive [Arnold et al., 2011, Schmitt et al., 2009, Zimmer and
Otter, 2010] and virtually any field of modern engineering [Mattsson et al.,
1998].

Focusing for a moment on engineering, simulation models are nowadays
used to take decisions at virtually any stage of a project, and even to stip-
ulate and mutually assess the behaviour of parts being created by different
manufacturers before they are assembled, see, e.g., Blochwitz et al. [2012].

This evidences another relevant fact for this work. While in scientific
applications one has to observe, model and simulate existing objects, this
is very often not true in engineering, where modelling and simulation are
frequently used exactly to determine how something not yet existing has to
be. This is called “virtual prototyping”, and nowadays viewed as a powerful
means to achieve competitive advantages in the traditional product devel-
opment process. Specifically, for example, one may desire certainties on the
behaviour of (parts of) the system being designed as soon as possible, so as
to reduce – and ideally eliminate – iterative experimental tests interleaved
with the consequently decided and product modifications. Of course, real-
life product development cycles will always need some physical prototypes
for final evaluations, but by using a combination of virtual prototypes of
mathematical models, the development time can potentially be dramatically
shortened.

Moreover, virtual prototyping is often enormously faster and less ex-
pensive than physical prototyping, and opens the additional possibility to
conduct tests that would be simply financially unacceptable or even physi-
cal impossible on the real plant or product. For example, when developing
a control system for a landing gear of an aircraft, several engineers can test
their control system simultaneously by simulating a model of the landing
gear, instead of using direct access of a physical prototype. Sometimes, phys-
ical experiments can be even dangerous; for example, when testing “what-if”
scenarii on a power plant, the necessity of considering extreme operating
conditions makes it apparently preferable to use a simulation model.

Simulation can also significantly reduce the time-to-market of virtually
any product, providing a great industrial competitive advantage [Norton,

3

1. Introduction and background

2001]. In addition, at their most basic level modelling and simulation tools
enable engineers, designers and product developers to work together con-
currently within a virtual environment to solve design, manufacturing and
maintainability issues at the earliest stage of product development. Finally,
the mentioned tools often provide also a virtual reality, or more generally,
3D environment, capable to visualise the “real” behaviour of the product and
of its functionalities [Ferretti et al., 1999, Kunze et al., 2009].

1.2 Modelling and simulation technologies

Given the importance of modelling and simulation, that is testified by a huge
literature of which the previous section has just reported a few examples,
a great effort has been spent in the last decades in both the research on
mathematical methodologies and the development of effective technologies.

1.2.1 General concepts

When projecting the importance and the expected advantages of modelling
and simulation onto the work of scientists and engineers, in fact, one can
immediately notice that the mentioned evolution has essentially two conse-
quences, that are somehow conflicting with one another.
On one side there is the modelling part. Model creation and manage-

ment tools have been dramatically improving, and at present provide a lot
of different functionalities, and – more important – allow to construct ex-
tremely complex models on lightweight computational platforms, like, e.g., a
laptop, in an affordable way; just to give some examples of said tools, Matlab
and Modelica-based ones are among the most widely used in this direction,
both in academic and industrial contexts.
On the other side there is simulation, not only in the strict sense of

“integrating a dynamical system” stated above, but including also the set of
manipulation and solution techniques that “transform” the model into an
equivalent one suitable for the numerical solution. The need has become
more and more strong for such manipulation and solution techniques that
can run on the same platforms used for the modelling phase, and handle the
resulting large and complex models efficiently enough.
In fact, whereas modelling tools and languages ease the work of con-

structing complex models, there is hardly an adequate counterpart – in terms
of symbolic manipulation and simulation techniques – able to cope with the
resulting complexity in an effective way. In other words, in the present sce-
nario, the available computational resources often become the bottleneck of

4

1.2. Modelling and simulation technologies

simulation-based studies, and therefore achieving an efficient integration of
complex models becomes even more important.
Avoiding a detailed review that would stray from the scope of this intro-

ductory chapter, we could synthetically say that the situation just sketched
has given rise to various technological development lines, three of which are
worth mentioning in the context of this work.
The first line has been taking care of simplifying the creation of complex

models by allowing the analyst to aggregate models of individual compo-
nents, written independently of their possibly different roles in the various
aggregate systems that will contain them. Focusing on this aspect, has led to
the principles of equation-based object-oriented modelling [Mattsson et al.,
1998].
The second development line has been concerned with the creation or

reformulation of models that are in a form that is suitable for the numerical
solution, thus defining a prioriwhich are the input and the output variables—
typically ODE form. This approach thus deals with “oriented” or “causal”
models (all the mentioned terms will be extensively discussed later on) and
has given rise to block-oriented modelling [Danby and Harman, 2003].
Finally, the third line has been addressing the hardware and software

environments to host the solution of dynamic models, in a view to max-
imising simulation efficiency from the architectural point of view. The most
notable product of such developments is the number of co-simulation tech-
niques and environments proposed to date [Bastian et al., 2011, Schierz et al.,
2012].

1.2.2 A brief overview of current tools

As already mentioned, modern modelling and simulation tools provide a
set of functionalities that permit the analyst to build complex models in an
affordable way. Such tools gained a lot of attention in the last decades,
since the modeller just need to focus on how to create the models rather
than on how to simulate them, without requiring her/him to be an expert
in numerical analysis.
This has been possible thanks to the advances and to the evolution of

high-level programming languages, thanks to the improved compilers tech-
nologies and capabilities, and thanks to the software engineers and develop-
ers who (still) provide the tools that enabled this shift and abstraction from
the computing architecture.
In the early days, indeed, a huge proportion of the effort in a simulation

project involved getting a model into a computable form, so as it could be

5

1. Introduction and background

used in programming, testing and refinement, all activities for which the
modeller is not necessary an expert.

“
Anyone who has written a reasonably complex simulation pro-
gram in a language like FORTRAN or C++ knows the feeling
of relief when it seems to work properly—-and the all too com-
mon despair when a bug appears later. Eventually the simula-
tion software will be declared fit to its purpose, but behind this
will have been many bugs and development problems sorted
out one by one, in a laborious process of debugging and verifi-
cation.

Pidd and Carvalho [2006]

Nowadays, the existence of advanced modelling and simulation lan-
guages allows a modeller to take for granted that the simulation model will
run once it has been built, and that it is “semantically correct”, i.e., the pro-
duced results are the numerical integration of the equations—this concept
will be clarified better in the next chapters. Thanks to simulation tools,
the emphasis is thus on the conceptualisation and use of a model to think
through options for change or to develop insight. In other words, modern
simulation tools have shifted the emphasis from programming and software
development to modelling and model use.
On the market there is a number of different off-the-shelves modelling

and simulation tools, with different features and purposes. Some of them
are domain specific, e.g., Adams1 for multibody systems, or PSpice [Mon-
ssen, 2001] for electronic circuits, other are more general purpose and multi-
domain, e.g., Matlab [Hanselman and Littlefield, 2005], Simulink [Danby and
Harman, 2003], or Modelica-based tools [Fritzson, 2003] like Dymola2, JMod-
elica3 and OpenModelica4, and so forth. Whatever is the case, however
some common and general features of such kind of application can be iden-
tified.
In particular, a modelling and simulation tool must present the following

features.

• Modelling tools, such as

– A graphical and/or textual editor environment.

1www.mscsoftware.com/product/adams
2www.3ds.com/products-services/catia/portfolio/dymola
3www.jmodelica.org
4www.openmodelica.org

6

www.mscsoftware.com/product/adams
www.3ds.com/products-services/catia/portfolio/dymola
www.jmodelica.org
www.openmodelica.org

1.2. Modelling and simulation technologies

– Built-in functionalities and operators, and libraries with defined
properties and behaviour.

– Property sheets and visual controls to enable simulation param-
eters to be set and varied.

– Sampling routines and other utilities employed in the model.

• Tools to execute the simulation, such as

– A simulation engine to run a model.

– Animated graphics (e.g., plots or 3D visualisations) to allow a
user to view the model state as the simulation proceeds.

– Simulation run control to enable the user to interact safely with
the simulation as it runs.

• Tools to support experimentation, such as

– Experimental frames that define run lengths, outputs and pa-
rameters.

– Analysis tools that enable results to be interpreted and presented.

– Optimization tools or other add-ons.

• Links to other software such as spreadsheets, databases and corporate
systems.

Figure 1.1 sketches out all those features, representing the general soft-
ware architecture of a generic modelling and simulation tool.
Nonetheless, the resulting simulation software produced by the mod-

elling tool needs fulfilling some important properties, which are typical in
the software engineering domain [Ghezzi et al., 2002], and that are nowa-
days somehow implicitly assumed to hold true, thanks again to the afore-
mentioned advances in the back-end of modelling and simulation tools, that
made transparent to the user the model manipulation and the automatic
simulation code generation.
First of all, the simulation software should be dependable, i.e., it must be

able to deliver the intended functionality when requested without causing
danger or damages, and handling error conditions. In other words, the
simulation software must be reliable, available, safe, secure and robust in
the software engineering strict sense.
Second, the simulation software should be usable, i.e. it provides a

user-friendly interface, allowing different levels of utilisation, detection and
recovery from input errors. The simulation software must be easy to learn

7

1. Introduction and background

Core application

Graphical editor
(Designing the
model layout)

Rule editor
(Adding logic and data
to objects and connections)

Simulation engine

Code generators
Debuggers, interpreters
and/or compilers

General purpose (external)
programming languages

Modelling and Simulation
programming language

Application add-ons:
- Additional libraries
- Optimisers

- Output analysis tools
...

Figure 1.1: A typical modelling and simulation tool consists of a core appli-
cation, a wide range of add-ons, and the possibility of interfacing to some
external programming languages or data structures.

and operate, adaptable to specific purposes, and recoverable from user er-
rors. Even if this property may seem among the less important, it is among
the main factors determining the success/failure of any software tool.
Another important feature is themodularity, i.e., the ability to incremen-

tally build by composition functions, procedures, modules and components,
and to allow easy extensions to the produced software. Modularity is quite
important when dealing with complex engineering projects.
Finally, reusability, i.e., the ability to run on different configurations, be

composed with other programs and to communicate with packages of dif-
ferent vendors. This last feature has been underestimated for many years,
but recently gained a lot of importance, especially when dealing with co-
simulation environments. In fact, in this case defining communication and
exchange standards becomes crucial to compose different simulation soft-
ware to achieve a unique co-simulation environment.
While the first feature is strictly related to the modelling and simulation

tool back-end, the others are more related to the modelling language and to
the modelling and simulation front-end. In our opinion all those aspects are
important to evaluate the quality of a tool, and must not be underestimated.
Apparently enough, all the presented features are desirable in any mod-

elling and simulation tool, and under this viewpoint it seems that there is

8

1.2. Modelling and simulation technologies

little space for differentiation and customisation of one tool with respect
to the others. This is, however, far from being true. As will be shown
in the next sections, there exist a number of different modelling languages
and paradigms suited for simulation software accommodating different mod-
elling needs and contexts.

1.2.3 A brief review of modelling languages and paradigms

Even if there are some common features in the available tools a key role in
the diversification of the tools plays the modelling and simulation language.
In fact, there are different modelling paradigms induced by the programming
language of the specific tool.
The possible paradigms can be broadly classified into two classes

• Algorithm-based,

• Equation-based.

Algorithm-based are imperative programming languages, i.e., approaches
that consist in describing exactly which are the steps to achieve a desired
result from the input data. This kind of approach is the same paradigm used
for most of the programming languages, where programs are described with
looping structures and if-then-else statements.
Notable examples of this kind of languages are Matlab, Simulink (with

the corresponding open source alternatives Octave5, Scilab6, and XCos) and
LabVIEW7, apart from classical programming languages like, e.g., FOR-
TRAN and C++.
Another worth mentioning language is Python, which in the last years

offered many high performance open source libraries for numerical and sci-
entific computing. Among those libraries, NumPy and SciPy8 are the most
widely adopted and well-established. In particular, those libraries provide
high level “Matlab-like” functionalities, offering a very nice alternative to
Matlab, while additionally providing all the advantages of a general purpose
programming language, like Python. On the basis of those libraries, a lot of
very interesting and high-performance tools have been developed like, e.g.,
PySimulator [Pfeiffer et al., 2012] and Assimulo [Andersson et al., 2011, 2012]
for dynamic simulation, and Pyomo [Hart et al., 2012] for optimisation.

5www.gnu.org/software/octave
6www.scilab.org
7www.ni.com/labview
8www.scipy.org/

9

www.gnu.org/software/octave
www.scilab.org
www.ni.com/labview
www.scipy.org/

1. Introduction and background

Equation-based languages, on the other hand, are essentially functional
(or declarative) approaches. In this case, modellers just have to write the
equations and do not care how from those equations a simulation will be
carried out. In fact, in the computer science domain, functional program-
ming seeks to describe what one wants to achieve rather than specify how
to achieve it. In classical programming languages, this approach may seem
like the more confusing way to go about things, and that is the reason why
Lisp, Scheme, and Haskell have never really surpassed C, C++, Java and
COBOL in commercial popularity. But in the specific context of modelling
and simulation tools, this approach is nearer to the classical activity of the
modeller, which is more used to write the equations in terms of mass, energy
or momentum balance rather than on putting them in a computable form.
In addition, functional programming usually requires orders of magnitude
less code than imperative programming. That means fewer points of failure,
less code to test, and a more productive – and, many would say, happier –
programming life. As systems get bigger, this has become more and more
important.
Notable examples of this kind of languages are gProms Oh and Pan-

telides [1996] for chemical engineering, Modelica for multi-domain phys-
ical modelling, Modelyze [Broman and Siek, 2012], VHDL-AMS [Christen
and Bakalar, 1999] a hardware description language (HDL) with analog and
mixed-signal extensions.
A specific yet important class of equation-based languages are the equation-

based object-oriented languages, which gained a lot of attention in the last
years. The term object-oriented in equation-based object-oriented is not
used with exactly the same meaning as for the common object-oriented
programming languages. In fact, it is essentially used as opposite to a dif-
ferent modelling paradigm, i.e., the block-oriented one, which is related to
imperative paradigms.
To better explain the difference between the equation-based object-

oriented and the block-oriented paradigms, a fairly simple example is in
order. Consider the simple mechanical system with a mass, a spring and
a damper as represented in Figure 1.2, where u is the force applied to the
mass M, y is its position, while K and D are respectively the spring constant
and the damping factor.
The model is a second order dynamical system

Mÿ(t) = u(t)−Ky(t)−Dẏ(t)

and is obtained by simply applying the Newton’s law. If one wants to use
an equation-based object-oriented language, it is sufficient for having your

10

1.2. Modelling and simulation technologies

M

K

DD

u

y

Figure 1.2: Mass-spring-damper system.

model to simulate to write this equation with the syntax of the language of
choice, and you are done. For example, if Modelica is used, the model can
be written as in Listing 1.1.

Listing 1.1: Mass-spring-damper system in Modelica.

model massSpringDamper

// ...

equation

der(y) = ydot;

M*der(ydot) = u -K*y -D*ydot;

end massSpringDamper;

This kind of approach works on “acausal” systems, i.e., there is no direct
specification when writing the Newton’s law, or any other balance equation
of which is the input and which is the output.
On the other hand, if a block-oriented approach is to be taken, then

inputs and outputs become important. In the example, we can naturally
take the force u applied to the body as the input and the position y as the
output. Thus, in this simple, linear example, we can write the transfer
function from u to y as

G(s) =
Y (s)

U(s)
=

1

Ms2 +Ds+K

that can be represented, for example, by the block diagram in Figure 1.3a,
while the Simulink implementation of this block diagram is represented in
Figure 1.3b.
Apparently, the Simulink implementation is practically identical to the

block-diagram representation, and this is why Simulink is considered to be
a Block-oriented language.

11

1. Introduction and background

1

Ms

1

s

D

K

u(t) + + Mÿ(t) ẏ(t) y(t)

−−

(a) Block diagram

Transfer Fcn1

1

s

Transfer Fcn

1

M.s
Step Input

Spring

K

Scope

Damping

D

(b) Simulink scheme

Figure 1.3: Mass-spring-damper block diagram with Simulink implementa-
tion.

Even in this very simple example, this way of modelling is somehow
counter-intuitive, at least with respect to equation-based languages, which
is in general closer to the way of thinking of a modeller.
Things become more difficult when a (slightly) more complex system is

taken. Consider, for example, an electrical circuit with a current source, a ca-
pacitor, an inductor and a nonlinear (static) component connected as shown
in Figure 2.3; the nonlinear component is ruled by the static constitutive law
vnl = ı2.

u

L

vL

ıL

C vC

ıC

NL vnl

Figure 1.4: Electrical circuit.

12

1.2. Modelling and simulation technologies

The same model can be easily obtained by using the equation-based
object-oriented approach [Fritzson, 2003], i.e., each electrical component cor-
responds to an object made of its constitutive laws, and writing the balancing
equations. Starting from those objects, the components can be connected
as in an analogous way as in Figure 2.3. To this end, many libraries are
available, e.g., the Modelica Standard Library (MSL) contains a package for
electrical components. However, one can also want to write its own model,
by following the classical modelling approach, thus writing the equation.
The model associated with this circuit can be easily written by applying

the Kirchhoff’s circuit laws and using the constitutive laws of the compo-
nents, yielding

ıC =C
dvC

dt

vL = L
dıL

dt

vnl = ı2L

u− ıL − ıC = 0

vC − vL − vnl = 0

(1.1)

If an equation-based language is used to model this circuit, it is sufficient
to write the set of equations (1.1) with the syntax of the language of choice,
and the back-end of the tool will be in charge to manipulate the set of equa-
tions to put it in a suitable form for simulation. For example, if Modelica is
used, the model can be written as in Listing 1.2.

Listing 1.2: Electrical circuit in Modelica.

model electricalCircuit

// ...

equation

// Constituitve laws

iC = C*der(vC);

vL = L*der(iL);

vNL = iL^2;

// Kirchhoff's circuit laws

u -iL - iC = 0;

vC -vL - vNL = 0;

end electricalCircuit;

On the other hand, however, if a block-oriented approach is taken, the
system must be “causalised”, i.e., an input and an output must be chosen,

13

1. Introduction and background

then everything must be turned into a block diagram representation. A
Simulink scheme of model (1.1) is shown in Figure 1.5.

Transfer Fcn1

1

L.s

Transfer Fcn

1

C.s

Step ScopeNL

u^2

Figure 1.5: Simulink scheme of the electrical circuit.

Once again the block-oriented approach seems not to be the most in-
tuitive for modelling purposes, and definitively different from the original
electrical scheme of Figure 2.3. It is quite difficult to see the physical coun-
terpart of the model, and hardly any person except of the modeller itself
would understand exactly the model of what is represented in the scheme.
On the other hand, however, it is worth saying that the block-oriented

paradigm is the most common when dealing with control systems, where
everything is naturally conceived as a block diagram, yet living on a more
abstract level than the physical modelling domain.

1.3 The life cycle of a simulation model

It should be evident that in modern engineering, simulation models are not
created sparingly to last for only some spot activity, but are important actors
along the life of a project. It is therefore legitimate to talk about the life cycle
of a dynamic model, as analysing this particular matter provides insight on
where and how simplifying techniques are best applicable and most effective
for the enhancements of the achievable advantages.
A first important remark is that model complexity is strictly related to its

purpose, i.e., to the type of decisions to be taken. Most likely, if one asks an
engineer what does the life cycle of a simulation model look like, the answer
will be that there is no such thing as a unique model traversing a life cycle,
but rather a plurality of models created to answer different questions on the
same object.
In the opinion of the author, the importance of modelling throughout a

project and the typical view on purpose-specific models just sketched, are
apparently dichotomic, or better, evidences a gap between the way mod-
elling is viewed in abstracto in the context of a project, and the way models

14

1.3. The life cycle of a simulation model

are implemented to fulfil the emerging necessities. More specifically, in the
sentence above “modelling” is viewed as the conceptual activity of defining
which questions need to be answered by means of simulation, as the project
progresses toward maturity. On the other hand, in the same sentence, for
“models” we mean the software programs that have to be run to actually
obtain the mentioned answers [Sargent et al., 2006].
If we look at the matter from the abstract side of modelling – in the sense

above – a life cycle can in fact be outlined, and this is the purpose of this
section. It is however worth anticipating that with the technology available
to date, creating the models for each stage of that life cycle more or less
means starting their development from scratch. It should be thus evident
that there is a strong need for some “vertical” modelling framework by which
the analyst can maintain a single for the entire project, and automatically
obtain from it all the specialised models for the required simulation studies.
Fulfilling this need is a formidable task, extending far beyond the scope

of this dissertation. However, as will be explained in the following, model
simplification techniques are an enabling factor for solving the problem.
Let us therefore disregard for this section the way individual models are

realised, and concentrate on the modelling life cycle.
In general, the typical project life cycle for simulation models can be

synthesised as presented in Robinson [2001], where the author describes
simulation as facilitation. In doing so a life cycle model is proposed based
on the work of Lane and Oliva [1998] in system dynamics (see Figure 1.6).

Stage 1 Stage 2 Stage 3

Conceptualisation Model development Facilitation

Problem situation expressed
Identify modelling objectives
Conceptual modelling

Model coding
Verification

Complete model validation
Calibration

Group learning
Identifying key findings
Making recommendations

Validation

Figure 1.6: Life-Cycle Model for Simulation as Facilitation as described
in Robinson [2001].

The key processes identified in the modelling and simulation life cycle
are: conceptualisation, model development and facilitation. Under each of
those, there is a number of sub-processes which require different levels of
model abstraction. Iteration between the stages is shown through the double
arrows. Validation is identified as a continuous process that is carried out

15

1. Introduction and background

throughout the life cycle, albeit that there is a specific phase where validation
of the complete model takes place.
To provide an example of how the exposed concepts can appear in

practice, suppose that the addressed project is the design of a controller.
The use of simulation models in typical control engineering applications is
depicted in Figure 1.7. Iteration among the different stages are possible, and
quite common, for example due to requirements or design refinement.

Conceptual
Analysis

Design model
ẋ = f (x,u)

Control design
u = ϕ(y◦− y)

Control
Assessment

Detailed
simulation model

Control refinement
(saturations, init, ...)

Validation and
Verification

HW-in-the-loop
simulation

Prototype controller
(HW platform, OS, ...)

Deployment
Physical
plant

Deployed controller
(e.g., with watchdog)

Figure 1.7: Typical control engineering simulation model life cycle.

The first stage is the conceptual analysis, in which quite a simple model
is required for control design purposes, i.e., a design model, possibly having
some specific structure or family of models, and able to capture the main
dynamics of the physical process to be control. This is usually obtained by
means of black- or grey-box identification techniques on the basis of some
experimental data [Ljung, 2001]. Based the obtained model, a controller is
thus designed.
When a controller is designed, a more accurate model is thus needed for

control assessment, so as to test the control system robustness in silico, i.e.,
by means of simulations using different scenarii, e.g., set-point following or
disturbance rejection. The simulation model must be as accurate as possi-
ble, also accounting for most of the unmodelled dynamics of the one used in
the design phase. This accurate model is usually a first principle one, and it
is obtained on the basis of physical considerations and of conservation laws,
possibly with the support of some modelling tools like, e.g., Modelica [Fritz-
son, 2003]. In addition, in this phase also the controller is complicated by

16

1.3. The life cycle of a simulation model

considering saturations, initialization problems, and so on. Due to the com-
plexity of this simulation model, and to the non-criticality in terms of time of
this phase, it is acceptable to spend a significant amount of simulation time
to test the different scenarii. Moreover, the design and assessment phases
can be iterated many times until all the project specifications are fulfilled.

The following phase is thus the validation and verification one, which
not only accounts for all the unmodelled dynamics or behaviours in the
design phase, but also some other implementation details. In this case a
hardware-in-the-loop simulation must be performed, including all the limi-
tations and introduced by the controller hardware, and computational limits,
to test the feasibility of the project before installing the controller on the real
plant.

Finally, the designed and validated controller can be deployed on the
physical plant, which can be for example endowedwith a watchdogmonitor—
typical in safety-critical applications in order to prevent faults and damages
to the plant and to the rest of the environment [Cellier and Kofman, 2006].
In fact, a watchdog monitor of a nuclear power station reasons about the
sanity of the plant. It has some knowledge of how the plant is supposed to
operate, and looks out for significant discrepancies between expected and
observed plant behaviour. To this end, the watchdog monitor maintains a
model of the power plant that it runs in parallel with the real plant, com-
paring its outputs to the measurement data extracted from the real plant.
The watchdog monitor thus contains a real-time simulation of a model of
the correctly working power plant. Once it discovers a significant aberra-
tion in real plant behaviour, it kicks off a fault discriminator program that,
again in real time, tries to narrow down the source of the fault, i.e., seeks to
determine, which of the subsystems of the real plant is malfunctioning. It
maintains real-time simulations of abstractions of models of all subsystems
that permit it to localize errors to a particular subsystem. Once this has been
accomplished, a fault isolation program is kicked off that invokes a real-time
simulation of a more refined model of the faulty subsystem including models
of faulty behaviour with the aim of identifying the kind of error that is most
likely to have occurred within the faulty subsystem.

Apparently, in this last phase, the simulation model needs fulfilling real-
time simulation constraints and to be somehow an intermediate represen-
tation between the control design and the validation model. In this case,
indeed, the simulation is, as defined in Cellier and Kofman [2006], “a race
against time”, and it is crucial both to guarantee the termination of the sim-
ulation within a deadline, and to maintain a certain level of accuracy so as
to avoid fake fault detections.

17

1. Introduction and background

The described situation is quite typical in control engineering practice,
and it is representative of how the modelling life cycle is far at present poorly
connected with the creation of simulation models along a typical project life
cycle.
In describing the above three stages of modelling practice, and on the

basis of the presented control engineering example, it is apparent that one
model is unlikely to be appropriate to all the project phases. Moreover, even
within a single stage a range of different models may apply. Indeed, the
identified stages are not meant to be seen as discrete, but part of a continuum
of practices from software engineering to facilitation. As a result, a range of
different models should exist, and, further, their relevance to a stage should
be explicitly identified.

1.4 The enabling power of simplification

The reader may have noticed that the previous section looks more like the
statement of a series of problems than the description of a life cycle. It should
however be clear that most of these problems would vanish if one could use
a single model for all the activities.
To evidence the paramount role of model simplification in this context,

let us now review the model life cycle from a different standpoint, some-
how connected to the typical “V-shape” diagram used to described a design,
implementation and verification iterative process, summarised in Figure 1.8.

Conceptual

design

Requirements and

control design

Detailed model

Verification and

validation

Operation and

maintenance

Plant

design

Project test and

verification

Figure 1.8: Typical V-shape diagram.

To avoid lengthy abstract treatise, we consider as an example the design
of a power plant. Typically, one starts out by outlining the main components
of the plant, such as the steam generator, the turbine, and the alternator. For
first-cut evaluations on the sizing of those components, very simple models
are created, typically composed of less than ten equations per component.
subsequently, one (or possibly more than one team in parallel) starts detail-
ing the internals of each component, proceeding by refining steps and using

18

1.4. The enabling power of simplification

simulation results at each step to provide the additional parameters required
by the more detailed model of the following step. At the end of this pro-
cess, by assembling all the full-detail models obtained so far, the full-detail
model of the entire plant is thus available. For this part of the activity, which
corresponds to traversing the left side of the “V” in Figure 1.8 downward,
support is already provided by object-oriented modelling tools, that allow
to preserve component connectivity by means of the abstraction of connec-
tors [Fritzson, 2003]. At this moment, one therefore possesses the full-detail
plant model, and also the numerous component models – at various level of
detail – that were created along the process. If the object-oriented paradigm
was correctly followed, one should thus be capable of creating a variety of
models that describe some parts of the plant in full-detail, and the others
with any of the traversed detail levels, thereby being capable of performing
simulation studies concentrating on any specific part of the problem.

There are, however, some subtle issues still open, and this is why in the
previous sentence we wrote “should”. First, when creating some intermedi-
ate level of some component, the analyst has apparently had to make some
simplification assumptions on both the internal behaviour of the component,
and its role in the overall plant. In principle, there is no guarantee that the
subsequent developments of the project did not take a path somehow inval-
idating those assumptions. The correct behaviour of the full-detail model
of the complete plant does guarantee that the outcome of the entire design
is consistent, but ensuring that combining component models of different
detail level as they were created in the past yields equally consistent re-
sults, is a completely different matter. Crudely speaking, a correct use of the
object-oriented paradigm can only ensure that the so obtained “mixed-detail”
models will compile, but the significance and correctness of the results they
produce may be highly questionable.

Second and most important, consider the right part of the “V”. When
some modifications are introduced at a certain level of detail, apart from the
issues above, this also invalidates all the models of lower detail. If some
iteration on the V-shape diagram requires the availability of those models,
they simply need rewriting from scratch.

To avoid all the problems just mentioned, one should have the possi-
bility of descending the left side of the “V” only once, introduce possible
subsequent modifications on the full-detail model, and have any less de-
tailed model that she/he can subsequently need generated by the full-detail
one transparently.

Quite apparently, a matter of automatic model simplification.

19

1. Introduction and background

1.5 Motivation and contributions of the thesis

The motivation for research on automatic model simplification techniques
suitable for integration in modelling and simulation tools is just a direct
consequence of the enabling role of simplification evidenced in the previous
section.
In such a complex and articulated scenario, this thesis focuses from the

methodological standpoint on simplification techniques aimed at increasing
simulation speed, and from the technological standpoint on equation-based
object-oriented modelling and simulation tools. Of course thus, it is not the
intention of this work to claim any exhaustiveness. Many other simplifica-
tion problems can be considered, e.g., having the “simplified model” enjoy
some properties that the original one does not, and many other paradigm
exists other than the object-oriented one. However, specific care is here
taken on one side to clearly separate the methodological and the technolog-
ical aspects of the addressed problems, and on the other side to prove the
viability of all the proposed (general) methodological solutions by outlining
their implementation in the considered (specific) technological paradigm.
Specifically, the organization of this thesis, and thereby its contributions

can be summarised as follows. Chapter 2 reviews some literature on model
simplification, providing some general definitions and concepts useful for the
development of the presented approximation framework. Chapter 3 focuses
on an approximation technique named dynamic decoupling, that improves
simulation speed by partitioning a model based on the time scales of the
contained dynamics. In this respect,

• a novel analysis technique is proposed, termed cycle analysis, for the
automatic determination and clustering of the mentioned time scales;

• based on said analysis, suitable separability indices are introduced to
quantify the keenness of a model to be partitioned, in accordance with
the contained time scales and the desired degree of approximation;

• a technique consequently presented to automatically exploit the so
detected separability in a way that is easily interpreted by the analyst.

Chapter 4 presents and discusses some examples to demonstrate the validity
and the practical usefulness of the results described in Chapter 3. Chapter 5,
deals with the extension of classical model order reduction techniques in the
context of hybrid systems focusing on switched affine ones, illustrating the
proposed approach throughout a representative example. Chapter 6 moves
from the methodological to the technological side of the overall problem, by

20

1.5. Motivation and contributions of the thesis

showing how the proposed techniques can be integrated in the typical ma-
nipulation model toolchain of an equation-based object-oriented modelling
and simulation environment. In this respect, a complete solution is pre-
sented. Chapter 7 draws some conclusions, evidences some relevant open
problems, and outlines future research.

21

Chapter 2

Related Work and Problem Statement

As stated in the introductory Chapter 1, this dissertation deals with dynamic
model approximation, with the main goal of obtaining simplified models,
better suited for their intended use.
In this chapter we present some preliminary concepts that will be used

in the rest of the thesis, including a brief preliminary literature review to
provide the panorama of the research context. More detailed references,
specific to the problems considered in the rest of the thesis, can be found in
Chapter 3 and Chapter 5. For the purpose of this part of the work, a taxon-
omy of approximation techniques is here given, so as to better clarify the goal
of the presented research. Also, some novel definitions of model distance
are introduced, posing the basis of the unifying approximation framework
that constitutes a very relevant part of the overall proposal.

2.1 Literature review

To contextualise the presented research, some words need spending on
efficiency-targeted approximation techniques, with specific emphasis on their
applicability and convenience in Equation-based Object-Oriented (EOO)Mod-
elling and Simulation (M&S) tools. We start with a few general remarks
on the typical M&S toolchain, thereby also motivating some statements of
Chapter 1, and introducing some fundamental concepts and the terminol-
ogy that will be used in the following. In the rest of the thesis, Modelica is
taken as a representative example of EOO languages, but most of the pre-
sented concepts are totally general, and can be applied to other modelling
environments.

2.1.1 The Modelica compilation and simulation process

Figure 2.1 outlines the typical compilation and simulation process of a Modelica-
based software tool. The input (top of the figure) to the process is a Modelica

23

2. Related Work and Problem Statement

Modelica
model

AST

DAE

Executable

Simulation
result

Lexical
analysis
and parsing

Elaboration

Equation
transformation

and code generation

Simulation

Compile
time

Run
time

Compiler
front-end

Compiler
back-end

Figure 2.1: Outline of a typical compilation and simulation process for a
Modelica language tool.

24

2.1. Literature review

model, which typically aggregates and references a potentially very large set
of other models.
The first phase that is carried out is a standard lexical analysis and pars-

ing, and the output from this step is an Abstract Syntax Tree (AST). Depend-
ing on the implementation, this phase can be performed in several stages,
where each stage simplifies and normalizes the form of the AST [Fritzson,
2003].
The second phase of the process is the elaboration, that transforms the

AST into a Differential Algebraic Equation (DAE) system. A DAE consists
of variable declarations, the DAE system (for continuous-time behaviour),
algorithm sections, and when-clauses for triggering discrete-time behaviour
(for hybrid systems). During this phase the model is also checked for errors,
such as those related to conformance of types.
The two first phases, lexical analysis and parsing followed by elabo-

ration, are often collectively referred to as the compiler front-end. Many
works on this matter can be found in the literature, since the considered
part is among the most critical ones for an EOO M&S tool [Broman, 2010],
as already specified in the introductory chapter.
The next phase of the compilation process, known as the back-end,

consists of first transforming and manipulating the DAE system to make
it treatable. Key aspects of this process are the use of the Pantelides al-
gorithm [Pantelides, 1988], the Block Lower Triangular (BLT) transforma-
tion [Duff and Reid, 1978], the dummy derivatives [Mattsson and Söderlind,
1993], and tearing [Elmqvist and Otter, 1994]. All these operations are essen-
tially devoted to manipulating the DAE system so as to simplify and reduce
its complexity, without altering its “semantics”—this concept will be better
clarified in the following. In fact, typically the DAE is reduced to an index 1
problem, and then solved with a DAE solver such as DASSL [Petzold, 1982]
or the IDA solver within the SUNDIALS suite [Hindmarsh et al., 2005]. The
equation system could also be translated and sorted to form an ODE, to be
solved with a numerical integration method, such as Runge-Kutta, Backward
Differentiation Formulas (BDF), or any other method for ODE integration.
Typically, the right-hand side of the equation system (for an ODE) or the
residual function (for an DAE) is translated to executable code, where the
typical target language is C. Finally, these generated functions together with
a main program are linked together with a numerical solver and then com-
piled into an executable file as represented in Figure 2.1.
This thesis concentrates on the compiler back-end, in a view to improv-

ing simulation efficiency in as transparent as possible a manner for the end
user.

25

2. Related Work and Problem Statement

2.1.2 The manipulation toolchain: a novel view

In the context of this work, models are natively created in the form of acausal
DAE systems. As synthetically anticipated in the previous section, the typical
chain of operations of a modelling and simulation environment, that starts
from said native model description and ends with the simulation code, can
be broadly divided into two parts.
The first part, which we call acting on the continuous-time equations,

converts the a-causal DAE system into a causal Ordinary Differential Equa-
tions (ODE) one. This is done without altering the equations’ semantic, by
resorting to techniques such as the Tarjan algorithm, alias elimination, in-
dex reduction, and so forth Cellier and Kofman [2006]. The same operation
can also be done by accepting some semantic alteration – i.e., by altering
the continuous-time equations – in exchange for an efficiency improvement.
The major techniques for such a purpose are Model Order Reduction (MOR)
ones [Antoulas, 2005] and scenario-based approximations [Mikelsons and
Brandt, 2009, 2011, Papadopoulos and Prandini, 2014].
The second part, which we call acting on the discrete-time solution,

consists of taking the ODE model as the basis to generate routines that –
once linked to the numeric solver of choice – provide the simulation code.
Assuming that acting on the discrete-time solution is done “correctly”, i.e.,
preserving numerical stability, also in this case two ways of operating can
be distinguished. The first one does not alter the solution semantic, applying
the chosen discretisation method as is. In this case, errors in the solution
only come from the inherent imperfection of that method. The second way
conversely alters the semantic, by deliberately deviating from the natural
application of the discretisation method. Notice that most co-simulation
techniques naturally fall into the second class (see, e.g., Arnold and Schiehlen
[2009], Bastian et al. [2011], González et al. [2011]).
In Chapter 3 and Chapter 4 we concentrate on the latter type of opera-

tion, for which Dynamic Decoupling (DD) is a powerful technique, albeit not
fully exploited in a structured (thus possibly automated) manner, see Bar-
tolini et al. [1998]. For the purpose of this section, suffice to say that this
technique aims at partitioning a model into submodels, based on time-scale
separation. The method is particularly of interest – as will be better detailed
in Section 3.2 – because it can be divided into two well separated phases:
an analysis part performed on the overall model, and a simulation part that
can either be monolithic or make use of co-simulation.
On the other hand, also the former kind of operation mentioned above, is

really important from the modeller viewpoint, and to date, to the best of the
authors knowledge, no EOO M&S tool allow to automate and integrate in

26

2.1. Literature review

the modelling environment such kind of techniques, e.g., MOR ones. Some
words are spent on that in Chapter 6, while Chapter 5 investigate how to
extend classical MOR techniques, conceived for continuous-time systems, in
the context of hybrid systems [Papadopoulos and Prandini, 2014].
To motivate the choice of focusing on DD in the first part of the thesis,

a brief discussion on the major possible alternatives is in order. This discus-
sion is also functional to justifying and supporting the choice of focusing on
the extension of classical MOR techniques to hybrid systems, which is the
subject of the second part of the thesis.

2.1.3 Alternatives Approaches

As already stated, among the techniques that act on the continuous-time
equations, MOR ones are the most adopted, and there exists a vast litera-
ture on the matter. MOR is based on the idea of approximating a certain
part of the high-dimensional state space of the original model with a lower-
dimensional state space, by performing a projection. Roughly speaking, the
main differences among MOR techniques come from the way the projec-
tion is performed. In any case, most MOR techniques were developed for
linear systems Antoulas [2005], and this hampers their application to com-
plex physical cases, where high dimension often appear in conjunction with
nonlinearities.
In fact, developing effective MOR strategies for large nonlinear systems is

quite a challenging and relatively open problem [Gu, 2011]. Some proposals
can be found in the literature, based, e.g., on linearisation or Taylor expan-
sion [Chen et al., 2004], bilinearisation [Phillips, 2000], or functional Volterra
series expansion [Innocent et al., 2003], followed by a suitable projection.
Other proposals worth mentioning are those based on Proper Orthogonal
Decomposition (POD) [Chen and Kang, 2001], to produce approximate trun-
cated balanced realisations for nonlinear systems [Scherpen, 1993], often to
find approximate Gramians [Lall et al., 2002], and (for switched systems)
generalized [Shaker and Wisniewski, 2012] Gramians. However, when ad-
dressing the nonlinear case, the former type of MOR extensions are in prac-
tice stuck to quadratic expansions, which strongly limits their applicability.
As for the latter type, the cost of evaluating the projected nonlinear operator
is often quite high, which reduces computational performance.
Recently, Mikelsons and Brandt [2009, 2011], and Mikelsons et al. [2011]

proposed methods specifically dealing with the reduction of EOO models,
with the goal of integrating such techniques in the Open Modelica Compiler
(OMC) as soon as possible. The main idea behind the quoted works, is that
one can define some operation to be performed on the nonlinear system –

27

2. Related Work and Problem Statement

Ranking

Symbolic

Equations
Scenario

Try Reduction

Inside

Error

Bound?
Error Bound

Yes

Perform

Reduction

No

Figure 2.2: Scheme of the reduction algorithm proposed in [Mikelsons and
Brandt, 2011].

e.g., “neglect a term”, “linearise a part of the model”, or any other kind of
projection that can be performed – and use some ranking metrics to identify
a priori which is the “best” (single) manipulation that can be performed on
the model.

At a first instance, the authors consider only a single manipulation at a
time (i.e., the impact on the error of manipulating with a single operation).
Based on this information, they rank the manipulations, and consequently
try to perform them in sequence accordingly, until the considered error mea-
surement is inside a given bound, as described in Figure 2.2.

It is worth noticing that the error is computed a posteriori by comparing
the reference solution of the overall system to the numerical solution of the
approximated model.

The number of possible manipulations increases in an uncontrollable
manner with the dimension of the problem, and with its nonlinearity. The
authors thus proposed a more efficient approach, considering the manipu-

28

2.1. Literature review

lations in clusters, and trying to apply a cluster at a time, until the approxi-
mated model fulfils the error bound. Therefore, the last cluster of operations
is partitioned in a binary-search-like manner, so as to reach the maximum
number of manipulations fulfilling the error bound.
Apparently, the limit of this approach is that ranking all the possible

manipulation combinations is not feasible—in fact, the authors try to find out
some other heuristics, such as the mentioned clustering techniques, to reduce
the combinatorial part of the approach. Moreover, there is no guarantee that
performing the manipulations in the ranked order – even in clusters – will
eventually lead to the optimal manipulation, since they are considered one
at a time.
Another problem is the high cost of generating the reduced order models,

due to necessity of computing “snapshots” in the time domain, i.e., simula-
tions of the reduced model to check whether error bound is fulfilled, which
in turn requires performing numerous simulations of the original nonlinear
system. Furthermore, this approach is scenario-based, i.e., the simplified
model is guaranteed to be good – and the error within the error bound
– only for a set of initial conditions, a set of inputs and a time span. If
the scenario is changed, the overall manipulation must be performed again,
limiting again the applicability of the method. Moreover, the considered sce-
narii is generally not even stochastic, accounting for possible disturbances
or randomness, thus not evaluating the robustness of the approximation.
The quite old idea of DD has thus been recently reconsidered, for exam-

ple by the Transmission Line Modelling (TLM) approach of Sjölund [2012],
Sjölund et al. [2010]. TLM is based on modelling the propagation of a signal
which is limited by the time it takes to travel across a medium. By utilizing
this information it is possible to partition the DAE system into independent
blocks that may be simulated in parallel. This leads to improved simulation
efficiency since it enables full performance of multi-core CPUs. This, how-
ever requires that the analyst explicitly introduces the transmission model,
i.e., the decoupling part, by introducing some additional components, based
on his/her intuition.
The approach proposed in this dissertation conversely aims at having

decoupling emerge from an automated analysis of the model.

2.1.4 A Brief Comparison

Based on the previous discussion, we now spend some additional words on
the advantages of the technique proposed in this work, and sketched out in
the introduction, with respect to the analysed alternatives.

29

2. Related Work and Problem Statement

In comparison with MOR, our proposal does not alter the state vec-
tor, nor does it involve base changes in the state space, thereby preserving
the physical meaning of dynamic variables. Also, instead of attempting to
simplify the model in a view to monolithic solution, we go exactly in the
opposite direction, as the model is not reduced but partitioned, allowing for
parallel simulation, with the same rationale of Sjölund et al. [2010].

Of course, our proposal is not the only way to partition a system. As
an alternative, for example, one may neglect or approximate in some way
the subspace spanned by the eigenvectors associated with its fast eigenval-
ues. However, this is possible only in the linear case, while extensions to
nonlinear models require local linearisation. This does preserve the dimen-
sion of the state space, but to recover the native dynamic variables of the
model, a coordinate transformation is necessary at each integration step, to
the apparent detriment of simulation efficiency.

No matter how the partition is obtained, then, it can be exploited in two
ways. One is to ease a monolithic solution, in some sense adapting the model
to the used architecture (single solver with a unique integration step). The
other is to conversely tailor the solution architecture to the model as anal-
ysed and partitioned by the method; this can be used to fruitfully employ
parallel simulation, or co-simulation. If the latter route is taken, eigenvalue-
based partitioning reveals however another problem, as the properties of a
so obtained partition may change in time, while decoupled integration, let
alone co-simulation, require the same partition to be specified a priori.

As a consequence, for the specific purpose of this work, state selec-
tion criteria are preferable to eigenvalue-based ones, also in accordance
with Schiela and Olsson [2000], and in this context, the proposed method
exhibits the further advantage of being naturally keen to a nonlinear context.

With respect to scenario-based approximations, the most computing-
intensive part of the proposal (as will be explained later on) is simply not
scenario-based: information related to the considered scenarii come into
play only at a later stage, and this separation results in lightening the com-
puting effort. Furthermore, the proposal does not alter the model equations,
thus being less exposed to the possible unpredictable effects of local modi-
fications at the overall system level.

Finally, contrary to the TLM approach, this work aims at having decou-
pling emerge from an automated analysis of the model, and not introduced
by the analyst, still having the advantage of exploiting full multi-core CPUs
performances, by parallel simulation.

30

2.1. Literature review

2.1.5 “Simpler models” from the modeller viewpoint

One of the heaviest tasks for the analyst, is to face model complexity, per-
forming – as anticipated – the necessary simplifications to obtain the descrip-
tions of one object for all the envisaged uses of its model, both by means of
heterogeneous tools, e.g., for MOR techniques, and by hand, explicitly intro-
ducing approximations in the model, as in the case of TLM. The main issue,
however, is that said uses may change during the life-cycle of the simulation
model, and within different stages of the project, and some simplifications
may not hold true anymore for new scenarii, thus requiring to start from
scratch with the model simplification. Therefore, a great improvement from
the analyst’s viewpoint would be the availability of an automatic tool which
produces the required simplifications accordingly to the scenario of interest,
or equivalently, that produces approximations that are totally independent
of the scenario at hand.
Focusing for a moment on DD, it can be immediately observed that it

is a technique of the second type, i.e., it is based on structural properties
of the considered system, instead of basing the approximation on a given
scenario. In addition, such a kind of operation could bring some benefits
also for linear system, where MOR techniques are usually considered the
only way to deal with complexity.
For example, let’s consider the electrical circuit in Figure 2.3.

u0

R1

uR1

iR1

C1
uC1

iC1

R2

uR2

iR2

C2
uC2

iC2

R3
uR3

iR3

Figure 2.3: Electrical circuit.

For a given set of parameters, e.g., C1 = kC, and C2 = C, with k ≫ 1,
the system can be quite easily approximated with a first-order one with any
MOR technique. On the other hand, however, the physical interpretation of
the considered dynamical variables is lost – MOR techniques only preserve
the input-output relationship – while in some relevant cases, especially for
control purposes, it may be really important. The considered circuit can
be considered composed of two subsystems, decoupled by C1, and can be

31

2. Related Work and Problem Statement

simulated with a parallel configuration. Depending on the purpose of the
model, one or the other choice can be taken.
In synthesis, what is generally sought in this context is a “simpler model”,

whatever is meant for that, and however it is obtained. Apparently, hardly
any clear definition of “simpler model” has been given in the literature, and
not even a taxonomy of what is meant for that is present. Nonetheless, very
often “simpler” is – a priori – connected with “reduced order”, thus falling in
the class of MOR techniques, and as a consequence leaving out many other
possibilities. In the opinion of the author, this connection is not general.
Indeed, the concept of “simpler” must be associated with the intended use
of the model, i.e., we can say that we seek a model “better suited to its
intended use”.
A taxonomy of possible intended uses needs thus defining. In general,

when dealing with EOOM&S tools of the Object-Oriented Modelling (OOM)
type, a quite detailed description of the complete system is somehow desired.
In other words, the manipulations that an analyst would perform on the
model strictly depend on its purpose, and aim at obtaining purpose-oriented
results without approximating toomuch its semantics. As such, some classes
of purposes can be identified as follows.

• Structural purposes:

– the manipulated model has some structural properties of interest,
which the original model has not;

– the dimension of the manipulated model should be as low as
possible;

– some variables are not of interest for simulation.

• Computational purposes:

– the manipulated model should be simulated as fast as possible;

– the manipulated model should consume as few memory as pos-
sible;

– it is acceptable that the solution does not show dynamics with
a time scale that is smaller than a given threshold.

In particular, starting from the original modelM there are different axes
in which simple model M̂ can be sought:

• The simplified model M̂ only deals with a part of the system M, and
must represent this part with a high detail; the other parts of M can

32

2.2. Model simplification from a general viewpoint

be roughly simplified, but have to reproduce reliable boundary con-
ditions to M̂.

• The simplified model M̂ has to enjoy a set of propertiesP , which M

has not.

The set of properties P is in general heterogeneous, due to the differ-
ent desires related to the scenario of interest. As mentioned before, one may
seek structural properties concerning the model itself: e.g., the model should
be linear, or it should belong to the class of Linear Parameter Varying (LPV)
models, or Linear Fractional Transformation (LFT) and so forth. On the
other hand, one desires the model to enjoy some computational properties:
e.g., the model should be simulated as fast as possible, minimise the mem-
ory for needed its simulation, and so on. Besides the mentioned classes of
properties, other classes may be found, but for the purpose of this work the
sketched panorama is sufficient.
Just to give a first possible “recipe book” that associates each problem

with some viable solutions, Table 2.1 summarises which are some of the
techniques that can be adopted for a specific purpose.
It is worth noticing that the mentioned purposes are not mutually inde-

pendent. For example, order reduction usually yields models that simulate
faster, while DD – which is basically used to speed up simulation – has also
the side effect of partitioning the model in reduced order ones, decreasing
also the memory needed for the simulation.
Apparently, there is a wide variety of techniques to achieve the same

goal, but in very few cases the modeller can use those methods in an afford-
able way, without being an expert of the matter. The long-term goal of the
research to which this thesis belongs is to “make the modeller’s life easy”,
in other words, to find a way to automatise all the mentioned techniques in
a unique manipulation framework, in as transparent as possible a way for
the end user of EOO M&S tools.

2.2 Model simplification from a general viewpoint

To make a manipulation system capable of simplifying, in the sense sug-
gested so far, the following is needed:

1. a definition of quasi-equivalence or model distance,

2. a taxonomy of interventions on the model and on its solution,

33

2. Related Work and Problem Statement

Objective Technique
S
tr
u
ct
u
ra
l

p
ro
p
er
ti
es

Given structure Automatic generation of LFT [Casella
et al., 2009, Varga et al., 1998].

Low order Classical MOR [Antoulas, 2005],
or reduction scenario-based tech-
niques [Mikelsons and Brandt, 2009].

Variable selection Reduction scenario-based tech-
niques [Mikelsons and Brandt, 2009],
or DD

C
o
m
p
u
ta
ti
o
n
al

p
ro
p
er
ti
es

Fast MOR, reduction scenario-based tech-
niques, TLM [Sjölund et al., 2010], or
DD

Few Memory MOR, reduction scenario-based
techniques, Mixed-mode integra-
tion [Schiela and Olsson, 2000], or
DD

Time scale selection Mixed-mode integration, or DD

Table 2.1: Summary of the techniques that can be adopted for a given
intended use.

3. the formalisation of said interventions in terms of manipulation func-
tionalities,

4. and finally the design of an extended toolchain capable of hosting the
so devised functionalities.

This section provides some model equivalence definitions, and sketches
out how they can possibly be used to intervene on the model. In the next
chapters, the proposed techniques will be analysed in detail providing sig-
nificant examples, and Chapter 6 defines a prospective way of modifying
the standard toolchain in a view to integrate the proposed techniques in the
compiler back-end.

2.2.1 Terminology and preliminary definitions

In order to better clarify the framework we are developing, some preliminary
definitions are needed. This is also needed because in the literature it is
quite difficult to find a unique and general way to define the meaning of
equivalence between two models. This is definitely of interest since many of

34

2.2. Model simplification from a general viewpoint

the manipulation techniques present in the literature, e.g., MOR and also DD,
can be viewed as “elementary operations” on the model in this framework.
The general case of nonlinear systems of DAEs of the form

M :

{
F(t,y, ẏ,u, p) = 0

F : I×Dy×Dẏ×Du ×Dp 7→ R
m

is considered here, where I⊆R is a (compact) interval and Dy, Dẏ ⊆R
n are

open, m, n ∈ N.
A first widely used but seldom defined concept is that of scenario. A

discussion on the matter can be found in Mikelsons and Brandt [2011], and
based on the ideas reported therein, a formal definition can be here given
as follows.

Definition 2.2.1 (Scenario). A scenario is a set of a vector field defined on
the interval I for the system inputs, the initial values and the parameters.

It is thus possible to define the concept of “semantic equivalence” be-
tween a model M1 and M2, denoted by the symbol ≡

Definition 2.2.2 (Semantic equivalence). M1 ≡ M2 iff solved with the same
integration method N (·) with the same configuration (e.g., the same tol-
erances) produce solutions N (M1) = N (M2), i.e., acceptable within the
tolerances. This is true for a set of prescribed scenarii.

The last definition is quite restrictive, and holds only for models that –
crudely speaking for brevity – produce almost the same numerical results.
From the definition directly follows a theorem, the proof of which is trivial
and omitted here for brevity.

Theorem 2.2.1. If M1 and M2 have the same equations, then M1 ≡ M2.

Such definitions, however, become of hardly any use as soon as approxi-
mation is brought into play, thus definitions for “approximated equivalence”
must be provided. Definitions 2.2.3-2.2.5 provide different level of approxi-
mations, from the most to the least conservative.

Definition 2.2.3 (Quasi-equivalence). M1
∼= M2 iff they have different sets

of variables and of equations, but m1 ⊆ M1 and m2 ⊆ M2 have the same set
of variables and m1 ≡ m2.

Definition 2.2.4 (ε-equivalence). M1 ≡ε M2 iff they have the same set of
variables, different sets of equations, M1 6≡ M2 with the default tolerances,
but M1 ≡ M2 with tolerances of ε .

35

2. Related Work and Problem Statement

Definition 2.2.5 (ε-quasi-equivalence). M1
∼=ε M2 iff they have different sets

of variables and of equations, but m1 ⊆ M1 and m2 ⊆ M2 have the same set
of variables and m1 ≡ε m2.

Quasi-equivalence and ε-quasi-equivalence are particularly useful when
dealing with MOR and reduction scenario-based techniques, since they gen-
erally produce different state variables and different equations, but are con-
ceived to produce the similar input-output relationship (possibly in a pre-
scribed bandwidth) with respect to the original model.
On the other side, ε-equivalence can be used for evaluating the approx-

imation performance of DD, given that it do not alters the state variables,
but rather the equations, i.e., how the system is solved. In particular, in the
following, the term “accuracy” related to the DD numerical solution will be
exactly the ε of Definition 2.2.4, indicating the maximum value of the toler-
ances (absolute and relative) needed to make the approximation acceptable.
Notice that the proposed definitions can be applied also in the case of

hybrid systems, since they are based on the numerical solution instead of
the mathematical structure of the dynamical system. In Chapter 5, however,
a different distance measurement is used, since it is better suited for reach-
ability and verification, typical analysis in the context of stochastic hybrid
systems Abate and Prandini [2011], Amin et al. [2006], Girard et al. [2008].
The provided definitions may be difficult to be computed, but are general

and totally unrelated to the manipulation technique. It is also worth stressing
that all the proposed definitions are related to the integration method. In the
authors’ opinion, this is necessary because even if twomodels are analytically
near – whatever is meant for that – when simulated may produce very
different results due to integration approximations. Thus, the definition of
the semantic equivalence relation – and of all the derived definitions – must
take this aspect into account.

36

Chapter 3

Dynamic Decoupling

Most of the results presented in this chapter come from Papadopoulos et al.
[2013], and Papadopoulos and Leva [2013a,b,c,d], Papadopoulos et al. [2014].

3.1 Introduction

This chapter is aimed at investigating how to manage model complexity,
by devising model analysis, manipulation, simplification and solution tech-
niques that can be made part of modern modelling and simulation environ-
ments, in a view to achieve efficient integration as transparently as possible
for the user.
Complexity – in the sense considered in the entirety of this research –

can have different sources, the major ones being model dimension, nonlin-
earities, necessity of different modelling paradigms (e.g., equation- or algorithm-
based), and presence of different time scales (i.e., stiffness).
In the literature, those kinds of complexity are addressed with different

approaches, as discussed in Chapter 2. Large-scale systems are typically
handled by means of MOR techniques [Antoulas, 2005]. These are however
essentially limited to the linear case, while nonlinear extensions are basically
heuristic, domain specific, or scenario-based [Mikelsons and Brandt, 2011].
As for multi-paradigm models, advanced tools – typically object-oriented
modelling languages – are inherently conceived to handle them, allowing
for example to combine equation and algorithm models [Cellier and Kof-
man, 2006]; also, co-simulation environments are available to cooperatively
employ specialised simulation tools [Arnold and Schiehlen, 2009, González
et al., 2011]. Finally, the integration of systems with different time scales can
be made more efficient by means of approximation techniques, such as the
so called DD [Bartolini et al., 1998].
Whatever the source of complexity is, here we take as the main goal

of model simplification that of improving computational performance while
respecting convenient precision/accuracy constraints for the specific simu-
lation study at hand. In this respect, it is worth noticing that modern tools

37

3. Dynamic Decoupling

already allow to apply some simplification techniques in quite an easy way.
For example, environments like Matlab provide many well-established func-
tions for linear MOR, e.g., balred. However, to the best of the authors’
knowledge, for virtually all the techniques mentioned in Chapter 2 only
problem specific solutions are available, and their full integration in M&S
environments is still an open problem.
This chapter deals with the exploitation of the aforementioned DD. The

proposed methodology is grounded on an analysis technique, described in
the following, which is somehow analogous to eigenvalue analysis but ap-
plicable also to nonlinear systems.
Said technique, called Cycle Analysis (CA), is the first contribution of

this work. A second contribution, building on the CA idea, is the proposal
of some indices to quantify the “separability” of a model into submodels,
based on DD. By jointly exploiting said contributions, the following main
advances are obtained beyond the state of the art:

1. if a monolithic solution (i.e., no co-simulation) is required, CA pro-
vides evidence of possible internal weak couplings among dynamic
variables, which can be exploited to ease the numerical integration;
in the presence of a parallel computing architecture, this is apparently
useful also for selecting the simulation threads;

2. if one (further) wants to apply integration schemes tailored to decou-
pled systems, these can be applied and configured on an objective
basis, according to structural properties of the model at hand;

3. if a co-simulation setting is considered and some degrees of freedom
are available as for the model partitioning, these can be exploited
automatically;

4. whatever solution setting is adopted, the proposed indices allow to
take any decision concerning its configuration based on quantities that
are easily interpreted by the analyst.

Reference is here made to EOO M&S tools because they are particu-
larly keen to be complemented with the proposed functionalities, but the
proposed ideas are completely general, and applicable also in different con-
texts.
More specifically, on the basis of the discussion of Section 2.1.4 and on

the statements above, the contributions of this chapter can now be better
qualified as follows.

38

3.2. Dynamic decoupling

• CA quantitatively characterises the dynamics of the addressed system,
including the numerical integration algorithm, without resorting to
eigenvalue-based techniques, therefore applying to both the linear and
the nonlinear case.

• Some “separability indices” are defined, whose information content
extends beyond that of previously introduced quantities, like stiffness
coefficients. The proposed indices thus complement traditional “stiff-
ness” measures in basically two senses:

1. they are not tied to the sole idea of “fast” and “slow” dynamics,
and

2. they apply also to nonlinear systems.

• The two ideas above are suitably joined to demonstrate, with a proof-
of-concept application and some examples, that they can be used to
achieve an automatic application of DD, i.e., to build a tool that par-
titions a model requiring the analyst to provide only information that
pertains to the physics of the simulated object.

The rest of the chapter is organised as follows. In Section 3.2, the con-
cept of DD is reviewed under a novel viewpoint, while Section 3.3 describes
the proposed procedure for structural analysis, i.e., the Cycle Analysis. Based
on that method, Section 3.4 describes some new synthetic indices to charac-
terise and quantify structural properties of the system, e.g., how much stiff
or “separable” a system is, relating those quantities (when possible) to quan-
tities already present in the literature. Section 3.5 describes how to exploit
the results coming from the Cycle Analysis in a mixed-mode integration
scheme. Some application-oriented remarks and more general discussion
on the proposed method are reported in Section 3.6.

3.2 Dynamic decoupling

Multi-physics models are often made of parts evolving within different time
scales, and the core idea of DD is to exploit this partition to enhance simu-
lation efficiency.
In some cases, figuring out how to partition a model can be quite straight-

forward, but this is not general at all. For example, in mechatronic systems,
a “slow” mechanical part is often driven by “fast” electric circuits. However,
even if this is the case, characterising the found time scales quantitatively
– e.g., to determine whether or not it is really convenient to partition the

39

3. Dynamic Decoupling

model, and how to do it – may not be equally simple, since the actual ev-
idence of multiple time scales may not only come from the presence of
multiple physical domains, but also strongly depend on parameter values.
Furthermore, there are cases in which multiple time scales are not originated
by multiple physical contexts, but emerge from some structural character-
istics of the model that are virtually impossible for the analyst to detect a
priori, especially for large models.
As a result, DD is formally based on some characteristics of the mutual

relationships among the model state variables, that are formulated in an
abstracted manner with respect to the underlying physical domain(s). For a
short explanation of the DD rationale, consider the generic state equation
of a continuous-time ODE model, and write it as

φi(x)
dxi(t)

dt
= γi(x,u) (3.1)

where function φi plays the role of a time-varying “capacitance” associated
with the state variable xi, while function γi conveys the contributions of all
states (including xi) and inputs (variables u) to its variation. Given this, DD
can be synthetically expressed as the following two principles.

1. If, in a certain region of the state and input space, some γi/φi ratio
is “small”, then in the discrete-time solution it can be acceptable to
use the value of xi computed at the previous integration step, given its
“slow” variation;

2. If, in a certain region of the state and input space, the contribution of
a certain x j to γi is “small”, then in the discrete-time solution it can
be acceptable to use the value of x j at the previous integration step,
given the “small” error introduced in the computation of the new xi.

The two principles above take different forms in various contexts (see,
e.g., Bartolini et al. [1998] for a thermo-hydraulic application) but are per se
general. From an operational viewpoint, DD can be thought of as composed
of two subsequent phases, termed here structural analysis and decoupled
integration. The former is an offline activity, and consists of identifying
in the model possible occurrences of the two principles above. The latter
consists of exploiting the analysis outcome to select and suitably configure
an integration scheme so as to improve simulation efficiency.
Both phases can be carried out with multiple techniques. For the struc-

tural analysis phase, we propose here a novel method, called Cycle Analysis
(CA), described in the following, that is particularly suited to investigate mu-
tual relationships among dynamic variables independently of the structure of

40

3.3. Cycle analysis

the individual state equations, and therefore carries most of the merit for the
applicability of the entire technique to the nonlinear case. For the decoupled
integration phase, we conversely resort to mixed-mode integration similar
to the one proposed in Schiela and Olsson [2000], but any co-simulation
framework can be used, e.g., the one proposed in González et al. [2011].
A very important point to keep in mind is that pursuing an automatic

application of DD is a twofold problem. On one side, the analysis phase
needs to be performed by an automatic procedure rather than manually. On
the other side, the outcome of said phase must take a form that is readable for
the analyst, who is typically an expert of the addressed physical domain, not
of simulation. Such an output is carried out by means of a set of separability
indices. The following sections thus deal, in this order, with CA, with the
correspondingly obtained separability indices, and with the use of both for
decoupled integration.

3.3 Cycle analysis

3.3.1 Preliminaries and definitions

In the last paragraphs DAE systems are considered. This is actually the
scope of this work, but in the rest of the chapter we are using ODE systems.
This is not limiting the applicability of the proposed method, since DAE
systems are usually manipulated both symbolically and numerically so as to
obtain an ODE system, that will be simulated. This operation is typical in
EOO tools, and how to plug the proposed methodology into the toolchain
of manipulations will be discussed in more details in Chapter 6.
Consider the generic ODE system

ẋCT (t) = f(xCT (t),uCT (t)) (3.2)

where x ∈R
nCT is the vector of state (i.e., dynamic) variables, and u ∈R

mCT

the vector of input variables. Generally speaking, the idea of CA is to obtain
from the discretisation of (3.2) a directed graph representing the mutual
influence among the dynamic variables along the integration steps, and then
to compute quantities that generalise – in a sense that will be explained later
– the idea of “time constants” for the linear case.
To this end, discretise (3.2) with an explicit method with fixed single-

step h1. It is important to notice right from now that the method used in this

1It is known that any multi-step method can be reduced to a single-step method with
an increased state space vector. Thus, in this dissertation we only focus only on the case of
single-step methods without loss of generality.

41

3. Dynamic Decoupling

phase is a “probe method”, i.e., just functional to the analysis technique, while
the successive simulation phase is in no sense tied to it. The corresponding
discrete-time system can be thus written as

xk+1 = FN (xk,uk,h) (3.3)

where x
T
k ∈ R

n, with n = nCT is the discrete-time state, while the form of
function FN (·, ·, ·) depends on the particular numerical integration method
N .
The required dependency directed graph (or digraph) G is formally de-

fined as

G = (N,E), N = {1, . . . ,n}, E = {ei, j} ⊆ N ×N. (3.4)

The nodes of G are associated with the discrete-time model dynamic
variables, while its edges are characterised by a source node, a destination
node, and a weight, defined by the operators

ς
[
ei, j
]

:= i, δ
[
ei, j
]

:= j, ρ
[
ei, j
]

:=
∂Fi

∂x j

. (3.5)

Notice that the construction of G is straightforward based on the struc-
ture of system (3.3).

Definition 3.3.1. A path p of length L in a digraph G = (N,E) is an ordered
sequence of L edges, where the destination node of each edge is the source
node of the following one in the sequence. Formally,

p := 〈e1,e2, . . . ,eL〉, with ei ∈ E, ∀i ∈ {1, . . . ,L},
with δ [ei] = ς [ei+1] , ∀i ∈ {1, . . . ,L−1}.

A path can be also denoted by means of the ordered sequence of touched
nodes, i.e.

p = 〈ς [e1] ,ς [e2] , . . . ,ς [eL] ,δ [eL]〉.

Definition 3.3.2. A path with no repeated nodes is called a simple path (or
walk).

Definition 3.3.3. A simple cycle c of length L exists in a digraph G= (N,E)
iff

1. there exists a simple path 〈e1,e2, . . . ,eL−1〉,

2. there exists one edge eL from δ [eL−1] to ς [e1].

42

3.3. Cycle analysis

ς [e1] ς [e2] . . . δ [eL−1]

e1 e2 eL−1

eL

Figure 3.1: Graphical representation of a simple cycle.

For the sake of clarity, a simple cycle can be graphically represented as
shown in Figure 3.1.
Adopting the same notation used for paths, a simple cycle can be denoted

as
c = 〈ς [e1] ,ς [e2] , . . . ,ς [eL−1] ,δ [eL−1] ,ς [e1]〉,

i.e., by listing the ordered sequence of the touched nodes.
Notice that the definition of a simple cycle in terms of edges is unique

up to a circular permutation, while the definition in terms of touched nodes
varies according to which of them is (conventionally) taken as the “first” one
in the cycle. This is why we prefer to use the definition in terms of edges.
In the following we shall make reference only to simple cycles, thus

“cycle” and “simple cycle” will be used interchangeably.

Definition 3.3.4. The cycle gain µc(h) of a cycle c is defined as

µc(h) = ∏
ei∈c

ρ [ei] . (3.6)

3.3.1.1 An explanatory example

Let us consider the continuous-time linear time-invariant dynamic system

ẋCT = AxCT =

−1 0.5 0

0.5 −1.5 0.5
0 0.5 −1

xCT ,

Suppose that the discretisation of choice for the analysis part is the Heun’s
algorithm Cellier and Kofman [2006]. Thus, the corresponding discrete-time
system (3.3) becomes

xk+1 =FHeun(xk,h),

FHeun(xk,h) =

(
I3×3 +Ah+

(Ah)2

2

)
xk,

(3.7)

43

3. Dynamic Decoupling

where I3×3 is a 3× 3 identity matrix, and x = xCT . Therefore, the depen-
dency graph G associated to the system has a weight matrix

W =
∂FHeun

∂x
= I3×3 +Ah+

(Ah)2

2
=

=I3×3 +
h

8

5h−8 4−5h h

4−5h 11h−12 4−5h

h 4−5h 5h−8

 ,

(3.8)

yielding a completely connected graph, represented in Figure 3.2.

1 2e
1,1

e
1,2

e
2,2

e
2,1

3

e
2,3

e
3,3

e
3,2

e
1,3

e
3,1

Figure 3.2: Dependency graph associated with the discretised system (3.7).

In this case, the set of simple cycles C present in the graph G, and the

44

3.3. Cycle analysis

corresponding cycle gains are

c1 = 〈e1,1〉 µc1
(h) =

5h2

8
−h+1,

c2 = 〈e2,2〉 µc2
(h) =

h

8
(11h−12) ,

c3 = 〈e3,3〉 µc3
(h) =

h

8
(5h−8) ,

c4 = 〈e1,2,e2,1〉 µc4
(h) =

h2

64
(4−5h)2 ,

c5 = 〈e1,3,e3,1〉 µc5
(h) =

h4

64
,

c6 = 〈e2,3,e3,2〉 µc6
(h) =

h2

64
(4−5h)2 ,

c7 = 〈e1,2,e2,3,e3,1〉 µc7
(h) =

h4

512
(4−5h)2 ,

c8 = 〈e1,3,e3,2,e3,3〉 µc8
(h) =

h4

512
(4−5h)2 .

Notice that if the matrixW is symmetric, it is sufficient to consider only
its lower triangular part (including the diagonal).

3.3.2 The analysis technique

As anticipated, the ultimate goal of the analysis is to (automatically) recognise
the presence in the model of different time scales, and cluster the dynamic
variables accordingly. The underlying rationale of the approach is based
on a convenient interpretation of the cycle gains of Definition 3.3.4.
To provide this interpretation, let us consider system (3.3) at an asymp-

totic stable equilibrium, i.e., xk+1 = xk . Suppose to apply a small impulsive
perturbation to one state variable xi. A transient will then occur, and two
things may happen:

• the perturbation affects the other state variables, without re-affecting
xi, i.e., in the associated model digraph G, there is no cycle involving
node i;

• the perturbation, after some integration steps, re-affects xi, i.e., there
exists at least one cycle involving node i.

In the first case, no numerical instability can be introduced by the integration
method. This is conversely possible in the second case, and occurs if the

45

3. Dynamic Decoupling

perturbation undergoes a sufficient amplification along at least one of the
involved cycles. Since that amplification is quantified by the corresponding
cycle gain, we can conjecture that the perturbation vanishes if all the gains of
the involved cycles are in magnitude less than a certain µ , while instability
arises if at least one of said gains is larger in magnitude than a certain µ > µ .
It is now worth recalling that, considering an ODE system at a certain

stable operating point, in the vicinity of said point (i.e., near enough to it
for the linearisation of the original system to be sufficiently precise) there
exists one value of h that constitutes the boundary between a stable and an
unstable behaviour of the discrete time solution.
It is also well known that with explicit methods, instability originates

from model dynamics that have too fast a time scale with respect to the
employed integration step. Since the cycle gains depend on h, if an unstable
behaviour is observed, it is legitimate to state that the dynamic variables
involved in the cycles that provide the excessive amplification are evolving
with a time scale that is “fast” with respect to h.
Based on the discussion above, we can now describe the analysis pro-

cedure as follows.

1. Select an explicit fixed-step integration method. It is worth stressing
that this method is only functional to the analysis, and in no sense con-
strains the choice of the method(s) used for the subsequent decoupled
integration.

2. Discretise the system.

3. Construct the digraph.

4. Perform a topological analysis to find the set C of all the (simple)
cycles. The potential complexity of the cycle search operation will be
discussed later on.

5. Express the cycle gains as per (3.6).

6. Construct a set of inequalities in the form

|µc(h)| ≤ α , ∀c ∈ C ,

where α is the single real parameter of the analysis, to be discussed
in the following.

7. Solve each inequality individually for h, thereby associating with each
cycle a value for the integration step that produces low enough a mag-
nitude of the corresponding gain.

46

3.3. Cycle analysis

8. Associate with each dynamic variable xi the lowest h value, called
here hxi

, among those found at the previous point for all the cycles
in which xi appears. Formally, associate with xi the most restrictive
constraint on hxi

among the set of cycles Cxi
= {c ∈ C |xi ∈ c}, i.e.,

hxi
=max h

s.t. h > 0,

|µc(h)|< α , ∀c ∈ Cxi
.

The final result of the analysis is thus having each dynamic variable
associated with a time scale. More precisely, if α was correctly chosen (in
a sense to be discussed), it is guaranteed that if the integration step is set
below a certain hi, then the discretised ODE equation that computes xi,k+1

cannot be responsible for possible instabilities.
Ranking the dynamic variables by hi will provide the basis for the subse-

quent decoupled integration. Before that, however, it is convenient to show
how the procedure just sketched can be specialised and implemented with
an integration method of the considered class. For the sake of simplicity we
here select the Explicit Euler one.

3.3.3 A possible analysis implementation

Taking the Explicit Euler (EE) as the “probe” integration method – see the
remark before (3.3) – the discretised system of the same equation specialises
to

xk+1 = xk +h · f (xk,uk) . (3.9)

Thus, the edge weights of the associated digraph take the form

ρ
[
ei, j
]
(h) =

1+h · ∂ fi

∂xi

if i = j,

h · ∂ fi

∂x j

if i 6= j.

As a consequence the cycle gains (3.6) can be computed as

µc(h) =

1+h · ∂ fi

∂xi

if L = 1 and
∂ fi

∂xi

< 0,

hL ∏
ei, j∈c

∂ fi

∂x j

otherwise,
(3.10)

47

3. Dynamic Decoupling

resulting in a set of constraints

|µc(h)| ≤ α ⇒

0 < h ≤ (1+α)

∣∣∣∣
∂ fi

∂xi

∣∣∣∣
−1

if L = 1 and
∂ fi

∂xi

< 0,

0 < h ≤ L
√

α ·
∣∣∣∣∣∏
ei, j∈c

∂ fi

∂x j

∣∣∣∣∣

− 1
L

otherwise.

(3.11)
Notice that the set of constraints (3.11) can be solved analytically in

a closed form. This is one of the advantages of adopting EE instead of
a more complex integration method for the analysis part. The presented
CA implementation can be summarised by the pseudo-code presented in
listing 1.
As a final remark, observe that the analysis technique could be based on

any explicit method, i.e., not limited to the EE one. However, the adopted
choice has two advantages. First, it results in explicit constraint expressions
having α as the sole parameter. This allows to analyse the model at hand
for different values of α in a computationally affordable manner, that is, to
conduct a parametric separability analysis as exemplified later on in Chap-
ter 4. Then, the higher the order of the used explicit method, the less the
sparsity degree of the discrete-time model dynamic matrix, and clearly a
sparse matrix is in favour of an efficient detection of the system cycles. To
witness this, reconsider the example of Section 3.3.1.1: should one use the
EE instead of the Heun’s method, the resulting dynamic matrix would be

W =
∂FEE

∂x
= I3×3 +Ah = I3×3 +

h

2

−2 1 0

1 −3 1

0 1 −2

 ,

which is remarkably more sparse than (3.8), and apparently much easier to
solve with respect to h. The EE method has thus the nice property of pro-
viding reasonably conservative stability regions with a light computational
burden, whence its choice as the probe one.

3.3.4 Cycle analysis and eigenvalue analysis

In the literature, two are the major techniques to serve an analogous purpose,
concerning time scale analysis, as that of this dissertation: eigenvalue Schiela
and Olsson [2000] and Lyapunov exponent analysis Kuznetsov [2004], Wolf
et al. [1985]. This section compares our technique to eigenvalue analysis,
spending also some words on the Lyapunov exponent subject, as for the
problem of guaranteeing the stability of the discrete-time solution. Doing

48

3.3. Cycle analysis

Algorithm 1 Algorithm to detect all the cycles in the dependency digraph.

function get_path_from_a_to_b(graph, a, b)
paths = /0; //Initialise two empty lists
q = /0;
q.append(a);
while q 6= /0 do
path = q.pop(); //Get the first element of q
final = q(end);
if final == b and length(path)>1 then
paths.append(path);

end if
for e ∈ graph.successors(final) do
if e /∈ path(2:end) then
next = path;
next.append(e);
q.append(next);

end if
end for

end while
return paths;

end function

function get_cycles(graph)
cycles = /0; //Initialise an empty list of dependency cycles
nodes = graph.nodes(); //Get the list of all the nodes in the graph
while length(nodes) 6= /0 do
n = nodes.pop(); //Get the first node in the list
paths = get_path_from_a_to_b(graph,n,n);
if paths is not empty then
cycles.append(paths);

end if
graph.remove_node(n); //All the cycles involving n are detected

end while
return cycles

end function

49

3. Dynamic Decoupling

so, we also provide the background for the subsequent discussion 3.4 on
how the analysed techniques can lead to a suitable partition of the system,
in a view to a decoupled solution. To this end, we first go through a repre-
sentative example, and then draw the necessary general conclusions.

3.3.4.1 An example: loosely damped models and stability issues

Consider the linear, time-invariant, autonomous system

ẋ =

[
−ωnξ −ωn

√
1−ξ 2

ωn

√
1−ξ 2 −ωnξ

]
x, (3.12)

that has the two complex conjugate eigenvalues

λ1,2 =−ωn ·
(

ξ ± ı
√

1−ξ 2
)
,

with natural frequency ωn > 0 and damping factor 0 < ξ ≤ 1, thus be-
ing asymptotically stable. If (3.12) is discretised with the EE method, the
eigenvalues of the corresponding discrete-time system provide the stability
condition

h < 2
ξ

ωn

:= hs. (3.13)

1 2e
1,1

e
1,2

e
2,1

e
2,2

Figure 3.3: Dependency graph associated with system (3.12) discretised with
EE.

Applying CA, the digraph of Figure 3.3 is readily built, and the cycle
gains turn out to be

µ〈e1,1〉 =ρ
[
e1,1
]
= 1+h

∂ f1

∂x1

= 1−hωnξ

µ〈e2,2〉 =ρ
[
e2,2
]
= 1+h

∂ f2

∂x2

= 1−hωnξ

µ〈e1,2,e2,1〉 =ρ
[
e1,2
]
·ρ
[
e2,1
]
= h2 · ∂ f1

∂x2

· ∂ f2

∂x1

=−h2ω2
n (1−ξ 2)

50

3.3. Cycle analysis

leading to the α-dependent constraints
∣∣∣µ〈e1,1〉

∣∣∣< α ⇒ h ≤ 1+α

ωnξ
:= hc,1

∣∣∣µ〈e2,2〉

∣∣∣< α ⇒ h ≤ 1+α

ωnξ
:= hc,2

∣∣∣µ〈e1,2,e2,1〉

∣∣∣< α ⇒ h ≤ 1

ωn

·
√

α

1−ξ 2
:= hc,3

(3.14)

It is then interesting to compare the stability bounds on h provided by
eigenvalue analysis, and those that limit the magnitude of the cycle gains
provided by CA. In particular, the CA bounds on h are looser than the
eigenvalue-related bounds (thus CA does not guarantee discrete-time sta-
bility) if hs ≤ hc,i, i.e.,

2
ξ

ωn

≤ 1+α

ωnξ

2
ξ

ωn

≤ 1

ωn

·
√

α

1−ξ 2

⇒
{

α ≥ 2ξ 2 −1

α ≥ 4ξ 2
(
1−ξ 2

) (3.15)

0.5 1

−0.5

0.5

1

1.5 (√
1+

√
5

2
,

√
5−1

2

)

Numerical
instability

Numerical
stability

ξ

α

Figure 3.4: Stability conditions on the parameter α w.r.t. ξ .

3.3.4.2 Discussion

In the example – but this is intuitively general – a value of α can be found
so that the CA constraints also guarantee stability, as the eigenvalue ones do.

51

3. Dynamic Decoupling

In particular, there exists an α that makes the two upper bounds on h co-
incident. Below said value, α however provides to CA an additional degree
of freedom with respect to eigenvalue analysis, and this degree of freedom
can be exploited to attenuate the effects of mutual dependencies among the
discrete-time dynamic variables—a purpose that is apparently decoupling-
related, and not natural to pursue with the eigenvalue-based approach.
Coming back to the example, we can notice that the value of α that

makes the two bounds on h coincide, depends only on ξ and not on ωn.
This is an important fact since the stability properties of the system are
essentially determined by the damping factor.
Furthermore, analysing Figure 3.4, one can observe that depending on

the value of ξ , the active constraint changes. In particular, it is worth noticing
that for high damping factors, the constraint related to the cycles with cycle
length L= 1 – i.e., relating each dynamic variable to itself – dominates, while
for low damping factors the dominant constraint becomes the one related to
the cycles with cycle length L = 2— i.e., involving two dynamic variables.
This can be easily interpreted as the importance of the couplings among
the variables increases as long as the damping factor – i.e., the oscillatory
behaviour of the involved dynamic variables – decreases, and vice versa;
this fact can be intuitively generalised also to more complex cases.
In other words, while a reduction of ξ – viewed from the eigenvalue

standpoint – appears just as a stability degree reduction, the same fact – ob-
served conversely by CA – reveals its nature of a stronger coupling between
parts of the system. In this sense, therefore, CA provides stability-related in-
formation in a way that is particularly keen to be used for system partitioning
in a view to decoupled integration.
To see the same matter from another viewpoint, one can notice that for

a (linear) system of order n, eigenvalue analysis provides n constraints on h,
one per each of the system modes, while CA provides at least n constraints,
one constraint per system cycle. In other words, with eigenvalue analysis
one observes the system mode by mode, implicitly considering a state space
where all those modes are decoupled (the examples showed this only for a
couple of complex modes, but the generalisation is straightforward). With
CA, on the contrary, the same information is split in such a way to explic-
itly evidence the couplings that eigenvalue analysis – in the sense above –
conceals.
Incidentally, in the linear case, CA provides exactly n constraints in the

case of a triangular system system with real eigenvalues, as in such a case
said eigenvalues appear in the diagonal of the dynamic matrix; in this case,
quite obviously, the value of α discriminating stability from instability is the

52

3.4. Separability indices

unity.
As a consequence of the remarks above, the value of α is quite hard to

be chosen a priori, but must be limited to the compact (0,1), and must be
related to the damping factor of the system. However, when choosing as a
probe method EE, CA can be performed independently of the chosen value
of α , and analytically. This allows for other kind of analysis, based on some
indices that are presented in the next section, letting the modeller get more
insight on structural properties of the system, and thus perform the partition
irrespective of the value of α .

3.4 Separability indices

The result of CA is to associate each dynamic variable with an upper bound
of the integration step, thus with a quantity related to its time-scale. The
variables can then be ordered – and possibly clustered – by increasing value
of hxi
. Based on this, some synthetic indices will now be defined, useful for

deciding how to partition the original model in weakly coupled submod-
els. It will also be shown how such indices extend the idea of “stiffness”,
like CA was shown to evidence more decoupling-related information than
eigenvalue analysis.
To start, consider the classical stiffness indicator based on eigenvalues

analysis, i.e., the stiffness ratio.

Definition 3.4.1 (Stiffness ratio). The stiffness ratio σR Cellier and Kofman
[2006] is defined as the ratio between the absolute largest real part and the
absolute smallest real part of any eigenvalue, i.e.,

σR =
maxi |ℜ{λi}|
mini |ℜ{λi}|

.

Highly stiff systems are associated with high values of σR. This defini-
tion, however, cannot be applied to any stiff system, e.g., either stiff systems
of order 1, or systems with eigenvalues on the imaginary axis. Moreover,
since it just considers the real part of the eigenvalue, the index may suggest
that the system is highly stiff, even if it is not oscillatory.
Apparently, the stiffness ratio is defined for a linear (or linearised) system,

and indicates how much the smaller time scale differs from the larger one. It
is thus a good index for understanding whether or not to use an integration
method for stiff systems on the entire model, but gives no information on

53

3. Dynamic Decoupling

−4

−3

−2

−1

0

1

2

3

4

ℑ
{λ

·h
}

−5 −4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

ℜ{λ ·h}

ℑ
{λ

·h
}

Figure 3.5: Two cases of linear systems with the same stiff ratio.

54

3.4. Separability indices

how many “clusters of time scales” are present in it, nor on which dynamic
variable belongs to which cluster.
To exemplify, let us limit to the linear case, and consider Figure 3.5.

In the left graph, the continuous-time eigenvalues of the system (indicated
with the cross) are not equally spaced in the left-half-plane, and can be
divided into two clusters: those that are close to the origin are associated
with “slow dynamics”, while the others are associated with “fast dynamics”.
The presence of the two different time scales is also evidenced by computing
the stiffness ratio of Definition 3.4.1. Let us now consider the right graph
of the same figure. In this case, the stiffness ratio is the same, since the
closest and the farthest eigenvalues from the origin are the same, while the
eigenvalues of the system are almost equally distributed in the left-half-plane.
This feature of the system is strictly related to how much the system can be
“separable” and is not evidenced in any way by the stiffness ratio.
Coming back to the CA approach, two different indices based on it can be

defined. One (the stiffness index, see Definition 3.4.2) quantifies the span of
the time scales in the model, analogously to the one of Definition 3.4.1. The
other (the separability index, see Definition 3.4.4) indicates to what extent
the clusters of dynamic variables corresponding to those time scales the
system can be computed in a decoupled manner. Both indices are function
of α , and being based on CA, they can be computed also for nonlinear
systems.
Denote by H the set of integration steps hxi

associated with each dy-
namic variable, and assumeH ordered by ascending values of h, i.e.,

H = {h1 ≤ h2 ≤ . . .≤ hN}.

Based on that, the following definitions can be given.

Definition 3.4.2 (Stiffness index). The stiffness index for a given α is the
ratio between the minimal and the maximal integration step found with the
cycle analysis, i.e.,

σ(α) =
hmax(α)

hmin(α)
. (3.16)

Analogously to the stiffness ratio σR, also for the stiffness index highly
stiff systems are associated with high values of σ .

Definition 3.4.3 (Separability term). The separability term for a given α ,
and for a given couple of variables xi and x j is

sα(i, j) =
|hi(α)−h j(α)|

maxm (hm+1(α)−hm(α))
, hi,h j ∈ H .

55

3. Dynamic Decoupling

Definition 3.4.4 (Separability index). The separability index for a given α
is the one minus the ratio between the maximal and the average difference
among two subsequent values of the time scales, i.e.,

s(α) = 1−

1

N −1

N−1

∑
i=1

hi+1(α)−hi(α)

maxi (hi+1(α)−hi(α))
= 1− 1

N −1

N−1

∑
i=1

sα(i+1, i).

Apparently, high values of s(α) ∈ (0,1) indicate that the time scales
involved in the system are different enough to be effectively separated.
In Chapter 4, the presented indices will be used to evaluate the level

of stiffness and separability of the considered examples. Summarising, the
stiffness ratio and index are comparable and synthetic descriptions of the
separation between the maximal and the minimal model time scales, not
suited however for understanding whether said model can be partitioned.
The separability index is another synthetic one, but is specifically targeted
at quantifying the possibility of such a separation. The separability term
is a local index to a couple of adjacent time scales, and an analysis of its
behaviour can easily suggest possible separation points.

3.4.1 Separability analysis

The proposed separability index (3.4.4) is a synthetic description of a struc-
tural property of the overall system, but additional information can be ex-
tracted from CA, providing also suggestions on how the system can be par-
titioned. However, CA – thus the computation of the proposed indices –
usually requires the choice of a value of α , which has been already dis-
cussed above.
On the basis of those remarks, a parametric separability analysis can

be performed:

1. perform a parametric CA, and express the time scales associated with
each dynamic variable as a function of α ∈ (0,1);

2. for each value of α ∈ (0,1), order the time scales obtaining a set of
values of the integration steps H = {h1 ≤ h2 ≤ . . .≤ hN};

3. for each value of α ∈ (0,1), compute the separability terms sα(i+1, i)
for all i = 1, . . . ,N −1;

56

3.4. Separability indices

4. plot the obtained sα(i+1, i) as a function of α and i = 1, . . . ,N −1,
possibly as a colormap.

The result of this kind of analysis is that whenever a couple of dynamic
variables (identified in the setH with their indices i and i+1), the plot will
highlight a peak—examples of those kind of plots are presented in the next
chapter.
This kind of analysis provides information that is twofold and imme-

diately interpretable by the modeller. First, considering only a single peak
for simplicity, the variables on one side of the peak may be considered as
coupled, and highly decoupled in terms of time scale from the variables on
the other side of the peak. This can be exploited for designing a partition
of the system, or multiple in the case of many peaks. In addition, since the
variables are ordered by time scales, those with lower indices are associated
with fast time scales, the others with slow ones.

3.4.2 Exploiting the partition

The information coming from the separability analysis can be exploited in
different ways. A first possibility is to split the model into two submodels,
and use suitable mixed-mode integration methods, as discussed in the next
section. On the other hand, the identified time scales can be used to structure
more complex (co-)simulation architectures, splitting the system into many
subsystems.
In particular, if the time scales present in the considered model can be

clustered into more than two sets, an iterative approach can be used so
as to improve simulation efficiency, extending the mixed-mode integration
method to a multi-rate mixed-mode integration. The simulation structure
can be obtained as follows

1. identify the time scales by means of the separability analysis proposed
herein;

2. according to the time scale of interest, the system can be split into two
subsystems, one slow that will be simulated with an explicit method,
one fast that will be integrated with implicit method(s);

3. if the faster dynamics cannot be split into other subsystems according
to the time scales, then the algorithm terminates;

4. otherwise, the fast dynamics are split into two subsystems, one faster,
and one slower, that will be integrated with a multi-rate implicit
method;

57

3. Dynamic Decoupling

5. go to step (3).

This approach automatically builds the simulation architecture, exploit-
ing the system structure without any added effort on the part of the modeller.
The resulting faster partitions are smaller reducing the computational com-
plexity of solving them with implicit algorithms.

3.5 Mixed-mode integration

This section deals with how the information coming from CA can be ex-
ploited to improve simulation efficiency. Broadly speaking, since a complete
treatise of this matter will require more than one future work, we can say
that such an exploitation takes place along two fundamental axes. One
refers to the used integration methods, the other to the adopted simulation
architecture.

3.5.1 Exploiting by integration methods

Having clustered the dynamic variables by time scale, one can use explicit
integration methods for the slow ones, and implicit methods for the fast
ones. This, in some cases, may result in loosing a precise representation of
fast phenomena, but apparently improves efficiency. Moreover, the type of
information provided by CA facilitates the modeller, as he/she has just to
decide which is the smallest time scale of interest for the simulation study
at hand.
We now illustrate some applications of this idea, limiting the scope to a

system partitioned in two subsystems. This is done for simplicity and with-
out loss of generality, since after a first partition one could simple re-apply
the proposed technique to one or more of the obtained subsystems. We
also use different pair of integration methods, to show that the proposed ex-
ploitation is applicable for diverse methods, e.g., Ascher et al. [1997] present
some examples of joint use of pairs of Runge-Kutta integration methods. In-
cidentally, this further highlights the neat separation between the analysis
and the simulation part, thus between the probe method used for CA, and
the integration methods. Finally, we show that once the order of accuracy
of the used methods is chosen, the technique leads to the same mixed-mode
integration algorithm whatever the particular methods are. This allows the
modeller to select – among those of the desired accuracy – the integration
methods that are most efficient for the particular application.

58

3.5. Mixed-mode integration

Coming to the exploitation technique, consider the generic autonomous
nonlinear ODE system

ẋ = f(x) (3.17)

and assume it to be partitioned into two subsystem: one with slow dynamics,
the other with fast dynamics. Following an approach similar to the one
presented in Schiela and Olsson [2000], we can left-multiply the state vector
by a projection matrix P = diag{p1, p2, . . . , pn}, with pi ∈ {0,1} to select
the slow part, and by P = I −P to select the fast part. Therefore (3.17) can
be written as {

ẋ
S = Pẋ = Pf

(
x

S,xF
)

ẋ
F = Pẋ = Pf

(
x

S,xF
) (3.18)

where x
S represents the slow variables, and x

F the fast ones.
To qualify the used methods, we adopt the classical notation used for

Runge-Kutta ones, i.e., a method of order s is expressed in the general form

xk+1 = xk +h
s

∑
i=1

biκi, with κi = f

(
xk +h

s

∑
j=1

ai jκ j, tk + cih

)
, (3.19)

where the coefficients ai j , bi and ci are usually expressed by means of the
so-called Butcher tableau

c A

b
=

c1 a11 · · · a1s

...
...
. . .

...
cs as1 · · · ass

b1 · · · bs

.

Recall for convenience that an explicit Runge-Kutta method is charac-
terised by ai j = 0 for all j ≥ i, which is not true for implicit ones.

3.5.1.1 Explicit-Implicit Euler

First of all we consider the simplest exploitation case, i.e., using Explicit
Euler (EE) for the slow part, and Implicit Euler (IE) for the fast part. This
approach has already been presented in Schiela and Olsson [2000] for the
linear case.
The Butcher tableaux of the two methods are respectively

EE:
0 0

1
IE:

1 1

1

59

3. Dynamic Decoupling

Correspondingly, equation (3.18) can be expressed as

x
S
k+1 =Pxk+1 = Pxk +hPf

(
x

S
k ,x

F
k , tk

)

x
F
k+1 =Pxk+1 = Pxk +hPf

(
x

S
k+1,x

F
k+1, tk

)
,

which in the linear case becomes

x
S
k+1 =Pxk +hPAxk

x
F
k+1 =Pxk +hPAxk+1.

Composing those two equations, and solving for xk+1, we can obtain

xk+1 =
(
I −hPA

)−1
(I +hPA)xk.

3.5.1.2 Explicit-Implicit midpoint

In this section we consider the Explicit Midpoint (EM) and Implicit Midpoint
(IM), two second-order accurate integration methods. The corresponding
Butcher tableaux are

EM:
0 0 0

1/2 1/2 0

0 1

IM:
1/2 1/2

1

According to (3.19), the slow part of equation (3.18) becomes

x
S
k+1 =Pxk+1 = Pxk +hκ2 with κ1 =Pf

(
x

S
k ,x

F
k , tk

)

κ2 =Pf

(
x

S
k +

h

2
κ1,x

F
k , tk +

h

2

)
,

leading to the more compact equation

x
S
k+1 = Pxk +hPf

(
x

S
k +P

h

2
fk,x

F
k , tk +

h

2

)

where
fk := f

(
x

S
k ,x

F
k , tk

)
.

As for the fast part, the IM method can be used. Thus, using the numer-
ical solution of the slow part as an input for the fast part, leads to

x
F
k+1 =Pxk+1 = Pxk +hPκF

1 with κF
1 =f

(
xk +

h

2
κ1, tk +

h

2

)
.

(3.20)

60

3.5. Mixed-mode integration

Observing that κF
1 = (xk+1−xk)/h, equation (3.20) can be written in a more

compact form

x
F
k+1 = Pxk +hPf

(
x

S
k+1 +x

S
k

2
,
x

F
k+1 +x

F
k

2
, tk +

h

2

)
.

In the linear case, the two expressions become

x
S
k+1 =Pxk +hPAxk +

h2

2
(PA)2

xk

x
F
k+1 =Pxk +

h

2
PAxk +

h

2
PAxk+1

.

Composing the two expressions, the overall dynamics can be computed
as

xk+1 =

(
I− h

2
(I −P)A

)−1(
I+

h

2
(I +P)A+

h

2
(PA)2

)
xk.

3.5.1.3 Heun-Lobatto mixed-mode

Analogous computations can be done with different integration methods.
For example the Heun’s method can be taken as the explicit method, and
the second-order Lobatto IIIA one for the implicit part. The Butcher tableaux
of the two methods are respectively

Heun:
0 0 0

1 1 0

1/2 1/2

Lobatto IIIA:
0 0 0

1 1/2 1/2

1/2 1/2

With similar computations to the ones performed for the midpoints
methods, it is easy to show that the slow part dynamics are ruled by

x
S
k+1 =Pxk +hfk

h2

2
f
(
x

S
k +hPfk,x

F
k , tk +h

)

x
F
k+1 =Pxk +

h

2
P(fk + fk+1)

Which in the linear case become

x
S
k+1 =Pxk +hPAxk +

h2

2
(PA)2

xk

x
F
k+1 =Pxk +

h

2
PAxk +

h

2
PAxk+1

61

3. Dynamic Decoupling

Leading to the overall dynamics

xk+1 =

(
I− h

2
(I −P)A

)−1(
I +

h

2
(I+P)A+

h2

2
(PA)2

)
xk

which is exactly the same dynamics obtained by the combination of any
second-order accurate couple of Runge-Kutta methods.

3.5.1.4 General application

Alternatively to the proposed techniques, other pairs of Explicit-Implicit
Runge-Kutta methods can be used, for example all the ones proposed in As-
cher et al. [1997]. In principle one could also use completely different meth-
ods.
Summarising, exploiting CA by integration method leads to join the best

of implicit and explicit integration in a knowledgeable manner for the case
under question. The resulting integration scheme is represented in Fig-
ure 3.6.

Explicit
method

Implicit
method

uk
x

S

k+1

x
F

k+1

Figure 3.6: Mixed-mode integration scheme.

This kind of scheme will be used in Chapter 4 to evaluate the perfor-
mance of the proposed methods.

3.5.2 Exploiting by simulation architecture

The last sections presented a possible way of exploiting the information
coming from CA to speed up simulation, by exploiting appropriately nu-
merical integration methods. However, there is an additional possibility
that we propose in this work. Broadly speaking, we can say that CA can be
exploited along two fundamental axes. One – treated above – refers to the
used integration methods, the other to the adopted simulation architecture.
To enhance simulation efficiency, it is useful to identify which parts of

a model can be simulated in parallel. To this end, the dependency digraph
used for CA can be further exploited by detecting Parallelisable Cycle Sets
(PCS), as briefly explained in this section.

62

3.5. Mixed-mode integration

A PCS is defined in the simplest manner as a set of cycles in the digraph
that share a single node and have no other nodes in common. Extensions
can be given considering sets of common nodes instead of a single one, or
“weak” absence of other common nodes, for example based on the domi-
nance of some cycle gains over others, but these are not necessary for the
purpose of this section and cannot be treated in this work for space limita-
tions. The interested reader is referred to Fortunato [2010] for some details
on how to formally define and detect PCS-like structures – usually defined
as community in the network analysis theory – on the same digraph used
here for CA.
The key idea motivating the search for PCS is that it is not infrequent

to encounter situations in which fast parts of an overall model are made
mutually dependent only by slower ones. This happens, for example, when
several heat networks are connected to a large central energy storage. An-
other similar situation is when the presence of some controls eliminates
high-frequency variabilities and thus confines the coupling of some parts of
the model to low frequency only. This could be the case when branches
of a grid are connected to a central strong node, which is tightly controlled.
A possible example of PCS as seen on the model digraph is shown in Fig-
ure 3.7. If the model parameters actually make the PCS emerge, node C
would be the common one, and the four subsystems corresponding to the
cycles in the PCS would be composed of nodes {T}, {R}, {B}, and {L, LT,
LB}.

CL R

T

B

LT

LB

Figure 3.7: An example of PCS as seen on the model digraph.

The usefulness of PCS comes by simply observing that they evidence
situations like those just mentioned, and that in such cases the fast parts of
the system can not only be dynamically decoupled from the slow ones, but
also simulated in parallel. Furthermore, given the variety of the encountered

63

3. Dynamic Decoupling

time scales, the same model can give rise to different partitions into paral-
lelisable models, depending on how the analyst chooses to split the time
scales. Based on this idea, PCS can be exploited in at least two ways.
First, they can be detected on the entire digraph, i.e., before possibly

selecting the time scale splits. Even in the case of a monolithic solution, and
independently of the integration method, doing so provides an automatic
selection of which parts of the system can be parallelised, e.g., by acting as
discussed in Casella [2013].
Second, one can perform CA as described in the previous sections, and

then detect PCS only for those parts for which implicit methods are to be
used, so as to combine the improvements coming fromDDwith an efficiency
enhancement of the most computationally intensive part of the simulation
code.
From a more technological standpoint, one can then just employ parallel

computing architectures, or even use the so obtained information to struc-
ture a co-simulation setup. In the latter case, the proposed technique pro-
vides more formally grounded an alternative to heuristics based e.g. on the
minimisation of the number of signals exchanged among the co-simulation
units [Hendrickson and Devine, 2000, Kernighan and Lin, 1970]. Of course
such optimisations are not possible when the structure of the simulation
setup is dictated by the used software tools, but in the last years formalisms
and standards have been emerging to provide designers with more free-
dom in this respect, see e.g. [Andersson et al., 2011, Blochwitz et al., 2012,
Papadopoulos and Leva, 2013a].
As a final but important remark, the proposed approach allows to ob-

tain a co-simulation setup starting from a monolithic model. This can be ex-
tremely useful to solve the initialisation problem, as doing so in a centralised
manner generally yields improved convergence guarantees with respect to
a distributed approach [Burrage, 1993].

3.6 Application-oriented remarks

After presenting the proposed DD-based technique in its entirety, a few
words are in order to motivate some of the adopted choices, and discuss its
practical use.
Starting from CA, its application requires to select the “probe” discreti-

sation method. The choice made in this work is the EE one, and some
motivation for that is in order.
In fact, after describing the CA technique, we could observe that the

ranking of the dynamic variables by time scale was obtained by exploiting

64

3.6. Application-oriented remarks

a known weakness of explicit fixed-step integration (probe) methods, i.e.,
their fairly small region of numerical stability—see, e.g., Figure 3.8 for the
Explicit Runge-Kutta (ERK) family Cellier and Kofman [2006].

−5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

ℜ{λ ·h}

ℑ
{λ

·h
}

ERK1

ERK2

ERK3

ERK4

Figure 3.8: Numerical stability domains of ERK (interior of the curves).

The natural method selection guidelines are therefore the conservatism
of the obtained ranking, and the ease in writing and solving the constraint
inequalities on h. By the way, the second guideline is the major reason
why explicit methods are considered, since in the opposite case it would be
necessary to solve those inequalities numerically.
Having so motivated the choice for explicit methods, and given that CA

was shown to be applicable to any of them, the method selection problem
is reduced to its core. Among all the methods that are still candidates at
this point, the EE one has the advantage of always permitting an analytical
closed-form solution of the constraint inequalities, while exhibiting small
enough a stability region to provide a conservative ranking (see again Fig-
ure 3.8 recalling that EE coincides with ERK1). From a practical standpoint,
the author cannot see any reason for the use of different methods, except
possibly for those Adams-Bashforth type in the case of extremely loosely
damped dynamics, and in general the EE method performed satisfactorily
in all the numerous applications considered so far.

65

3. Dynamic Decoupling

A possible issue with CA is the computational complexity of the method.
Unfortunately the problem of finding all the cycles in a digraph has com-
plexity O

(
2|E|−|N|+1

)
, and is a well-known and studied problem in the

operations research community Goldberg and Ann [2009], Johnson [1975],
Tarjan [1971, 1972]. This is of course a limitation with strongly connected
digraphs, which are however seldom encountered when modelling physical
systems, especially in the multibody case.

Apart from the last remark, in the first place CA is an offline activity
with respect to simulations, and needs to be performed only once for a given
model. Then, optimisations are possible for the search procedure so as to
make the required computation time well acceptable, achieving a detection
rate of thousands of cycle per second (see the remark in the example of
Section 4.3). Describing the software implementation of CA is not within
the scope of this dissertation; it is however worth mentioning that the used
one is still a proof-of-concept prototype. See Papadopoulos and Leva [2013a]
for some ideas and ongoing research on CA performance improvement, and
software details.

To conclude this point, it is worth evidencing that the possibly incurred
computational complexity is paid back, as anticipated, in terms of the infor-
mation coming from CA. In particular, CA dictates not only the time scales
associated with each state variable, but also which are the variables that are
mutually interacting. This information can be used to identify independent
components in the model – the strongly connected components of the de-
pendency graph – to make the simulation code parallel, possibly combining
this work with Casella [2013] (a matter deferred to future research).

Another point to discuss is the choice of α , which is the only design
parameter of the method, and controls the tradeoff between the accuracy of
the resulting simulation and the achieved degree of decoupling. Specifically,
lower values ofα result in a higher simulation accuracy, but also in a reduced
capability to detect weakly coupled components.

At this stage of the research, in the choice of α some heuristics is still
required. According to experience, we could say that a reasonable default
choice for α is the unity in the presence of systems exhibiting only over-
damped dynamics, while things can be more critical, requiring lower values,
in the presence of loosely damped behaviours. Further investigation of this
matter is devoted to future works, but it can already be stated that suitable
guidelines for the choice of α , possibly problem-specific as just suggested,
can be devised quite easily. It is also worth noticing that the computation-
ally intensive part of the method is the analysis of the model digraph, which
does not depend on α : if needed, performing multiple analysis runs with

66

3.6. Application-oriented remarks

different values for that parameter, until a reasonable accuracy/separability
compromise is found, is therefore an affordable task. Even more specifically,
if EE is chosen as the probe discretisation method, stiffness index, separa-
bility terms and index can be computed as a function of α , allowing for a
parametric analysis as performed in the previous section.
On the same front, we could thus better qualify the statement made

in Chapter 2, that the presented technique is not scenario-based. In fact
the result of the technique – i.e., the model partition – does depend on the
considered operating point, but (again, if a convenient probe method like
EE is used) this dependence just means that the ranking of the dynamic
variables may need to be re-computed, while the analysis is done only once.
This is not true for other scenario-based techniques – see, e.g., Mikelsons
and Brandt [2011] – where the entire procedure has to be repeated.
As a final remark, although the matter rigorously strays from the scope of

this work, the very relevant problem of model initialisation in a co-simulation
context [Arnold and Schiehlen, 2009] is tendentiously easier to handle if one
first obtains and initialises a monolithic model, and then partitions it. The
advantages of the presented technique in this respect should be quite evident.

67

Chapter 4

Dynamic Decoupling: simulation examples

In this chapter, some representative examples coming from different physi-
cal domains are described and analysed. In particular, a parametric separa-
bility analysis is presented (so as to analyse the system behaviour indepen-
dently of the choice of α), and a mixed-mode integration method is used to
evaluate the simulation performance.
The obtained results are compared with those obtained by applying

(without DD) other integration methods, namely two first-order fixed step
integration methods – Explicit Euler (EE) and Implicit Euler (IE) – and other
more sophisticated multistep methods – Backward Differentiation Formulas
(BDF) and LSODAR (short for Livermore Solver for Ordinary Differential
equations, with Automatic method switching for stiff and nonstiff problems,
and with Root-finding) – are used as baseline to compute the accuracy of the
computed solution. All the simulation results were obtained using jModelica
and Assimulo (see Chapter 1 for more detail).
Most of the results presented in this chapter come from Papadopoulos

et al. [2013], and Papadopoulos and Leva [2013a,b,c,d]. More examples can
be found in Appendix A.

4.1 DC motor

Let us start from a very simple physical system: a DC motor. This example
is just to apply the proposed methodology on a system that can be easily
analysed also manually, without the help of automatic tools. In this case, it
is quite easy to understand which are the fast – the electrical variables – and
which are the slow ones – the mechanical variables, also without performing
any analysis.
The motor can be represented by a third order model of the form:

L · İ =−R · I− km ·ω +u(t)

J · ω̇ =km · I−b ·ω − τ(t)

ϕ̇ =ω

(4.1)

69

4. Dynamic Decoupling: simulation examples

where L = 3mH is the armature inductance, R = 50mΩ is the armature
resistance, J = 1500kgm2 is the inertia, b = 0.001kgm2/s is the friction
coefficient, and km = 6.785Vs is the electro-motorical force (EMF) constant
of the motor. These parameter values correspond to those of a real system.
The armature voltage, u(t), and the torque load, τ(t), can be taken as inputs
of the system. In the given example, u(t) is 500V, and the torque is of
2500Nm.
In this preliminary example, CA is able to find 4 cycles, and the para-

metric separability analysis result is shown in Figure 4.1.

0.2 0.4 0.6 0.8 1

1

2

s
α
(i
+

1
,i
)

α

Separability index

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4.1: Separability parametric analysis of the DC motor.

Choosing α = 0.5, CA leads to the following constraints:

I : h ≤ 0.032

ω : h ≤ 0.221

ϕ : h ≤ 0.500

(4.2)

hence, choosing an integration step h = 0.2 leads to a partition of the system
that is natural, separating the electrical components from the mechanical
variables. Figure 4.2 shows the simulation results.

70

4.1. DC motor

0

0.5

1

·10
4

I
[A
]

Reference
MM

0

50

100

ω
[r
ad
/s
]

0 1 2 3 4 5 6 7 8

0

200

400

t [s]

ϕ
[r
ad
]

Figure 4.2: Simulation results of Model (4.1). Black lines represent the ref-
erence solution of the trajectories, while the red lines the mixed-mode ones.

71

4. Dynamic Decoupling: simulation examples

Table 4.1 shows the simulation statistics for different integration meth-
ods. It is worth noticing that the dimension of the system the Newton itera-
tion has to solve is reduced from 3 to 1 in the mixed-mode method. Notice,
also that the EE method needs a smaller step size (h = 0.01) for numerical
stability reasons. Apparently, the mixed-mode method performs better or
in a comparable way than the others in terms of simulation statistics also in
this very simple case.

Table 4.1: Simulation statistics for Model (4.1).

Mixed-mode BDF IE EE

Steps 40 255 40 800
Function ev. 123 283 122 –
Jacobian ev. 2 5 2 –
Fun. ev. in Jac. ev. 4 15 8 –
Newton iterations 83 279 82 –
Newton fail 0 0 0 –
Accuracy 1.139 – 1.531 1.876
Sim time 0.03s 0.09s 0.05s 0.22s

To complete the example, the proposed indices proposed in Section 3.4
are here computed, yielding the following indices—notice that since there is
an eigenvalue in the origin, σR cannot be computed, so the stiff ratio is not
defined.

σ(0.5) = 15.667, s(0.5) = 0.161.

The stiffness σ(α) index shows that the system is highly stiff, while
the separability one shows that this kind of system, with the given set of
parameters is not very suited for separation. This is due to many factors,
the main of which is the simplicity and low-dimensionality of the system. In
the following examples, it will be shown that in more complex and realistic
cases things are separability analysis is more keen to be applied and give
more insight on the model at hand.

4.2 Mechanical system with brake

This example considers a nonlinear and more complex system. The sys-
tem shown in Figure 4.3 is considered. A body of mass M moves on a
horizontal guide subject to an exogenous motor torque command τ(t)o =
10sin(2πt/5) and to friction, acting on the wheels. The motor is not mod-
elled for simplicity, and the relationship between the torque command and

72

4.2. Mechanical system with brake

M

m
k

F

x

Figure 4.3: Mechanical system with brake.

the actual torque τ(t) is simply represented by a unity-gain, first-order
continuous-time system. Also, the motor-wheel system compliance is lumped
in a single rotational elasticity, δϕ indicating the angle difference between
its sides. Another body of mass m is connected to the first one by a spring,
and is also subject to friction with the former. The system also contains a
brake, mounted on mass M and acting on the guide, thus introducing an
input-by-state nonlinearity.
In the following xM denotes the position of mass M, xm that of mass m,

ϕ the angle of the wheels, and ω their angular velocity.
Similarly to what have been done for the previous example, a prelimi-

nary analysis keeping α as a parameter is needed to understand if the system
at hand exhibits quite different time scales. The result of this parametric
analysis is presented in Figure 4.4.
In this case, CA detects 19 cycles. The highest separability term depends

on the choice of α , since for values close to 1 the separability terms assume
higher values for i = 5, i.e., partitioning the system between the 5-th and the
6-th variables, while for lower values of α , the highest separability term is
obtained for i = 6. Assuming that it is preferable to keep the fast subsystem
as small as possible, in this case we proceed with α = 1.0.

ẋM : h ≤ 1.000×10−6 δϕ : h ≤ 0.111

xm : h ≤ 0.006 ϕ : h ≤ 0.150

ẋm : h ≤ 0.006 ω : h ≤ 0.150

xM : h ≤ 0.014

τt : h ≤ 0.053

Partitioning the system as suggested by the parametric analysis means,
for example, to choose an integration step h = 0.06 for the mixed-mode
integration method, obtaining as fast variables the set of the ones on the left,
and as slow variables the set of the ones on the right.

73

4. Dynamic Decoupling: simulation examples

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

s
α
(i
+

1
,i
)

α

Separability index

0

2

4

6

·10
−2

Figure 4.4: Separability analysis of the mechanical system with brake.

Figure 4.5 shows the numerical results of the mixed-mode integration
method, while Table 4.2 presents some comparative simulation statistics.
Notice that in this case a very tiny integration step (h = 10−4) has been
chosen for EE, due to numerical stability reasons.

Table 4.2: Simulation statistics for the mechanical system with brake.

Mixed-mode LSODAR IE EE

Steps 168 8363 168 105

Function ev. 1296 18816 1293 –
Jacobian ev. 103 928 103 –
Fun. ev. in Jac. ev. 618 – 927 –
Newton iterations 1128 – 1125 –
Newton fail 102 – 102 –
Accuracy 9.962 – 1.480 10.567
Sim time 0.45s 2.17s 0.50s 23.9s

Also in this case, the mixed-mode integration method is able to capture

74

4.2. Mechanical system with brake

−0.4

−0.2

0

0.2

0.4
ẋ

M
[m
/s
]

Reference
MM

−0.4

−0.2

0

0.2

0.4

ẋ
m
[m
/s
]

0

1

2

·10
−2

x
M
[m
]

0

1

2

·10
−2

x
m
[m
]

−10

0

10

τ t
[N
m
]

−0.1

0

0.1

δ
ϕ
[r
ad
]

0 2 4 6 8 10

−0.5

0

0.5

t [s]

ϕ
[r
ad
]

0 2 4 6 8 10

−1

0

1

t [s]

ω
[r
ad
/s
]

Figure 4.5: Simulation results of the mechanical system with brake.

75

4. Dynamic Decoupling: simulation examples

the main dynamics in accordance with the chosen separation time scale.
Furthermore, simulation statistics show that also in this nonlinear exam-
ple, there is an improvement in terms of performance with respect to other
methods, especially for LSODAR, which is a variable-step one.
To complete the example, the proposed indices proposed in Section 3.4

are here computed, yielding the following indices—notice that due to the
nonlinearity of the system, σR cannot be computed.

σ(1.0) = 1495.528, s(1.0) = 0.635.

The stiffness σ(α) index shows that the system is highly stiff, while the
separability one shows that it is also well suited to be partitioned.

4.3 Triangle of masses

(0,0)

mbc

mtl mtr

(-1,2) (1,2)

kbc

ktrktl

kcl kcr

klr

y

x

Figure 4.6: The “triangle of masses” system (dampers are not represented
to simplify the drawing).

In this example, a highly nonlinear system is considered. The system
is composed of three masses, moving in a vertical plane subject to gravity
and to the action of six spring-damper elements, as shown in Figure 4.6 (a
two-dimensional model was created for simplicity). Notice that this model
is strongly nonlinear, and the eigenvalue analysis is not applicable.
In the following, xi and yi represent the horizontal and vertical displace-

ment of the three masses, while the indices b, c, l, r and t indicate respec-
tively bottom, center, left, right and top. The spring elasticity coefficients ki

76

4.3. Triangle of masses

and the damping factors di are reported in Table 4.3, while the three masses
are mbc = mtl = mtr = 1kg.

Table 4.3: The “triangle of masses” system parameters.

Parameters

ktl 1N/m dtl 1Ns/m
ktr 1N/m dtr 1Ns/m
kbc 1N/m dbc 1Ns/m
klr 1N/m dlr 2Ns/m
kcl 10N/m dcl 1Ns/m
kcr 1N/m dcr 1Ns/m

Also in this case, a parametric CA is performed so as to analyse the
structure of the system, and Figure 4.7 shows its result.

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

11

s
α
(i
+

1
,i
)

α

Separability index

0

2 ·10
−2

4 ·10
−2

6 ·10
−2

8 ·10
−2

0.1

Figure 4.7: Separability analysis of the triangle of masses system.

In the “triangle of masses” system, the computed separability terms evi-
dence that there is a neat separation between the 8-th and the 9-th variable,
suggesting this as a good point for the partition.

77

4. Dynamic Decoupling: simulation examples

Table 4.4: Simulation statistics for the masses triangle.

Mixed-mode LSODAR IE EE

Steps 200 596 200 2000
Function ev. 1236 1232 857 –
Jacobian ev. 13 38 13 –
Fun. ev. in Jac. ev. 117 – 169 –
Newton iterations 1036 – 657 –
Newton fail 5 – 4 –
Accuracy 0.871 – 0.780 1.337
Sim time 0.38s 0.51s 0.4s 0.48s

The CA detected 3984 cycles, evidencing how significant the impact of
the system’s degrees of freedom can be on the number of cycles. Anyway,
all cycles are found in less than 1 s. The choice of α can be made on the
basis of Figure 4.7, trying to maximise the separability term, e.g., by choosing
α = 0.5. The resulting constraints are thus

ẏbc : h ≤ 0.083 ẋtl : h ≤ 0.207

ybc : h ≤ 0.083 ẏtl : h ≤ 0.207

ẋbc : h ≤ 0.084 xtl : h ≤ 0.207

xbc : h ≤ 0.084 ytl : h ≤ 0.207

ẋtr : h ≤ 0.087

xtr : h ≤ 0.087

ẏtr : h ≤ 0.087

ytr : h ≤ 0.087

As in the other examples, the variables on the left are the fast ones,
and those on the right the slow ones. The choice of h = 0.1 partitions the
model in those two subsystems for the mixed-mode integration, obtaining
the numerical simulation represented in Figure 4.10 (simulation statistics are
reported in Table 4.4). Notice that for EE a smaller integration step (h= 0.01)
was used, for numerical stability reasons.
To complete the example, the indices proposed in Section 3.4 are here

computed, yielding the following results—notice that also in this case, due
to the nonlinearity of the system, σR cannot be computed.

σ(0.5) = 2.491, s(0.5) = 0.899.

78

4.3. Triangle of masses

−1

−0.5

0

0.5
ẋ b

c
[m
/s
]

Reference
MM

0

0.5

1

ẏ b
c
[m
/s
]

0 5 10 15 20

−0.5

0

0.5

t [s]

x b
c
[m
]

0 5 10 15 20
0

0.5

1

1.5

2

t [s]
y b

c
[m
]

Figure 4.8: Simulation results for the triangle of masses system, for the
bottom-center (bc) mass.

0

0.1

0.2

0.3

ẋ t
l
[m
/s
]

Reference
MM

0

0.2

ẏ t
l
[m
/s
]

0 5 10 15 20

−0.5

0

0.5

t [s]

x t
l
[m
]

0 5 10 15 20
0

0.5

1

1.5

2

t [s]

y t
l
[m
]

Figure 4.9: Simulation results for the triangle of masses system, for the top-
left (tl) mass.

79

4. Dynamic Decoupling: simulation examples

−0.5

0

0.5
ẋ

tr
[m
/s
]

Reference
MM

−0.5

0

0.5

ẏ
tr
[m
/s
]

0 5 10 15 20

−0.5

0

0.5

t [s]

x
tr
[m
]

0 5 10 15 20
0

0.5

1

1.5

2

t [s]

y
tr
[m
]

Figure 4.10: Simulation results for the triangle of masses system, for the
top-right (tr) mass.

The stiffness σ(α) index shows that the considered system is suffi-
ciently stiff, but nonetheless the separability one shows that it is suited for
the partition, since its time scales are well separated.

4.4 Counterflow heat exchanger

In this example we consider a typical nonlinearity that is encountered in
thermo-hydraulic systems. In addition, this example shows that DD scales
well with the system dimension, and that CA is able to identify the same
structural properties of the considered system in different conditions.
In particular, this example refers to a counterflow heat exchanger with

two incompressible streams (Figure 4.11). Both streams and the interposed

Ta,i wa

Wall

Tb,i wb

Ta,1

Tw,1

Tb,N

Figure 4.11: Counterflow heat exchanger scheme.

80

4.4. Counterflow heat exchanger

wall are spatially discretised with the finite volume approach, neglecting ax-
ial diffusion in the wall – as is common practice – and also in the streams,
as zero-flow operation is not considered for simplicity. Taking ten volumes
for both streams and the wall, with the same spatial division (again, for sim-
plicity) leads to a nonlinear dynamic system of order 30, having as boundary
conditions the four pressures at the stream inlets and outlets, and the two
temperatures at the inlets. More precisely, the system is given by

ca

Ma

N
Ṫa,i =waca · (Ta,i−1 −Ta,i)+

Ga

N
· (Tw,i −Ta,i)

cw

Mw

N
Ṫw,i =−

Ga

N
· (Tw,i −Ta,i)−

Gb

N
· (Tw,i −Tb,N−i+1)

cb

Mb

N
Ṫb,i =wbcb · (Tb,i−1 −Tb,i)+

Gb

N
· (Tw,N−i+1 −Tb,i)

(4.3)

where T stands for temperature, w for mass flowrate, c for (constant) specific
heat, M for mass, and G for thermal conductance; the a, b and w subscripts
denote respectively the two streams and the wall, while i ∈ [1,N] (i = 0 for
boundary conditions) is the volume index, counted for both streams from
inlet to outlet, the wall being enumerated like stream a.
The parameter values used in the example are reported in Table 4.5.

Table 4.5: Parameter values of Model (4.3).

Parameters

N 10 Mb 1kg cw 3500J/(kgK)
Ta,in 323.15K Mw 10kg Ga 8000W/K
Tb,in 288.15K ca 4200J/(kgK) Gb 8000W/K
Ma 0.1kg cb 3500J/(kgK)

A parametric CA is performed so as to analyse the structure of the sys-
tem, and Figure 4.12 shows its result. In particular, 95 cycles are present in
the system.
The separability analysis evidences that there are at least a couple of

points where the system can be separated. However, for α = 1.0 there is
only one point in which the system can be split, and it is between the 10-th
and the 11-th variable. It is worth noticing that in this example, there is
no neat physical separation between the dynamics, since they all belong to
the same physical domain, and also to the same physical object. Separabil-
ity analysis, however, can detect those structural properties of the system
independently of its nature.

81

4. Dynamic Decoupling: simulation examples

0.2 0.4 0.6 0.8 1

5

10

15

20

25

s
α
(i
+

1
,i
)

α

Separability index

0

1

2

3

4

·10
−2

Figure 4.12: Separability analysis of the heat exchanger (4.3) with N = 10.

Hence, choosing α = 1.0 CA leads to the following constraints:

Ta,i : h ≤ 0.008

Tb,i : h ≤ 0.048

Tw,1,10 : h ≤ 0.048

Tw,2,9 : h ≤ 0.050

Tw,3,8 : h ≤ 0.052

Tw,4,7 : h ≤ 0.056

Tw,5,6 : h ≤ 0.061

Choosing an integration step h = 0.04 yields a partition of the system
that considers the Ta,i as the fast while the Tb,i and Tw,i as the slow states.
Figure 4.13 shows the simulation results — notice that the temperatures are
reported with different scales.
Table 4.6 shows the simulation statistics for different integration meth-

ods. It is worth noticing that, since the complexity of IE is O(n3), where n

is the dimension of the model, integrating implicitly only Ta,i instead of the
whole model, reduces the computations from 303 = 27000 to 103 = 1000,
leading to a significant improvement in terms of simulation efficiency. No-

82

4.4. Counterflow heat exchanger

290

300

310

320

T
a
,i
[K
]

290

300

310

320

T
w
,i
[K
]

0 1 2 3 4 5

290

295

300

305

t [s]

T
b
,i
[K
]

Figure 4.13: Simulation results of (4.3). Black lines represent the reference
solution of the trajectories, while the coloured lines the mixed-mode ones.

83

4. Dynamic Decoupling: simulation examples

tice also that the EEmethod needs a smaller step size (h= 0.01) for numerical
stability reasons.

Table 4.6: Simulation statistics for Model (4.3) (h = 0.04).

Mixed-mode BDF IE EE

Steps 125 260 125 500
Function ev. 375 296 375 –
Jacobian ev. 6 5 6 –
Fun. ev. in Jac. ev. 66 150 186 –
Newton iterations 250 292 250 –
Newton fail 0 0 0 –
Accuracy 0.019 – 0.018 0.107
Sim time 0.06s 0.21s 0.12s 0.15s

Now, the indices proposed in Section 3.4 are here computed, yielding
the following results—notice that also in this case, due to the nonlinearity of
the system, σR cannot be computed.

σ(0.5) = 13.612, s(0.5) = 0.954.

The stiffness σ(α) index shows that the considered system is sufficiently
stiff, but the more interesting aspect is that the separability one shows that it
is very suited for the partition, since its time scales are very well separated.
The presented examples have been kept as small as possible in order to

improve results readability, but the method can be applied to larger models
as well. For example, by changing in (4.3) the parameter N to 30, the model
becomes of order 90. Thus, CA detects 585 cycles and the same parametric
separability analysis can be performed.
In this case, the chosen integration step here is h = 0.01. The obtained

simulation results are summarised in Table 4.7.
In this case the indices become

σ(0.5) = 9.771, s(0.5) = 0.986,

thus, even if the order of the system is changed, but the system is actually
the same, those structural indices have the same order of magnitude, and,
what is more important are not changed too much, providing the same
information.

84

4.4. Counterflow heat exchanger

0.2 0.4 0.6 0.8 1

10

20

30

40

50

60

70

80

s
α
(i
+

1
,i
)

α

Separability index

0

0.2

0.4

0.6

0.8

1

·10
−2

Figure 4.14: Separability analysis of the heat exchanger (4.3) with N = 30.

Table 4.7: Simulation statistics for Model (4.3) with N = 30.

Mixed-mode BDF IE EE

Steps 500 290 500 5000
Function ev. 1321 323 1348 –
Jacobian ev. 24 6 24 –
Fun. ev. in Jac. ev. 744 540 2184 –
Newton iterations 820 319 847 –
Newton fail 0 0 0 –
Accuracy 6.586 – 6.566 24.151
Sim time 0.76s 0.96s 1.34s 1.76s

85

4. Dynamic Decoupling: simulation examples

c
L
o
a
d
1

1
0

c
L
o
a
d
2

1
0

G
=
3

Te

T=300.15

G=4

c
C

a
s
e

2
5

L
=
0
.0

1

L=0.001

LineS1

L=0.001

Line12

Figure 4.15: Modelica scheme of the model for the power supply with elec-
tric loads example.

4.5 Power supply with electric loads

This last example propose a realistic model of a power supply with electric
loads. It is a representative example of typical uses of OOM in which dif-
ferent physical domains are involved – thus also different time scales – for
which DD, and specifically CA, show more their effectiveness.

In this example we consider a system composed of a rectifier-based DC
supply, modelled with enough detail to represent the output voltage ripple.
This power supply is connected to a small network of electric loads; both
the supply and the load components are heated by electrical phenomena, are
characterised by convenient thermal capacities, and disperse heat toward an
external environment with a prescribed temperature. The Modelica scheme
of the model, that and around 150 scalar equations and after the manipula-
tion contains 10 state variables, is shown in Figure 4.15.

More precisely, the example intends to show that one can use the single
detailed model of the system to perform simulations focusing either on the
electrical or thermal phenomena, which are apparently of interest for differ-
ent control problems. Thanks to the proposed technique, in fact, the analyst
has just to select the proper finest time scale for the study at hand, and the
simulation environment will automatically refrain from wasting simulation
effort in the representation of dynamics that are too fast to be relevant.

In the considered system there are apparently two well distinguished
time scales—a fast one for electrical phenomena and a slow one for thermal
phenomena. Applying CA, 18 dependency cycle are detected, leading to the

86

4.5. Power supply with electric loads

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

s
α
(i
+

1
,i
)

α

Separability index

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4.16: Separability analysis of the power supply with electric loads
example.

following time scales (ordered by increasing time scale)

IL1
: h ≤ 2.183×10−5 Tload1 : h ≤ 1.429

IL2
: h ≤ 4.764×10−5 Tload2 : h ≤ 1.429

VC1,supply : h ≤ 5.000×10−5 Tcase : h ≤ 1.667

VC2,supply : h ≤ 5.000×10−5 Tsupply : h ≤ 2.236

TR1,supply : h ≤ 2.236

TR2,supply : h ≤ 2.236

(4.4)

Apparently, the state variables can be separated into two sets of slow and
fast ones, as expected from physical considerations. Thus, by choosing an
integration step of h = 0.1, we induce a partition of the two subsystems that
can be integrated with the mixed-mode integration described in Section 3.5.
The numerical results are represented in Figure 4.17, and compared with a
more sophisticated integration method, i.e., LSODAR (short for Livermore
Solver for Ordinary Differential equations, with Automatic method switch-

87

4. Dynamic Decoupling: simulation examples

0

0.1

0.2

I L
1
[A
]

Reference

MM
0

0.2

0.4

I L
2
[A
]

80

90

100

110

120

V
C

1
,s
u
p
p
ly
[V
]

80

90

100

110

120

V
C

2
,s
u
p
p
ly
[V
]

300

305

310

315

T
lo
ad
1
[K
]

300

305

310

315

T
lo
ad
2
[K
]

300

305

310

315

T
ca
se
[K
]

296

298

300

302

304

T
su
p
p
ly
[K
]

0 20 40

296

298

300

302

304

t [s]

T
R

1
,s
u
p
p
ly
[K
]

0 20 40

296

298

300

302

304

t [s]

T
R

2
,s
u
p
p
ly
[K
]

Figure 4.17: Results of the power supply with electric loads example.

ing for stiff and nonstiff problems, and with Root-finding). Other methods
first-order methods (that are more comparable to the mixed-mode one) are
here not considered since Explicit Euler, with the chosen integration step
presents numerical instability, while Implicit Euler do not converge.

Simulation statistics of the considered integration methods are reported

88

4.6. Discussion

in Table 4.8, showing a significant improvement in terms of all the indices,
and particularly for simulation time.

Table 4.8: Simulation statistics for the power supply with electric loads
example.

Mixed-mode LSODAR

Steps 500 128037
Function ev. 1543 336217
Jacobian ev. 25 15754
Fun. ev. in Jac. ev. 125 –
Newton iterations 1043 –
Accuracy 0.047 –
Sim time 0.56s 64.88s

In this example the structural indices become

σ(1.0) = 102413.091, s(1.0) = 0.826,

showing that the considered system is highly stiff – fact that is also apparent
from the time scales (4.4) identified by CA – thus indicating that a purely
explicit method is not suitable for simulating efficiently the system. On
the other hand, the separability index also shows that the system is suited
to be partitioned, also accordingly to the separability analysis reported in
Figure 4.16.

4.6 Discussion

After showing the examples, their collective outcome can be summarised as
follows. First, when there is an evident dynamic separation in the system,
the proposed technique finds it out without requiring a priori information
on the part of the user. In other words, the validity and the usefulness of
the technique are backed up by observing that the produced results are in
accordance with intuition, when intuition can figure them out.
Also, and in some sense as a complement, the proposed indices allow

to synthetically appreciate the possible internal model couplings that can be
exploited via DD, even when these are not apparent at all.
Moreover, and specific to the use of the technique for mixed-mode in-

tegration, its characteristics are very suited to the typical studies that are
required to really have simulation follow the life-cycle of the project, as en-

89

4. Dynamic Decoupling: simulation examples

visaged in the introduction. On this final point, however, some more words
are in order.
When a simulation study is required to answer a specific question, most

frequently the focus is on part of the system, or – somehow equivalently –
on part of the phenomenon occurring in it. In such a very frequent case, the
rest of the system does not need to be simulated accurately, provided that the
boundary conditions presented to the part that is relevant for the study, allow
for a precise evaluation of the investigated quantities. In many situations
of the type just mentioned, the interest of the analyst is on certain time
scales on the system phenomena, and provided these are well reproduced,
loosing faster behaviours is not only acceptable, but in fact necessary to
achieve the desired performance. In fact, the same remark holds also for
almost the totality of MOR techniques, where low-frequency approximations
of the original model are the typical result, and the quality of a reduction
is not evaluated in terms of time error – which is typically large due to the
transients – but rather in terms of the H∞-norm of the difference between
the original and the reduced model, i.e., in the frequency domain. This is
totally analogous to the proposed approach, where a good approximation is
not strictly related to a small simulation error, but to a good representation
of the time scales of interest.

90

Chapter 5

Model Order Reduction for Hybrid Systems

This chapter presents an approach to build a reduced order model for a
Switched Affine (SA) system. The main idea is to reduce the SA system to
an equivalent Switched Linear (SL) system with state reset, and then ap-
ply balanced truncation to the linear dynamic associated to each mode and
appropriately redefine the reset maps so as to best reproduce the free evo-
lution of the system output. A randomised approach is proposed to choose
the order of the resulting reduced SL system in the case when the input
is stochastic and one is interested in reproducing the output of the original
SA system over a finite time-horizon. The performance of the approach
is shown on a benchmark example. The results presented in this chapter
come from [Papadopoulos and Prandini, 2014].
More specifically, this chapter deals with the problem of approximat-

ing a hybrid system by means of some simpler model, see e.g. [Girard and
Pappas, 2007, Girard et al., 2010, Julius and Pappas, 2009, Mazzi et al., 2008,
Petreczky and Vidal, 2007, Shaker and Wisniewski, 2012] to cite a few. Hy-
brid systems are characterised by intertwined continuous and discrete dy-
namics, and are suitable for modelling complex, large scale systems, see
e.g. [Lunze and Lamnabhi-Lagarrigue, 2009] for an overview of applications
of hybrid models to various domains. The study of hybrid systems is more
challenging than for other classes of systems, and many problems still lack
an effective solution. In particular, this is the case for the design of simple
models approximating a hybrid system.
In this chapter we focus on the design of an approximate model for a

switched affine system. More specifically, the goal is to obtain a simpler
model of the system which can be effectively used for system verification
over some finite horizon T.
Verification of properties related to the hybrid system evolution, like, e.g.,

safety and reach/avoid properties, are typically addressed through numerical
methods that scales badly with the state-space dimension, [Abate et al., 2007,
2010, Frehse, 2005, Girard and Guernic, 2008, Kurzhanski and Varaiya, 2005,
Mitchell, 2002, Prandini and Hu, 2006, Tomlin et al., 2003]. The aim of the

91

5. Model Order Reduction for Hybrid Systems

approximation is then to build a model that mimics the behaviour of the
original system and that can be used in place of the system to scale-up
numerical methods for the verification of the property of interest. When
the hybrid system input is stochastic, the notion of approximate simulation
introduced in [Julius and Pappas, 2009] can be used to quantify the model
performance.
The approach proposed in this chapter is inspired by [Mazzi et al., 2008],

where a balanced truncation is adopted for reducing the order of the linear
dynamics governing the evolution of the continuous component of an hybrid
system. The main advances with respect to [Mazzi et al., 2008] are

• the extension to the class of switched affine systems;

• the introduction of a novel method for defining the state reset map
that provides better performance than the one adopted in Mazzi et al.
[2008]; and

• the introduction of a procedure to select the order of the reduced
model based on a randomised approach, when the input is stochastic.

Note that, differently from most of the works on switched affine/linear sys-
tem reduction, [Petreczky et al., 2012, Shaker and Wisniewski, 2012], the
transitions between discrete modes in the considered switched affine system
class are determined by an endogenous signal that depends on the contin-
uous state evolution, which makes the approximation problem more chal-
lenging.
The rest of the chapter is organised as follows. We start with a brief

review of balanced truncation for linear systems in Section 5.1. We then
describe the considered switched affine system class (Section 5.2) and the
proposed model reduction method (Section 5.3). The randomised approach
to model order selection is illustrated in Section 5.4, whilst a numerical ex-
ample showing the performance of the approach is presented in Section 5.5.

5.1 Balanced truncation for linear systems: a brief

review

There is a vast literature on model order reduction for linear systems (see
e.g. [Antoulas, 2005, Gugercin and Antoulas, 2004, Moore, 1981]). In par-
ticular, balanced truncation is one of the more popular techniques, and the
one adopted here for reducing the order of the continuous dynamics within
each mode. The balanced truncation method rests on the representation of

92

5.1. Balanced truncation for linear systems: a brief review

the system in the balanced realization form, which is recalled next for the
purpose of self-containedness.
Let S be a continuous-time linear time-invariant dynamic system de-

scribed in state-space form through a 4-tuple of matrices (A ,B,C ,D):

S :

(
A B

C D

)
.

Suppose that S is controllable, observable and asymptotically stable.

Definition 5.1.1 (Balanced system). System S is balanced if Wc = Wo,
where

Wc =
∫ ∞

0
eA τ

BB
T eA T τ dτ

Wo =

∫ ∞

0
eA T τ

C
T
C eA τ dτ

are, respectively, the infinite controllability and observability Gramians of
S . Furthermore, S is principal-axis balanced if Wc = Wo = Σ, with

Σ = diag{σ1,σ2, . . . ,σn} ,

where σi are the Hankel singular values of S , listed in decreasing order.

The problem of finding the balanced realization of a system is equivalent
to that of determining a balancing transformation matrix T such that

{
Wc = TWcT ∗

Wo = T−∗WoT−1
⇒ Wc Wo = T (WcWo)T−1 = Σ2,

where T ∗ denotes the Hermitian adjoint of T , which, in turn, reduces to
solving the following minimization problem [Antoulas, 2005]

min
T

tr
[
TWcT ∗+T−∗

WoT−1
]
= 2tr{Σ} . (5.1)

The system in the balanced state-space form is then obtained by applying
the transformation matrix T , i.e.,

S :

(
A B

C D

)
=

(
TA T−1 TB

C T−1 D

)
.

The idea of the balanced truncation method is that in the balanced real-
ization the state variables are ordered by decreasing importance as for their
contribution to the input/output map, so that one can decompose the state

93

5. Model Order Reduction for Hybrid Systems

vector (and the system) into two parts and neglect that with lowest impor-
tance. Formally, vector x is separated into two components

x =

[
x1

x2

]
, S :

A11 A12 B1

A21 A22 B2

C1 C2 D

 .

with x1 ∈ R
nr and x2 ∈ R

n−nr . Correspondingly,

Σ =

[
Σ1 0

0 Σ2

]
,

and if Σ1 and Σ2 do not contain any common element, then, the matrices
Aii (i = 1,2) are asymptotically stable [Liu and Anderson, 1989].
A reduced order model Sr of the system can then be obtained by setting

x2 = 0 and eliminating its contribution, thus getting:

Sr :

(
Ar Br

Cr Dr

)
=

(
A11 B1

C1 D

)
.

Alternatively, one can set ẋ2 = 0, thus obtaining

Sr :

(
Ar Br

Cr Dr

)
=

(
A11 −A12A−1

22 A21 B1 −A12A−1
22 B2

C1 −C2A−1
22 A21 D−C2A−1

22 B2

)
. (5.2)

An estimate of the neglected state x2 is then given by

x̂2 =−A−1
22 A21x1 −A−1

22 B2u, (5.3)

which corresponds to the condition ẋ2 = 0. If Σ1 and Σ2 do not contain
any common element, then, Sr is asymptotically stable, controllable and
observable [Liu and Anderson, 1989]. Moreover, the static gain of Sr is equal
to that of the original system S.
In order to select the order of the reduced model, one can choose γ ∈

[0,1] and set
nr = min{i ∈ {1,2, . . . ,n} : ψ(i)< γ},

where ψ : {1,2, . . .n}→ [0,1) is defined based on the Hankel singular val-
ues σ1 ≥ σ2 ≥ ·· · ≥ σn of system S as follows:

ψ(i) = 1− ∑i
j=1 σ j

∑n
j=1 σ j

. (5.4)

The bound γ can be used as a knob to control the tradeoff between the
dimension of the reduced state and the quality of the approximation.

94

5.2. Modeling framework

Approximation by balanced truncation preserves stability and the differ-
ence between system S and its reduced model Sr has itsH∞-norm bounded
by the sum of the neglected Hankel singular values as follows:

‖S−Sr‖H∞
≤ 2tr{Σ2} . (5.5)

5.2 Modeling framework

We consider the class of Switched Affine (SA) systems, whose evolution
is characterised through a discrete state component qa taking values in
Q = {1,2, . . . ,m} and a continuous component ξa ∈ Ξa = R

n evolving ac-
cording to an affine dynamics that depends on the operating mode qa. Cor-
respondingly, the output ya ∈ Ya = R

p is an affine function of the state and
the input u ∈U = R

m that depends on qa as well. In formulas:

{
ξ̇a(t) = Aqa

ξa(t)+Bqa
u(t)+ fqa

ya(t) = Cqa
ξa(t)+gqa

.
(5.6)

A collection of polyhedra {Doma,i ⊆ Ya ×U, i ∈ Q} is given, which covers
the whole set Ya ×U1. Each polyhedron Doma,i is defined through a system
of ri linear inequalities:

Doma,i = {(ya,u) ∈ Ya ×U : G
ya

i ya +Gu
i u ≤ Gi},

with G
ya

i ∈R
ri×p, Gu

i ∈ R
ri×m and Gi ∈R

ri .
The system evolves according to the dynamics associated with mode i as
long as (ξa,u) is such that (ya,u) keeps evolving within Doma,i and com-
mute to the dynamics associated with j ∈ Q as soon as (ya,u) exits Doma,i

and enters into Doma, j .

Remark. Doma,i appears to be a function of both ya and u. However, if
Gu

i = 0, then, the dependence on u is not present. Furthermore, those cases
when the transition condition depends on the whole state ξa can be reframed
in our setting by including ξa in the output variables.

Remark. Note that if {Doma,i, i ∈ Q} is a polyhedral subdivision of Ya ×U

(i.e., a finite collection of polyhedra onYa×U such that∪i∈QDoma,i =Ya×U ,
each polyhedronDoma,i is of dimension p+m, and the intersection Doma,i∩
Doma, j , i 6= j, is either empty or a common proper face of both polyhedra),
then, the SA system reduces to a piecewise affine system.

1∪i∈QDoma,i = Ya ×U

95

5. Model Order Reduction for Hybrid Systems

5.3 System reduction

In this section, we introduce a procedure for designing a reduced order
model of the SA system (5.6) that tries to best reproduce its output ya. The
proposed procedure rests on Assumption 1 below, and is based on the fol-
lowing key steps:

• reformulation of the SA system as a Switched Linear (SL) system with
state reset;

• model reduction of the SL system through balanced truncation of the
continuous dynamics and definition of appropriate state reset maps
when a mode transition occurs;

• reconstruction of the output of the SA system based on the reduced
SL system.

Assumption 1. For any i∈ Q, matrixAi is Hurwitz, (Ai,Bi) is controllable,
and (Ai,Ci) is observable.

In Section 5.4, a randomised method is then described for selecting the
order of the reduced order model of the SA system when the input u is
stochastic and the goal is verifying a finite horizon property that depends on
the behaviour of the SA system output ya along the time horizon T .

5.3.1 Reformulation of the SA system as a SL system with state
reset

We next build a SL system with state reset that is equivalent to the original
SA system, in that (ξa,qa) and ya can be recovered exactly from the state
and output variables of such a system.
Let ξ ∈ Ξ = Ξa evolve according to a linear dynamics that depends on

the operating mode q ∈ Q as follows:

{
ξ̇ (t) = Aqξ (t)+Bqu(t)

y(t) = Cqξ (t)
(5.7)

where y ∈ Y =Ya.
Set ȳa,q = Cqξ̄a,q + gq, where ξ̄a,q = −A −1

q fq, with Aq invertible by
Assumption 1. A transition from mode i ∈ Q to mode j ∈ Q occurs as soon
as (y+ ȳa,i,u) exits Domi and enters Dom j , where Domq = Doma,q, q ∈ Q.

96

5.3. System reduction

When a discrete transition from mode i ∈ Q to mode j ∈ Q occurs at
time t−, then, ξ is reset as follows

ξ (t) = ξ (t−)+ ξ̄a,i − ξ̄a, j. (5.8)

Proposition 5.3.1. Suppose that the SA and SL systems are initialised with
ξa(0) = ξa,0, qa(0) = qa,0, and ξ (0)= ξa,0− ξ̄a,qa,0 , q(0) = qa,0, respectively,
and are both fed by the same input u(t), t ∈ [0,T]. Then, the execution of ξa,
qa and ya over [0,T] can be recovered from those of ξ , q and y as follows:

qa(t) = q(t)

ξa(t) = ξ (t)+ ξ̄a,q(t) (5.9)

ya(t) = y(t)+ ȳa,q(t).

Proof. The result immediately follows by observing that ξ̄a,q and ȳa,q are
the state and output equilibria of system (5.6) associated with u = 0.

Remark. Note that the reset condition in (5.8) is such that variable ξa recon-
structed from ξ according to (5.9) is continuous. Continuity of ξa is generally
not guaranteed if ξ is approximated through a reduced order model of the
SL system.

5.3.2 Reduction of the SL system

A reduced order model of the SL system with reset defined before can be
obtained by applying balanced truncation (5.2) to each single linear dynamics
in (5.7). This is is in order to best reproduce the evolution of the output y

within a fixed mode, and also the discrete transitions between modes, since
they are defined through a condition involving y.
We associate to each mode qr ∈ Q a reduced model of order nr,q ≤ n:

{
ẋr,qr

(t) = Ar,qr
xr,qr

(t)+Br,qr
u(t)

ŷ(t) =Cr,qr
xr,qr

(t)+Dr,qr
u(t)

(5.10)

and define transitions between modes, say from mode i to mode j, by eval-
uating when (ŷ+ ȳa,i,u) exits from domain Domi and enters into Dom j . As
for the state reset map (5.8) associated with a transition from mode i ∈ Q to
mode j ∈ Q, we shall reformulate it in the following form

xr, j(t) = L jixr,i(t
−)+M jiu(t

−)+N ji. (5.11)

where xr,i(t
−) ∈R

nr,i , xr, j(t) ∈R
nr, j , and L ji, M ji, N ji are matrices of appro-

priate dimensions.

97

5. Model Order Reduction for Hybrid Systems

We shall present next two methods to define matrices L ji, M ji, N ji. In
both of them we shall refer to the following variables:

1. the estimate x̂i of the state of the SL system dynamics associated with
mode i ∈ Q in balanced form. x̂i is reconstructed from the reduced
state xr,i according to:

x̂i =

[
xr,i

−A−1
i,22Ai,21xr,i −A−1

i,22Bi,2u

]

=

[
Inr,i×nr,i

−A−1
i,22Ai,21

]
xr,i +

[
0nr,i×1

−A−1
i,22Bi,2

]
u

(5.12)

Expression (5.12) can be rewritten in compact form as

x̂i = Hi xr,i +Ki u, (5.13)

with

Hi =

[
Inr,i×nr,i

−A−1
i,22Ai,21

]
Ki =

[
0nr,i×1

−A−1
i,22Bi,2

]

where Inr,i×nr,i is an identity matrix of dimension nr,i ×nr,i, and 0nr,i×1

is a zero vector of nr,i elements;

2. the estimate ξ̂i of the state of the SL system associated with mode
i ∈ Q:

ξ̂i = T−1
i x̂i, (5.14)

obtained from x̂i through the balanced transformation matrix Ti.

We are now in a position to defined the reduced state reset maps for a
transition from i ∈ Q at time t− to j ∈ Q at time t .

a) reset map proposed in [Mazzi et al., 2008]:

We start setting

xr, j(t) =Enr, j x̂ j(t)

where Enr, j is a matrix that extracts the first nr, j rows from x̂ j(t), being nr, j

the dimension of xr, j in mode j. Now,

x̂ j(t) = Tjξ̂ j(t) = Tj

(
ξ̂i(t

−)+ ξ̄a,i − ξ̄a, j

)

= Tj

(
T−1

i x̂i(t
−)+ ξ̄a,i − ξ̄a, j

)

= Tj

(
T−1

i Hi xr,i(t
−)+T−1

i Ki u(t
−)+ ξ̄a,i − ξ̄a, j

)
,

98

5.3. System reduction

so that

xr, j(t) =Enr, j Tj

(
T−1

i Hixr,i(t
−)+T−1

i Kiu(t
−)+ ξ̄a,i − ξ̄a, j

)
. (5.15)

By direct comparison of this expression with (5.11), we get the reset matrices:

L ji = Enr, j TjT
−1

i Hi

M ji = Enr, j TjT
−1

i Ki

N ji = Enr, j Tj

(
ξ̄a,i − ξ̄a, j

)
.

According to a similar reasoning, the system is initialised as follows

qr(0) = qa(0) = q0

xr,q0
(0) = Enr,q0

Tq0

(
ξa(0)− ξ̄a,q0

)
,

with the understanding that (ya(0),u(0)) is an interior point of Doma,q0
for

any admissible u(0).

b) reset map best reproducing the output free evolution:

Model reduction techniques for asymptotically stable linear systems aim
at finding a model that best reproduce the forced response of the system,
while neglecting the free evolution. This motivates the introduction of an
alternative reset map that minimises the norm-2 error when reproducing
the free evolution of the output y. More precisely, we set

xr, j =Ψ jξ̂ j

and choose Ψ j so as to minimise

J =

∫ +∞

0
‖y f r, j(t)− ŷ f r, j(t)‖2 dt, (5.16)

where y f r, j and ŷ f r, j respectively denote the free evolution of the original
linear dynamics (5.7) initialised with ξ̂ j and that of the reduced order dy-
namics (5.10) initialised with xr, j = Ψ jξ̂ j . The solution to this optimization
problem can be found analytically as shown in Proposition 5.3.2.

Proposition 5.3.2. Matrix Ψ j minimizing (5.16) for any ξ̂ j is given by

Ψ j = W
−1

r,o, jW×, j.

where

Wr,o, j =
∫ +∞

0
(eAr, jt)TCT

r, jCr, je
Ar, jt dt (5.17)

W×, j =
∫ +∞

0
(eA jt)TCT

j Cr, je
Ar, jt dt (5.18)

99

5. Model Order Reduction for Hybrid Systems

and invertibility of the infinite observability Gramian Wr,o, j is guaranteed by
the observability of the reduced order model (5.10) with q = j.

Proof. The cost function J can be written as

J =

∫ +∞

0
(C je

A jt ξ̂ j −Cr, je
Ar, jtxr, j)

T (C je
A jt ξ̂ j −Cr, je

Ar, jtxr, j) dt

=xT
r, jWr,o, jxr, j −2xr, jW×, jξ̂ j + ξ̂ T

j Wo, jξ̂ ,

where we set

Wo, j =

∫ +∞

0
(eA jt)TCT

j C je
A jt dt.

Then, the minimum of J as a function of xr, j satisfies

∂J

∂xr, j
= 2Wr,o, jxr, j −2W×,q′ ξ̂ j = 0

yielding the reset map
xr, j = W

−1
r,o, jW×, jξ̂ j.

Note that the quantity (5.17) is the solution of the Lyapunov equation

Ar, jWr,o, j +Wr,o, jA
T
r, j +CT

r, jCr, j = 0,

while quantity (5.18) is the solution of the Sylvester equation

AT
r, jW×, j +W×, jA j +CT

r, jC j = 0.

Given Ψ j , the following derivations

xr, j(t) =Ψ jξ̂ j(t) = Ψ j

(
ξ̂i(t

−)+ ξ̄a,i − ξ̄a, j

)
=

=Ψ j

(
T−1

i x̂i(t
−)+ ξ̄a,i − ξ̄a, j

)

=Ψ j

(
T−1

i Hixr,i(t
−)+T−1

i Kiu(t
−)+ ξ̄a,i − ξ̄a, j

)
(5.19)

using the reset map (5.8) and equations (5.14) and (5.13) lead to the following
definition of the matrices in the reset map (5.11):

L ji = Ψ jT
−1

i Hi,

M ji = Ψ jT
−1

i Ki,

N ji = Ψ j

(
ξ̄a,i − ξ̄a, j

)
.

100

5.3. System reduction

As for the system initialization, we set

qr(0) = qa(0) = q0

xr,q0
(0) = Ψ j

(
ξa(0)− ξ̄a,q0

)
.

A different reset map that accounts for the switching nature of the system
can be obtained by considering a finite horizon [0,τ] for the minimization
of the free evolution error:

J =

∫ τ

0
‖y f r, j(t)− ŷ f r, j(t)‖2 dt.

The resulting optimal Ψ(τ)
j can be computed through the following expres-

sion
Ψ

(τ)
j = W

−1
r,o, j(τ)W×, j(τ),

with

Wr,o, j(τ) =
∫ τ

0
(eAr, jt)TCT

r, jCr, je
Ar, jt dt

W×, j(τ) =

∫ τ

0
(eA jt)TCT

j Cr, je
Ar, jt dt,

the proof being analogous to that in the infinite horizon case. The above
finite horizon quantities can be computed as

Wr,o, j(τ) = Wr,o, j −
∫ +∞

τ
(eAr, jt)TCT

r, jCr, je
Ar, jt dt = Wr,o, j −W

(τ ,∞)
r,o, j ,

W×, j(τ) = W×, j −
∫ ∞

τ
(eA jt)TCT

j Cr, je
Ar, jt dt = W×, j −W

(τ ,∞)
×, j ,

where the quantities W (τ ,∞)
r,o, j and W

(τ ,∞)
×, j can be obtained respectively as the

solution of the Lyapunov and Sylvester equations

Ar, jW
(τ ,∞)

r,o, j +W
(τ ,∞)

r,o, j AT
r, j +

(
eAr, jτ

)T
CT

r, jCr, je
Ar, jτ = 0,

AT
r, jW

(τ ,∞)
×, j +W

(τ ,∞)
×, j A j +

(
eAr, jτ

)T
CT

r, jC je
A jτ = 0,

which are identical to the previous ones except for the fact that C j and Cr, j

are replaced by C je
A jτ and Cr, je

Ar, jτ , respectively. Note that well-posedness
of the above equations is guaranteed by the fact that A j and Ar, j are Hurwitz.
The matrices in the reset map (5.11) and the system initialization are

given by:

L ji = Ψ
(τ)
j T−1

i Hi,

M ji = Ψ
(τ)
j T−1

i Ki,

N ji = Ψ
(τ)
j

(
ξ̄a,i − ξ̄a, j

)

101

5. Model Order Reduction for Hybrid Systems

and

qr(0) = qa(0) = q0

xr,q0
(0) = Ψ

(τ)
j

(
ξa(0)− ξ̄a,q0

)
.

The choice for τ depends on the settling times of the different mode dy-
namics. A sensible choice is suggested in the numerical example of Section
5.5.

5.3.3 Reconstruction of the SA system output

The output of the SA system is reconstructed based on (5.9) using the output
ŷ of the SL reduced system as an estimate of the output y of the SL system:

ŷa(t) = ŷ(t)+ ȳa,qr(t).

5.4 A randomised method for model order selection

In this section, a randomised method is described for selecting the order of
the reduced order model of the SA system when the input u is stochastic and
the goal is verifying a finite horizon property that depends on the behavior
of the SA system output ya along the time horizon T .
The proposed method involves feeding the reduced model and the sys-

tem with some realizations of the stochastic input. This in practice means
that either the distribution of the input is known, or some of its realizations
are available as historical time series.
As discussed in Section 5.1, a sensible way of choosing the order of the

reduced model for a linear system is setting a threshold value for the ψ
function in (5.4) and then define the order accordingly. By following the
same logic as in Mazzi et al. [2008], a function ψq : {1,2, . . .n} → [0,1) can
then be considered for each mode q ∈ Q

ψq(i) = 1− ∑i
j=1 σ j,q

∑n
j=1 σ j,q

,

where σ1,q ≥ σ2,q ≥ ·· · ≥ σn,q are the Hankel singular values of the SL
system dynamics (5.7) in mode q, and the order of the model (5.10) defining
the reduced SL system can be set according to

nr,q = min{i ∈ {1,2, . . . ,n} : ψq(i) < γ},

for each q ∈ Q.

102

5.4. A randomised method for model order selection

Our goal is now to introduce a method for choosing an appropriate value
for γ .
To this purpose, we denote by ŷ

γ
a the estimate of ya obtained through the

reduced SL system with parameter γ , and by Γ the (finite) set of threshold
values for γ , those that result in a different choice for {nr,q, q ∈ Q}.
In order to choose an appropriate order for the reduced dynamics as-

sociated to each mode, we quantify the approximation error through some
function dT (·, ·) that maps each pair of trajectories ya(t), t ∈ T , and ŷ

γ
a(t),

t ∈ T , into a positive real number dT (ya, ŷ
γ
a) that represents the extent to

which the output ya of the SA system differs from its estimate ŷ
γ
a along the

time horizon T . Obviously, if we set γ = 0, then, no reduction is performed
and dT (ya, ŷ

γ
a) = 0 since ŷ

γ
a(t) = ya(t), t ∈ T .

Note that dT (ya, ŷ
γ
a) is a random quantity since it depends on the real-

ization of the stochastic input u(t) and the (possibly) stochastic initialization
ξa(0) of the SA system.
According to the notion of approximate simulation in [Abate and Pran-

dini, 2011, Garatti and Prandini, 2012, Julius and Pappas, 2009], we assess
the approximation quality of the reduced order model with parameter γ
through the maximal value ρ⋆

γ taken by dT (ya, ŷ
γ
a) over all realizations of

the stochastic input and initial state except for a set of probability at most
ε ∈ (0,1). An ‘optimal’ value for γ can then be chosen by inspecting the
values of ρ⋆

γ as a function of γ and selecting the appropriate compromise be-
tween quality of the approximation and tractability of the resulting reduced
order model.
For each γ ∈ Γ ⊂ [0,1], the approximation quality ρ⋆

γ of the reduced or-
der model with parameter γ is the solution to the following chance-constrained
optimization problem:

CCPγ :min
ρ

ρ (5.20)

subject to: P{dT (ya, ŷ
γ
a)≤ ρ} ≥ 1− ε .

Remark (choice of dT (ya, ŷ
γ
a)). As argued in [Abate and Prandini, 2011], the

directional Hausdorff distance

dT (ya, ŷ
γ
a) = sup

t∈T

inf
τ∈T

‖ya(t)− ŷγ
a(τ)‖ (5.21)

is a sensible choice for dT (ya, ŷ
γ
a) when performing probabilistic verification

such as, e.g., estimating of the probability that ya will enter some set within
the time horizon T . For the verification of more complex reachability prop-
erties, such as that of reaching some set only after passing through some

103

5. Model Order Reduction for Hybrid Systems

region within a given finite time interval, however, this choice for dT (ya, ŷ
γ
a)

is not adequate since the timing information is lost, and one can opt for

dT (ya, ŷ
γ
a) = sup

t∈T

‖ya(t)− ŷγ
a(t)‖.

Irrespectively of the choice for dT (ya, ŷ
γ
a), solving the chance-constrained

problem (5.20) is known to be difficult, [Prèkopa, 2003], since it involves de-
termining, among all sets of realizations of the stochastic input and initial
state that have a probability 1 − ε , the one that provides the best (low-
est) value for dT (ya, ŷ

γ
a). We then head for an approximate solution where

instead of considering all the possible realizations for the stochastic uncer-
tainty, we consider only a finite number N of them called “scenarios”, ex-
tracted at random according to their probability distribution, and treat them
as if they were the only admissible uncertainty instances. This leads to the
formulation of Algorithm 2, where the chance-constrained solution is deter-
mined using some empirical violation parameter η ∈ (0,ε).

Algorithm 2 randomised solution

1: extract N realizations of the stochastic input u(i)(t), t ∈ T , i =
1,2, . . . ,N , and N samples of the initial condition ξa(0)

(i) , i =
1,2, . . . ,N , and let k = ⌊ηN⌋;

2: for all γ ∈ Γ do

2.1: determine the N realizations of the output signals y
(i)
a (t) and

ŷ
γ ,(i)
a (t), t ∈ T , i = 1,2, . . . ,N , when the SL system and the re-
duced order model with parameter γ are fed by the extracted
uncertainty instances;

2.2: compute
ρ̂ (i) := dT (y

(i)
a , ŷ

γ ,(i)
a), i = 1,2, . . . ,N;

and determine the indices {h1,h2, . . .hk} ⊂ {1,2, . . . ,N} of the
k largest values of {ρ̂ (i), i = 1,2, . . . ,N}

2.3: set
ρ̂⋆

γ = max
i∈{1,2,...,N}\{h1,h2,...,hk}

ρ̂ (i).

Notably, if the number N of extractions is appropriately chosen, the ob-
tained estimate of ρ⋆

γ is chance-constrained feasible, uniformly with respect

104

5.4. A randomised method for model order selection

to γ ∈Γ, with a-priori specified (high) probability. This result is based on the
“scenario theory”, [Campi et al., 2009], which was first introduced for solving
uncertain convex programs via randomization [Calafiore and Campi, 2005]
and then extended to chance-constrained optimization problems in [Campi
and Garatti, 2011].

Proposition 5.4.1. Select a confidence parameter β ∈ (0,1) and an empir-
ical violation parameter η ∈ (0,ε). If N is such that

⌊ηN⌋

∑
i=0

(
N

i

)
ε i(1− ε)N−i ≤ β

|Γ| , (5.22)

then, the solution ρ̂⋆
γ , γ ∈ Γ, to Algorithm 2 satisfies

P{dT (ya, ŷ
γ
a)≤ ρ̂⋆

γ } ≥ 1− ε , ∀γ ∈ Γ, (5.23)

with probability at least 1−β .

If we discard the confidence parameter β for a moment, this proposi-
tion states that for any γ ∈ Γ, the randomised solution ρ̂⋆

γ obtained through
Algorithm 2 is feasible for the chance-constrained problem (5.20). As η
tends to ε , ρ̂⋆

γ approaches the desired optimal chance constrained solution
ρ⋆

γ . In turn, the computational effort grows unbounded since N scales as
1

ε−η , [Campi and Garatti, 2011].
As for the confidence parameter β , one should note that ρ̂⋆

γ is a random
quantity that depends on the randomly extracted input realizations and initial
conditions. It may happen that the extracted samples are not representative
enough, in which case the size of the violation set will be larger than ε .
Parameter β controls the probability that this happens and the final result
holds with probability 1−β . N satisfying (5.22) depend logarithmically on
|Γ|/β , [Campi and Garatti, 2011], so that β can be chosen as small as 10−10

(and, hence, 1−β ≃ 1) without growing significantly N .

(Proposition 5.4.1). Note that the chance-constrained problem (5.20) needs
to be solved for a finite number |Γ| of values for γ . The application of The-
orem 2.1 in [Campi and Garatti, 2011] to the randomised solution obtained
with Algorithm 2 for each given γ̄ ∈ Γ, provides the following guarantees
on the solution ρ̂⋆

γ̄ :

P{dT (ya, ŷ
γ̄
a)≤ ρ̂⋆

γ̄ } ≥ 1− ε , with probability at least 1− β

|Γ| .

105

5. Model Order Reduction for Hybrid Systems

As a result, guarantee (5.23) involving all γ ∈ Γ holds except for a set
whose probability can be upper bounded by ∑

|Γ|
i=1

β
|Γ| = β , thus proving the

thesis.

Notice that the guarantees provided by Proposition 5.4.1 are valid irre-
spectively of the underlying probability distribution of the input, which may
even not be known explicitly, e.g., when feeding Algorithm 2 with historical
time series as realizations of the stochastic input u.

5.5 A numerical example

In this section we present a numerical example to show the performance of
the proposed approach for model reduction. The example is inspired by a
benchmark for hybrid system verification presented in [Fehnker and Ivancic,
2004].

5.5.1 Model description

The example deals with the heating of a number of rooms in a house. Each
room has one single heater, but there is some constraint on the number of
“active” heaters that can possibly be on at the same time. The temperature in
each room depends on the temperature of the adjacent rooms, on the outside
temperature, and on whether a heater is on in the room or not. The heater is
controlled by a typical thermostat, i.e., it is switched on if the temperature is
below a certain threshold, and off if it is beyond another (higher) threshold.
Differently from the original benchmark in [Fehnker and Ivancic, 2004], we
model also the dynamic of the heaters.
When the temperature in a room, say room i, falls below a certain level,

its heater may become active (and eventually be switched on) if a heater
was active in one of the adjacent rooms, say room j, provided that the
temperature in room j is significantly higher than that in room i. In this
case, we shall say for brevity that the heater is “moved” from room i to
room j. The underlying rationale of the control policy is that, even if all the
rooms have their own heater, the number of heaters that can be on at the
same time must be limited, so as to exploit also the heat exchange among
the rooms in order to maintain some minimum temperature in all rooms.
Let Ti be the temperature in room i, Text the outside temperature, and hi

a boolean variable that is 1when the heater is on in room i, and 0 otherwise.
The heat transfer coefficient between room i and room j is ki j , and the

one between room i and the external environment is ke,i . We assume that
the heat exchange is symmetric, i.e., ki j = k ji. We say that rooms i and j

106

5.5. A numerical example

are adjacent if ki j > 0. The volume of the room is Vi, and the wall surface
between room i and room j is Sr,i j , while that between room i and the
environment is Se,i . Air density and heat capacity are ρa = 1.225kg/m3 and
c = 1005 J/(kgK), respectively. Letting φi = ρacVi , we can formulate the
following dynamic model for room i and its heater:

φiṪi = ∑
j 6=i

Sr,i jki j (Tj −Ti)+Sei
ke,i (Text−Ti)+κiθi

τh,iθ̇i =−θi +hi · pi − χiText

(5.24)

which is an affine system, with Ti representing the temperature in the i-
th room, κi representing the maximum heat flow rate that the heater can
provide, while pi ∈{0,1} is a binary variable indicating if the heater is active
in room i. The heater dynamics is represented by a first-order system with
a time constant τh,i. If we neglect the term −χiText in the heater dynamics
and set hi = pi = 1, the heater state variable θi will tend to 1 so that the
heater will provide its maximum heat flow rate κi to the room when it is
active and on. The term −χiText is introduced to account for the influence
of the external temperature on the effectiveness of the heating system.

5.5.2 The switching control policy

There is a room policy, which decides whether or not to switch on the
heater of a single room, and a building policy which decides how to “move”
the heaters that can be switched on.
As for the room policy, each room has a thermostat that switches the heater
on if the measured temperature is below a certain threshold, and off when
the temperature reaches a higher temperature. For each room we define
thresholds oni and o f fi : the heater in room i is on if Ti ≤ oni and off if
Ti ≥ o f fi .
On the other hand, the building policy can be defined as follows. A

heater is moved from room j to an adjacent room i if the following holds

• room i has no active heater;

• room j has an active heater;

• temperature Ti ≤ geti ;

• the difference Tj −Ti ≥ di fi.

Notice that the control policy may have non-deterministic behaviours,
since a room j may have more than one room, e.g., rooms i1 and i2, that

107

5. Model Order Reduction for Hybrid Systems

is adjacent, and it may happen that conditions for the building policy to
move the heater to room i1 and to room i2 are satisfied at the same time.
To avoid non-deterministic choices in the policy, each room is identified by
some integer index, and, in the previously mentioned situation, the heater is
always moved to the room with higher index.
Apparently enough, the switching nature of the system originates from

the control policy. The complexity of the considered system significantly
increases with the number of rooms, thus making the problem particularly
suitable for reduction when dealing with realistic cases.

5.5.3 The considered system

In the following we consider four adjacent rooms as represented in Fig-
ure 5.1, having each its own heater, but with the constraint that only three
heaters can be active at the same time, i.e., ∑4

i=1 pi = 3.

Figure 5.1: Scheme of the four rooms.

The rooms have different heat transfer coefficients among them, but
identical geometric characteristics. The considered parameters are reported
in Table 5.1.

Parameters

k12 2W/(m2K) Sr,i j 12m2

k23 5W/(m2K) Se,i 24m2

k34 2W/(m2K) Vi 48m3

ke,i 1W/(m2K) χi 10−5

Table 5.1: Four rooms parameters.

The outside temperature is modelled as a sinusoidal source of period 24

hours with an offset of 4◦C, affected by a band-limited Gaussian noise with
zero mean and variance 4.

108

5.5. A numerical example

We assume that the initial conditions are deterministic and given by

T (0) =

20

20

20

20

 , θ(0) =

0

0

0

0

 , h(0) = p(0) =

0

1

1

1

 ,

where T is the vector of the 4 rooms temperatures, θ is the vector of the
heaters states, h and p are the vectors denoting, respectively, the on/off
status and the active/inactive status of the heaters. Obviously, p(0) satisfies
the condition that only 3 over the 4 heaters are active. As for the (switching)
control policy parameters, we use

o f f =

21

21

21

21

 , on =

20

20

20

20

 , get =

19

19

19

19

 , di f =

1

1

1

1

 . (5.25)

According to the described policy, model (5.24) can be represented as a
SA system with continuous state ξa =

[
T ′ θ ′]′, input u = Text, and output

ya = T :
ξ̇a = A ξa +B u+ fqa

ya = C ξa.
(5.26)

As for the mode qa, it is identified by the value of h and p, which de-
termine the affine term entering the dynamics of ξa. The polyhedral sets
Doma,qa

are determined by the building and room control policies through
the threshold values (5.25) as described in Section 5.5.2.
Notice that in this example only the affine term fqa

depends on the dis-
crete mode qa ∈ Q, while the state-space matrices (A ,B,C) are constant.
As for the choice of the order of the reduced model, the standard ap-

proach used in balanced truncation techniques [Mazzi et al., 2008] and resting
on classical Hankel Singular Values (HSV) analysis can be applied so as to
identify to what extent reducing the system dynamics in each single mode.
This analysis is independent of the discrete mode. More importantly, it does
not consider the impact of the choice of the order on the switched system
approximation, which involves also mode transitions.
Figure 5.2 shows the HSV of system (5.26) sorted by decreasing mag-

nitude. On the basis of the HSV, it seems that most of the dynamics can
be caught by reducing the continuous dynamics of the SA system to a first-
order one. Indeed, computing the distance (5.4) used in [Mazzi et al., 2008]
results in ψ(1) ·100 = 2.64%.

109

5. Model Order Reduction for Hybrid Systems

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Order

Si
ng
ul
ar
va
lu
es

Figure 5.2: Hankel Singular Values sorted by decreasing magnitude.

As anticipated, this evaluation of the quality of the reduced model does
not account for the impact of mode transitions, thus care has to be taken
when applying it to the context of SA systems. In fact, classical balanced
truncation techniques are typically based on the assumption that the free
evolution of the system can be neglected since it asymptotically vanishes in
an asymptotically stable linear system, fact that notoriously does not hold
true when dealing with hybrid behaviours.

5.5.4 Proposed model reduction method

We apply now the proposed model reduction method to the considered
system, including the randomised method for order selection based on the
directional Hausdorff distance (5.21). In particular, referring to the chance
constrained optimization problem (5.20), we choose ε = 0.1, β = 10−6/7.
Thus, setting η = 0.05, and solving the implicit formula (5.22), the number
of experiments to be performed for each possible threshold value for γ is N =
778, corresponding to a number ⌊ηN⌋= 38 of realizations to be removed,
as described in Algorithm 2.
The randomised order selection is performed with the reset maps (5.15)

proposed in Mazzi et al. [2008], map (5.19) proposed here for the first time,
both in its finite and infinite horizon versions. As for the choice of the finite

110

5.6. Concluding remarks

horizon, the time constant τh of the heater is chosen.
Figure 5.3 shows a realization of the temperatures obtained with the

original model and with the reduced models of order 5 implementing the
three reset maps.
Notice that there is a discrete map mγ : Γ → {1,2, . . . ,n} between the

threshold values of γ and the corresponding order nr of the reduced order
model, in formulas

nr = argmin
i={1,2,...,n}

{
dT (ya, ŷ

γ
a)≤ ρ̂⋆

γ

}
.

For the sake of clarity, it is more convenient to express the estimate of ρ⋆
γ

as a function of the reduced order nr. The values for ρ̂⋆
γ obtained with the

different reset methods are presented in Figure 5.4 as a function of nr .

5.5.5 Discussion

Two facts can be noticed by analysing the results presented in Figure 5.4.
First of all, the reset map affects the value of the directional Hausdorff dis-
tance, and the novel reset maps exhibit a better performance for any order
nr chosen for the reduction.
Furthermore, the outcome of our analysis through the randomised ap-

proach is quite different from that based on the HSV only (see Figure 5.2). In
fact, reducing the system to a first-order approximation results in quite bad
performance when the goal of the approximation is the analysis of reach-
ability properties for which the directional Hausdorff distance is a suitable
accuracy measure. In addition, such a drastic reduction yields discontinu-
ities in the state reset that may possibly produce chattering behaviours. On
the other hand, from the randomised based analysis it appears that one can
push the reduction up to a fifth order without degrading significantly the
accuracy of the model.

5.6 Concluding remarks

In this chapter, we presented a novel approach to model reduction of switched
affine systems using balanced truncation for reducing the continuous affine
dynamics. The main novel ingredients of the approach are:

• the introduction of suitable state reset maps that serve the purpose of
making the reduced model best reproduce the free evolution of the
original system; and

111

5. Model Order Reduction for Hybrid Systems

18

19

20

21

22
T

1
[◦
C
]

real (a) (b) finite (b) ∞

18

19

20

21

22

T
2
[◦
C
]

18

19

20

21

22

T
3
[◦
C
]

0 50 100 150 200 250 300
18

19

20

21

22

t [min]

T
4
[◦
C
]

Figure 5.3: Comparison of the temperatures evolution obtained with the
original model and with the reduced ones implementing the considered reset
maps.

112

5.6. Concluding remarks

1 2 3 4 5 6 7
0

0.5

1

1.5

ρ̂
⋆ γ

(a)

(b) ∞

(b) finite

nr

Figure 5.4: Performance of different reduced models as a function of the
order nr and of the adopted reset map.

• the integration in the reduced order model design of a randomised
procedure for model order selection.

The considered class of switched systems is characterised by an endoge-
nous switching signal, in that the transitions between modes are determined
by the evolution of the continuous state component. The method can be ap-
plied also to the case when transitions are determined by some exogenous
switching signal, possibly probabilistic as in the case of Markov jump linear
systems, [Zhang et al., 2003]. In the case when the switching signal is subject
to some dwell time τD and the approximated dynamics has a settling time
smaller than τD, then, the approximation error introduced by the state reset
will be negligible.

113

Chapter 6

Model manipulation toolchain

This chapter aims at supporting the idea, presented in Chapter 2, of de-
vising a unifying approximation framework to complement – and thus to
be integrated in – the typical manipulation toolchain of EOO M&S tools.
Having presented the proposed approximation techniques in the context of
continuous-time and hybrid systems, we here present a novel manipulation
toolchain able to include most of the available techniques in quite an afford-
able way. To this end, some words are also spent to clarify the difficulties
and the peculiarities of the problem, both from a conceptual and from a
technological viewpoint.

6.1 The manipulation process

The task of a modeller typically consists of building a model of a physical
system from first-principle laws, apply some transformation, so as to trans-
late this model into a program capable to simulate its dynamic behaviour.
Figure 6.1 depicts the main stages of this process, indicating for each of them
the mathematical object characterising the stage.
All those stages can be carried out manually, but this obviously limits the

complexity that can be handled, and has the additional drawback of possi-

DAE
Causal

DAE

Acausal

components

Select

I/O

Causal

ODE

Minimal

ODE

Integration

method

Simulation

code

Object-Oriented Modelling tools

Block-Oriented Modelling tools

Figure 6.1: Chain of operations from the model construction to the code
generation.

115

6. Model manipulation toolchain

bly introducing flaws and bugs in the final implementation of the simulation
code. Thus tools capable of supporting this chain of operations have been
created, in order to make the overall process – or at least the great part of it
– automatic, and as transparent as possible for the end user. It is worth re-
marking that the underlying assumption of the process is that the simulation
code is semantically equivalent to the solution of the original model, i.e.,
the manipulation should not introduce any kind of approximation—except
of those that are inherently present in the integration method, but that do
not influence the semantic equivalence defined in this thesis.

In so doing, different modelling paradigms emerged, in particular the
Block-Oriented and Object-Oriented ones, having both of them their respec-
tive advantages and disadvantages. Sticking to the manipulation viewpoint,
the set of operations that are automatised are represented in Figure 6.1 by
the solid lines under the toolchain. In particular, Object-Oriented Modelling
tools support a fully automatised manipulation from the composition of the
model to the simulation code. On the other hand, Block-Oriented ones –
think, e.g., to Simulink – only partially support the chain of operation, leav-
ing to the modeller the task of obtaining a causal ODE system form the
physical model of interest. Even if it is a limit of the latter approach – at least
for the complexity management –, it can be considered at the same time an
advantage, since it allows the modeller to manually (or semi-automatically)
manipulate the continuous-time equations with, e.g., MOR techniques.

This last remark is quite important for the scope and purpose of this re-
search. A fully automatised manipulation toolchain may in fact be a double-
edged sword, especially if it is conceived as a unique “black-box” part of the
tool. For example, using MOR techniques in an Object-Oriented modelling
tool is far from being convenient, since the modeller do not have direct
(nor indirect, e.g., by means of some options or configuration parameters
of the tool) access to the continuous-time ODE equations. On the other
hand, both Block- and Object-Oriented paradigms have hard-coded simu-
lation methods, leaving very few possibilities of customising – and possibly
adding experimental – numerical solvers.

All the mentioned limitations are essentially due to the impossibility of
accessing the data structures needed either for the approximation or to build
a simulation architecture like, e.g., a co-simulation one. This is even more
difficult in the Object-Oriented paradigm where everything is encapsulated
in a unique manipulation toolchain, hindering the possibility of introducing
any approximation.

Apparently, the presented problem is more technological than concep-
tual, but since the complexity of models emerging in the day by day en-

116

6.2. Advantages and disadvantages of EOO languages

gineering work is steadily increasing, the availability of a general (possibly
tool-independent) solution becomes crucial. In the following, we analyse
deeper the problem in the context of EOO modelling tools, thus describing
the adopted technological solution.

6.2 Advantages and disadvantages of EOO languages

EOO modelling languages are known to possess a number of interesting
advantages, and in the context of this work, two are particularly relevant.
First, the EOOmodelling paradigm is inherently suited for building modular,
multi-physic models. Second, the model designer has not to take care of how
the system will be simulated, just focusing on how to write the equations
of its components. In one word, with EOO Modelling Tools (EOOMT)
one handles the complete model by just aggregating components and acting
on them. The translator included in typical EOOMT is then in charge of
manipulating all the gathered equations, and producing efficient simulation
code [Cellier and Kofman, 2006, Fritzson, 2003].
As long as the obtained simulation efficiency is sufficient, the possibil-

ity of managing complexity at the component level has practically no cost.
However, as widely discussed in the thesis, there are some cases where to
achieve the desired simulation efficiency, approximations need introducing,
and EOOMT are neither meant nor suited for that. As discussed herein, ap-
proximations can be introduced either by altering some equations in some
components, or by acting on the numerical solution of the complete model.
And while with EOOMT the first action is natural, the second is not at all.
This rules out several powerful approximation techniques aimed at enhanc-
ing simulation speed, e.g., MOR and DD ones treated herein.
To enter the subject, it is convenient to specify why introducing ap-

proximation at the level of the solution is “unnatural” in EOO modelling.
The main reason is that the possibility/opportunity of doing so depends on
properties of the whole model, not of the individual components, and in the
typical toolchain of EOOMT no user interaction is envisaged at that point.
Moreover, assuming that the use of any approximation technique requires
some parameters, it is necessary to provide the user with the necessary in-
formation to give them a value, and to accept his/her choices, in a compre-
hensible manner, manageable by people who are more experts of physics
than of simulation theory.
In this work we refer as “EOO Modelling Tool” to a Modelica translator,

to allow exemplifying the (more general) presented ideas. For a Modelica

117

6. Model manipulation toolchain

translator, the EOO modelling toolchain can be synthetically depicted as in
Figure 6.2.

Gather eqs

into DAE

Simplify to

causal ODE

Code

generation Execution

Model

construction

Create, edit

& aggregate

components

Specify

solver

Figure 6.2: The typical EOO modelling toolchain.

For our purposes, said toolchain has to be extended – and in some sense
“opened” – as suggested in Figure 6.3, introducing some (clearly optional)
automatic system-wide analysis, and taking care of having the user interact
with simple enough information despite of operating at the whole system
level.

Gather eqs

into DAE

Simplify to

causal ODE
Code

generation Execution
Model

construction

Create, edit

& aggregate

components

Specify

solver

and approx

Analyse

for approx

Figure 6.3: Extending the EOO modelling toolchain.

We here present a solution assuming that the desired type of approxi-
mation is DD (which is the most difficult to integrate in typical manipulation
toolchains), therefore tailoring the analysis and the use of the produced in-
formation to that case. Nonetheless the way of acting on the toolchain is
general with respect to the approximation type, thus a novel manipulation
toolchain complementing the functionalities of pre-existent ones is here pro-
posed.

6.3 The technological solution: Functional Mockup
Interface

Most of modern M&S tools do not allow to directly access to intermediate
formats of the manipulation. Therefore, performing approximations acting
either on the continuous-time equations, or on the numerical solution is

118

6.3. The technological solution: Functional Mockup Interface

virtually impossible. The problem is, however, more technological than
conceptual since all the information needed for both kind of approximations
is present in a certain (non-standard, i.e., tool-dependent) format as internal
data structures of the tool at hand.
Blochwitz et al. [2011] proposed a technological solution for tool indepen-

dent simulation models exchange, creating the Functional Mockup Interface
(FMI). In this paper they say

“
The Functional Mockup Interface (FMI) is a tool independent
standard for the exchange of dynamic models and for co-
simulation. The development of FMI was initiated and orga-
nized by Daimler AG within the ITEA2 project MODELISAR.
The primary goal is to support the exchange of simulation mod-
els between suppliers and OEMs even if a large variety of differ-
ent tools are used. The FMI was developed in a close collabo-
ration between simulation tool vendors and research institutes.
In this article an overview about FMI is given and technical
details about the solution are discussed.

[Blochwitz et al., 2011]

Vendors of Modelica tools (AMESim, Dymola, SimulationX) and non
Modelica tools (SIMPACK, Silver, Exite), as well as research institutes worked
closely together and recently defined the Functional Mockup Interface. This
interface covers the aspects of model exchange and of co-simulation, prac-
tically providing a standard language between different tools.
This exchange format thus constitutes the technological solution to the

aforementioned problem, and all the developed software architecture is based
on the idea that a certain model – in this work a Modelica model, but now
it is even more clear that the presented concepts can be easily applied to
any M&S tool – is exported in the FMI format, i.e., a Functional Mockup
Unit (FMU), providing suitable Application Programming Interfaces (API) so
as to allow manipulation on both the continuous-time equations and on the
numerical solution.
The latter manipulation, as better detailed in the following, can be ex-

ploited by means of other tools providing numerical efficient packages for
the solution of ODEs in the FMI format, e.g., Assimulo1.
Assimulo has the nice feature that is written in Python, a high-level pro-

gramming language, combining a wide variety of different solvers written in

1www.jmodelica.org/assimulo

119

www.jmodelica.org/assimulo

6. Model manipulation toolchain

FORTRAN, C and wrapped with a Python interface, thus providing good nu-
merical performance. In addition, the construction of experimental solvers,
like the mixed-mode one presented in Section 3.5, is quite easy and afford-
able, and takes benefits of the underlying efficient numerical infrastructure.

6.4 An example toolchain implementation

Thanks to the adoption of such a technological solution, it has been pos-
sible to develop a manipulation toolchain capable to perform the desired
approximations, in an affordable way, by means of open-source tools.

To prove the feasibility of our extension proposal, in fact, the toolchain
has been carried out by using JModelica2 as the Modelica translator, ex-
porting the model as a Functional Mockup Unit (FMU) [Andersson et al.,
2011], and employing Assimulo3 for the numerical integration, having de-
veloped ad hoc the mixed-mode integrator, but on the basis of already
developed (and well established) explicit and implicit integration methods.
Since some of the API needed for the development of the Cycle Analysis
and of the mixed-mode integration missed in the first version, FMI 2.0 is
needed [Blochwitz et al., 2012]. However, most of co-simulation schemes
can be easily implemented on the basis of the FMI standard [Schierz et al.,
2012].

More in detail, the toolchain of Figure 6.2 was modified as shown in Fig-
ure 6.4: the output of the continuous-time part (the manipulated model.mo)
is exported by means of the FMI 2.0 standard to model.fmu, elaborated
by the external python module jd2.py that performs CA (i.e., takes care of
the “discretisation” and the “solution manipulation” blocks); the partitioned
model is then simulated with Assimulo, with the developed mixed-mode
method. It is worth noticing that the integration of a new functionality (like
DD) into an EOO modelling toolchain was greatly eased by adopting tools
that allow for some common interchange format—a feature of great impor-
tance indeed.

The developed code, including the reported examples, is available as
free software4, within the terms of the Modelica License v2.

2http://www.jmodelica.org
3http://www.jmodelica.org/assimulo
4The code is available at http://home.dei.polimi.it/leva/jd2.html.

120

http://www.jmodelica.org
http://www.jmodelica.org/assimulo
http://home.dei.polimi.it/leva/jd2.html

6.5. A Unifying Manipulation Toolchain

model.mo model.fmu
Decoupled
Model

Simulation
results

Exporting
FMU

Cycle
Analysis

Mixed-mode
Integration

JModelica jd2.py Assimulo

Figure 6.4: Integration of DD in the toolchain of Figure 6.5.

6.5 A Unifying Manipulation Toolchain

Having devised a viable technological solution for the introduction of ap-
proximations in the numerical integration – which is incidentally the most
difficult part to modify in modern EOO M&S tools – it is now quite easy to
think of an complementing extension of the classical manipulation toolchain
by also introducing other approximations, such as – but not limiting to –
MOR ones. An interesting remark is that functions may appear in the model,
thus limiting the scope of the approach. However, Papadopoulos et al. [2012]
proposed a method for function inlining of Modelica models, extending the
capabilities of the approach. The proposed methodology do not alter the
semantic of the original model, thus not introduces any kind of approxima-
tion.
An activity diagram of the proposed extended toolchain is presented in

Figure 6.5.
It is apparent that typical operations are preserved, but just some deci-

sion node have been introduced so as to provide the necessary data struc-
tures needed to perform some model manipulation in a view to improve
simulation efficiency in the desired direction. Recall, in fact that in Chap-
ter 2 a taxonomy of the intended uses of a model was given, evidencing that
in difference context different desires on its properties may arise.
The underlying rationale is that one can build in an affordable way a

quite sophisticated model by aggregating different (multi-physics) compo-
nents, thus exploiting all the advantages of the EOO modelling approach.
Therefore, the modeller can specify which is its intended use, and leaving to
the tool the task of performing the suitable approximations aimed at obtain-
ing the desired properties, possibly specifying some thresholds on the error,
similarly to what is done with the integration methods.
In particular, the idea is that if the modeller wants to perform some ap-

proximations in order to improve simulation speed, he/she needs to be able
to specify high-level properties, e.g., upper bounds on the approximation

121

6. Model manipulation toolchain

Yes

Yes

Yes
Simplify?

Flattening

Sorting

Index Red.

Tearing

Discretisation

Equation

Manipulation

Simplify?
Equation

Manipulation

Simplify?
Solution

Manipulation

DAE

Minimal

ODE

Discrete-time

system

Continous time

Discrete time

MOR with

heuristics on DAE

and Function

inlining

Dynamic

Decoupling

Classical MOR on

ODE

Constitutive and

connection

equations

Simulation

model

Physical/

functional approx.

Physical/

functional approx.

Figure 6.5: Activity diagram of the modified manipulation toolchain.

122

6.5. A Unifying Manipulation Toolchain

error, and which technique must be used for it, e.g., the MOR technique as
well as whether or not the use of DD is advisable.
Figure 6.5 depicts the proposed toolchain of model manipulations, from

the EOO description to the simulation algorithm ready for code genera-
tion. The decision nodes (the diamond ones in the diagram) show where
additional manipulation for simplification can be performed. If, in every de-
cision node, the simplification is not performed, the classical manipulation
toolchain comes out. Otherwise, a simpler model is produced at the end of
the toolchain.
The diagram also reports some coloured dashed boxes on the right side.

Red boxes stand for already available methodologies that can be automati-
cally applicable at this level of the manipulation, while green ones stand for
potential methodologies which may be introduced as automatic procedures,
e.g., function inlining composed with some other approximation technique,
but to date not exploited in the context of EOO modelling.

123

Chapter 7

Conclusion and open problems

In this dissertation, some model simplification techniques were presented, as
the first nucleus of a unified framework to enhance the capability of existing
M&S tools. The matter was thus addressed from both the methodological
and technological point of view. From the technological side, the main re-
sult is the integration of a simplification technique to improve simulation
efficiency in the toolchain of an EOO tool. To achieve this results, several
methodological ones were derived whose generality extends far beyond the
proposed technological solution.

An analysis technique was proposed to automatically partition complex
dynamic models in both the linear and the nonlinear case, based on time
scale information that is easy to understand for the modeller. As a useful-by-
product, suitable separability indices were also devised, that are apparently
useful also for other purposes than the one analysed herein. Also, and again
as a contribution functional to the main one, the problem of quantifying the
distance between two model was studied, proposing some measures of that
distance that are particularly suited for the purpose of model simplification,
both in the case of continuous and of discontinuous systems.

Given their importance in several application domains, hybrid systems
were also taken into account. The main reason for doing so is that for
those systems, MOR techniques are significantly less mature than they are
for continuous systems. As such, in a view to comprehending also hybrid
systems in the simplification framework, that is the ultimate goal of this
research, extensions of MOR techniques to hybrid systems were studied.
In this respect, the main results are the proposal of different reinitialisation
maps accounting not only for the forced motion of the system, but also for
its free one, and a randomised method for the order selection overcoming
the inherent limits of classical ones used in MOR techniques for continuous
systems. Quite obviously, however, some problems are still open.

125

7. Conclusion and open problems

7.1 Open problems

The presented DD technique relies on a design parameter – denoted by α
in the corresponding chapters – that evidently influences the precision of
the obtained solution. However, at present, we are not yet capable of de-
termining that parameter based on some error bound for the same solution.
Solving this problem would further enhance the ease of use of the presented
technique for the analyst.
As for the exploitation of DD by integration methods, we have been

considering only fixed-step ones. Although, in principle we can foresee no
reasons preventing the use of variable-step methods, the problem of suitably
extending the framework is at present open.
Also, in the case of MOR techniques for hybrid systems, we already

mentioned that having the possibility of introducing a dwell time would be
beneficial for the quality of the approximation. However, it is not yet clear
how to deal with those cases – like the one proposed in the correspond-
ing chapter – in which a dwell time does not have a “physical” motivation,
and thus may possibly lead to infeasible or, better, physically meaningless
situations—e.g., in the example having the temperature in the rooms reaching
values that in any real implementation would ask for a controller interven-
tion on smaller enough a time scale than the resulting dwell time.
Finally, sticking to hybrid systems, we still need to devise reduction

techniques for the discrete modes, so as to contain complexity also on this
side.

7.2 Future work

Besides the open problems just mentioned, there are some other issues for
which a solution can already be envisioned, but was not yet developed.
A first one is related to managing the partitioning of a model in more

than two decoupled subsystems. Also in this case, it is possible to ask the
analyst to only provide time scale information. However, the way the tool
has to interpret the analysts desires to configure the simulation becomes
more articulated than it is in the presented examples. Solving this issue
does not pose any conceptual problem, requiring nonetheless to suitably
extend the exploitation of the proposed analysis.
On a similar front, it is already clear how parallelisable cycle sets (PCS)

can be used to further partition the model for better efficiency. Here too,
however, a complete implementation of this exploitation needs designing.

126

7.2. Future work

Finally, plans are underway to test the generality of the proposed ap-
proach by including in the consequently designed framework other tech-
niques than those considered in this work.

127

Appendix A

Additional Examples on Dynamic
Decoupling

A.1 Automotive suspension

�����������

�����������

yyyyyyyyyyy

yyyyyyyyyyy

h

z k f d f kr dr

θ
L f LrC

Figure A.1: Half-car suspension model.

Figure A.1 illustrates the modelled characteristics of a half-car. The front
and rear suspension are modelled as spring/damper systems. A more de-
tailed model would include a tire model, and damper nonlinearities such
as velocity-dependent damping (with greater damping during rebound than
compression). The vehicle body has pitch and bounce degrees of freedom.
They are represented in the model by four dynamic states: vertical displace-
ment z, vertical velocity ż, pitch angular displacement θ , and pitch angular
velocity θ̇ . A full model with six degrees of freedom can be implemented
using vector algebra blocks to perform axis transformations and force/dis-
placement/velocity calculations. The front and rear suspensions influence

129

A. Additional Examples on Dynamic Decoupling

the bounce (i.e., vertical degree of freedom) according to the equations

Ff =2k f (L f θ − z)+2d f

(
L f θ̇ − ż

)

Fr =2kr (Lrθ + z)−2dr

(
Lrθ̇ + ż

)

where Ff and Fr are the upward force on body from front and rear suspen-
sion, k f and kr are the front and rear suspension spring constant, d f and dr

are the front and rear damping factors, L f and Lr are the horizontal distance
from the center of gravity (C) to front and rear suspensions.
The pitch contribution to the front and rear suspension is given by

τ f =−L f Ff

τr =LrFr

where τ f and τr are the pitch torque due to the front and rear suspension.
Hence, using the Newton’s law, the forces and moments are balanced

as
Mz̈ =Ff +Fr −mg

Jθ̈ =τ f + τr + τa

where M is the body mass, J is the body momentum of inertia about the
center of gravity and τa is the pitch torque induced by vehicle acceleration.
The parameters used for this example are reported in Table A.1.

Table A.1: Half-car suspension parameters.

Parameters

M 1000kg d f 3500Ns/m
J 2100kgm2 dr 3500Ns/m
k f 28000N/m L f 0.9m
kr 21000N/m Lr 1.2m

In this example we initially consider the vehicle accelerating, so τa =
500Nm for t ≥ 0 (0 otherwise). Hence, at time t = 2, we consider the road
height h increased by 0.15m.
According to CA there are 7 cycles in the model digraph, and choosing

α = 0.5, the following constraints on the integration step are obtained.

ż : h ≤ 0.038 z : h ≤ 0.071

θ̇ : h ≤ 0.077

θ : h ≤ 0.100

(A.1)

130

A.1. Automotive suspension

0.2 0.4 0.6 0.8 1

1

2

3

s
α
(i
+

1
,i
)

α

Separability index

0

0.5

1

1.5

2

2.5

3

3.5

·10
−2

Figure A.2: Separability parametric analysis of half-car suspension model.

hence, choosing an integration step h= 0.04, we can separate the system ac-
cordingly to what suggested by Figure A.2. Figure A.3 shows the simulation
results.
Table A.2 shows the simulation statistics for different integration meth-

ods. It is worth noticing that the dimension of the system the Newton itera-
tion has to solve is reduced from 4 to 1 in the mixed-mode method. Notice,
also that the EE method needs a smaller step size (h = 0.05) for numerical
stability reasons. Apparently, the mixed-mode method performs better than
the others also in this very simple case.
To complete the example, the proposed indices proposed in Section 3.4

are here computed, yielding the following indices

σR = 1.869 σ(0.5) = 2.590, s(0.5) = 0.382.

The stiffness σ(α) index shows that the system is stiff, while the separa-
bility one shows that this kind of system is sufficiently suited for separation—
recall that high values of s mean that the system is separable.

131

A. Additional Examples on Dynamic Decoupling

−0.6

−0.4

−0.2

0
ż
[m
/s
]

Reference
MM

−0.25

−0.2

−0.15

−0.1

z
[m
]

−5

0

5

·10
−2

θ̇
[r
ad
/s
]

0 1 2 3 4 5

0

0.5

1

1.5

·10
−2

t [s]

θ
[r
ad
]

Figure A.3: Simulation results of the half-car suspension model.

132

A.2. Double-mass, triple spring-damper

Table A.2: Simulation statistics for half-car model.

Mixed-mode BDF IE EE

Steps 126 198 126 126
Function ev. 376 236 375 –
Jacobian ev. 6 5 6 –
Fun. ev. in Jac. ev. 12 20 30 –
Newton iterations 250 228 249 –
Newton fail 0 0 0 –
Accuracy 0.638 – 0.638 0.674
Sim time 0.1s 0.16s 0.13s 0.04s

A.2 Double-mass, triple spring-damper

M1 M2

k1
k2 k3

d1d1 d2d2 d3d3

Figure A.4: Double-mass, triple spring-damper.

This example refers to a simple test problem, similar to that presented
in González et al. [2011]. The considered system is composed of two masses
and three parallel spring-damper elements, connected as shown in Fig-
ure A.4, and moving in a horizontal plane (i.e., gravity has no effect). Both
elasticity and damping friction are assumed to be linear phenomena, so that
the couplings between the dynamic variables can be easily determined by
acting on the elastic constants ki and the damping factors di. In particular, in
the reported test, M1 = M2 = 1kg, k1 = 500N/m, d1 = 5Ns/m, k2 = 1N/m,
d2 = 1Ns/m, k3 = 5N/m, and d3 = 1Ns/m.
Letting x1 and x2 the horizontal positions of the two masses represented

in Figure A.4, the model can be written as

{
M1ẍ1 =−(d1 +d2)ẋ1 +d2ẋ2 − (k1 + k2)x1 + k2x2

M2ẍ2 = d2ẋ1 − (d2 +d3)ẋ2 + k2x1 − (k2 + k3)x2

(A.2)

133

A. Additional Examples on Dynamic Decoupling

A preliminary analysis is needed so as to understand if the model, with
the given set of parameters is suited to be partitioned. This is carried out
by means of a parametric CA, where EE is chosen as the probe integration
method, i.e., by exploiting the closed-form solution (3.11), and by computing
the separability terms of Definition 3.4.3. The result is shown in Figure A.5,
where the numbers on the vertical axis index the variables ordered by in-
creasing time scale.

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

s
α
(i
+

1
,i
)

α

Separability index

0

5 ·10
−2

0.1

0.15

0.2

0.25

0.3

Figure A.5: Separability parametric analysis of the double-mass, triple
spring-damper system.

It is apparent from the figure, that the highest separability term is ob-
tained between the 4-th and the 5-th variable, suggesting where to partition
the model for the decoupled integration.
According to CA there are 17 cycles in the model digraph, and choosing

α = 0.5, the following constraints on the integration step are obtained.

ẋ1 : h ≤ 0.032 ẋ2 : h ≤ 0.289

x1 : h ≤ 0.032 x2 : h ≤ 0.289

ẏ1 : h ≤ 0.045 ẏ2 : h ≤ 0.408

y1 : h ≤ 0.045 y2 : h ≤ 0.408

(A.3)

134

A.2. Double-mass, triple spring-damper

Based on the aforementioned analysis, we can partition the model into
two submodels by separating the first 4 variables – the set of the ones on the
left, that are considered fast – from the other 4 — the set of the ones on the
right that are considered slow. Hence, the integration step can be chosen as
h = 0.05. Notice that incidentally the analysis brought to intuitive indeed a
result, i.e., to separate the two set of equations associated to the two masses,
without any a priori suggestion to the method of the physical structure of
the system.
Figure A.6 shows the numerical results of the mixed-mode integration

method, while Table A.3 presents some comparative simulation statistics.
Notice that for EE a smaller integration step (h = 0.01) has been used for
numerical stability reasons.

Table A.3: Simulation statistics Double-mass, triple spring-damper.

Mixed-mode LSODAR IE EE

Steps 101 483 101 500
Function ev. 302 949 302 –
Jacobian ev. 5 28 5 –
Fun. ev. in Jac. ev. 25 – 45 –
Newton iterations 201 – 201 –
Newton fail 0 – 0 –
Accuracy 5.969 – 5.964 14.472
Sim time 0.1s 0.12s 0.11s 0.13s

The mixed-mode integration method is able to capture the system be-
haviour, especially for the steady-state, while the choice of a “large” integra-
tion step has the effect that the “fast” dynamics, i.e., the transient oscillations,
are approximated by a slower dynamics. Furthermore, simulation statistics
show that also in this first (linear) example, the performance are slightly
improved, with respect to other comparable methods Cellier and Kofman
[2006].
To complete the example, the proposed indices proposed in Section 3.4

are here computed. In particular, model (A.2), and CA result (A.3) yield the
following indices. Notice that σR cannot be computed since there are purely
imaginary eigenvalues in the system.

σ(0.5) = 12.923, s(0.5) = 0.779.

The stiffness index σ(α) indicates that the system is highly stiff. On the
other hand, the separability index s(α) shows that the considered example

135

A. Additional Examples on Dynamic Decoupling

−10

−5

0

5

ẋ
1
[m
/s
]

Reference
MM

0.2

0.4

0.6

0.8

1

x
1
[m
]

−0.5

0

0.5

ẋ
2
[m
/s
]

0 1 2 3 4 5

2

2.2

t [s]

x
2
[m
]

Figure A.6: Simulation results of the double-mass, triple spring-damper sys-
tem.

136

A.3. A small smart grid

has dynamics evolving with quite different time scales, thus making it effec-
tive to partition the model into subsystems. Finally, to decide how to obtain
that partition, adequate clues are provided by Figure A.5.

A.3 A small smart grid

The system considered in this example is composed of an islanded three-
phase generator feeding an inductive load. In modelling this systemmechan-
ical phenomena were considered, although the prime mover is idealised as
a torque generator applied to the alternator shaft and governed by a com-
bined power/frequency controller, with primary and secondary action. We
also consider the load self-heating phenomenon, plus – obviously – electrical
ones.

The Modelica scheme of the considered system is represented in Fig-
ure A.7.

V

lo
a
d

m
=
3

tau

tau
1500

rpmo

sta
rG

m
=
3

gndM

starL

m
=
3

gndL

line

m=3

c
Lo
a
d
1

2
0

c
Lo
a
d
2

2
0

c
Lo
a
d
3

2
0

gL1

G=2

Te

T=293.1 5

K

gL2

G=2

gL3

G=2

speedS ens or

w
k=30/pi

rpm

inertia

J=100
d=0.2

springDamper

c=10000-

feedbac k

Rr pm

PI

T=0.5

Ac t

T=0.1

100

Vg

Figure A.7: Multiscale smart grid Modelica scheme.

The separability analysis results are represented in Figure A.8. Appar-
ently enough, it is possible to separate the dynamics into two clusters of
variables, i.e., from the first variable to the seventh one, and from the eighth
to the last one.

The system has 13 cycles, leading to the following constraints by choos-

137

A. Additional Examples on Dynamic Decoupling

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

s
α
(i
+

1
,i
)

α

Separability index

0

0.2

0.4

0.6

0.8

Figure A.8: Separability analysis of the smart grid example.

ing α = 1.0

φ : h ≤ 2.000×10−5

I1 : h ≤ 0.002

I2 : h ≤ 0.002

I3 : h ≤ 0.002

yactuator : h ≤ 0.032

ωinertia : h ≤ 0.032

xPI : h ≤ 0.081

φinertia : h ≤ 0.081

T1 : h ≤ 1.111

T2 : h ≤ 1.111

T3 : h ≤ 1.111

(A.4)

Thus, choosing a integration step of h = 0.1, we can partition the system
according to the separability analysis result. Therefore, on the left there are
the fast variables, while on the right there are the slow ones.
The simulation result is represented in Figure A.9, while Table A.4 re-

ports the simulation statistics for the Mixed-mode and LSODAR integration
scheme. Purely explicit and implicit Euler, are here not considered since the
first needs too a tiny integration step due to the system stiffness, while the

138

A.3. A small smart grid

latter is not even able to initialize the system, since the nonlinear Newton
iteration do not converge.

Table A.4: Simulation statistics for the simulation example.

Mixed-mode LSODAR

Steps 200 54891
Function ev. 11088 88775
Jacobian ev. 120 2762
Fun. ev. in Jac. ev. 600 –
Newton iterations 9088 –
Accuracy 639 ×109 –
Sim time 3.61s 20.23s

In this case the level of accuracy is very low, accordingly to the value.
This is essentially due to the fact that the mixed-mode integration is simu-
lating an average behaviour of the system – remember that the integration
technique is approximating the dynamics under the chosen time scale –
thus leading to a large error when high-frequency oscillating behaviours are
present in the system.
In this example the structural indices become

σ(1.0) = 55554.444, s(1.0) = 0.879,

showing that the considered system is highly stiff – fact that is also apparent
from the time scales (A.4) identified by CA that can be partitioned in three
clusters – thus indicating that a purely explicit method is not suitable for
simulating efficiently the system. On the other hand, the separability index
also shows that the system is suited to be partitioned, also accordingly to
the separability analysis reported in Figure A.8.

139

A. Additional Examples on Dynamic Decoupling

−5

0

5

10

φ
[r
ad
]

Reference
MM

−5

0

5

10

I 1
[A
]

−5

0

5

10

I 2
[A
]

−10

0

I 3
[A
]

0

200

400

y
ac
tu
at
o
r

0

100

200

ω
in
er
ti
a
[r
ad
/s
]

0 5 10 15 20

−1

−0.5

0

t [s]

x
P
I

0 5 10 15 20

300

310

320

t [s]

T
av
er
ag
e
[K
]

Figure A.9: Multiscale smart grid simulation.

140

Bibliography

A. Abate and M. Prandini. Approximate abstractions of stochastic systems:
a randomized method. In Decision and Control and European Control
Conference (CDC-ECC), 2011 50th IEEE Conference on, pages 4861–
4866. IEEE, Dec 2011. doi: 10.1109/CDC.2011.6161148.

A. Abate, S. Amin, M. Prandini, J. Lygeros, and S. Sastry. Computational
approaches to reachability analysis of stochastic hybrid systems. In A. Be-
mporad, A. Bicchi, and G. Buttazzo, editors, Hybrid Systems: Computation
and Control, volume 4416 of Lecture Notes in Computer Science, pages
4–17. Springer Berlin Heidelberg, Apr. 2007. ISBN 978-3-540-71492-7. doi:
10.1007/978-3-540-71493-4_4.

A. Abate, J.-P. Katoen, J. Lygeros, and M. Prandini. Approximate model
checking of stochastic hybrid systems. European Journal of Control, spe-
cial issue on Stochastic hybrid systems, 16(6):624–641, Dec. 2010.

S. Amin, A. Abate, M. Prandini, J. Lygeros, and S. Sastry. Reachability anal-
ysis for controlled discrete time stochastic hybrid systems. In Hybrid Sys-
tems: Computation and Control, pages 49–63. Springer, 2006.

C. Andersson, J. Åkesson, C. Führer, and M. Gäfvert. Import and export of
functional mock-up units in jmodelica.org. In Proc. of the 8th Interna-
tional Modelica Conference, 2011.

C. Andersson, J. Andreasson, C. Führer, and J. Åkesson. A workbench
for multibody systems ODE and DAE solvers. In Proceedings of the
IMSD2012 - The 2nd Joint International Conference on Multibody Sys-
tem Dynamics, 2012.

A. Antoulas. Approximation of large-scale dynamical systems, volume 6.
Society for Industrial Mathematics, 2005.

M. Arnold and W. O. Schiehlen. Simulation Techniques for Applied Dy-
namics, volume 507. Springer, 2009.

141

Bibliography

M. Arnold, B. Burgermeister, C. Führer, G. Hippmann, and G. Rill. Nu-
merical methods in vehicle system dynamics: state of the art and current
developments. Vehicle System Dynamics, 49(7):1159–1207, 2011. doi:
10.1080/00423114.2011.582953.

U. M. Ascher, S. J. Ruuth, and R. J. Spiteri. Implicit-explicit runge-kutta
methods for time-dependent partial differential equations. Applied Nu-
merical Mathematics, 25(2–3):151–167, 1997. ISSN 0168-9274. doi:
10.1016/S0168-9274(97)00056-1.

A. Bartolini, A. Leva, and C. Maffezzoni. A process simulation environment
based on visual programming and dynamic decoupling. Simulation, 71
(3):183–193, 1998.

J. Bastian, C. Clauß, S. Wolf, and P. Schneider. Master for co-simulation
using FMI. In Proc. of the 8th International Modelica Conference, 2011.

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist, A. Jung-
hanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V.
Peetz, and S. Wolf. The functional mockup interface for tool independent
exchange of simulation models. In 8th International Modelica Confer-
ence, pages 20–22, 2011.

T. Blochwitz, M. Otter, J. Åkesson, M. Arnold, C. Clauß, H. Elmqvist,
M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson, and
A. Viel. Functional Mockup Interface 2.0: The standard for tool inde-
pendent exchange of simulation models. In 9th International Model-
ica Conference, pages 173–184, Münich, Germany, 2012. doi: 10.3384/
ecp12076173.

D. Broman. Meta-Languages and Semantics for Equation-Based Modeling
and Simulation. PhD thesis, Department of Computer and Information
Science, Linköping University, Sweden, 2010.

D. Broman and J. G. Siek. Modelyze: a Gradually Typed Host Language
for Embedding Equation-Based Modeling Languages. Technical Report
UCB/EECS-2012-173, EECS Department, University of California, Berke-
ley, Jun 2012.

K. Burrage. Parallel methods for initial value problems. Applied Numer-
ical Mathematics, 11(1–3):5–25, 1993. ISSN 0168-9274. doi: 10.1016/
0168-9274(93)90037-R.

142

Bibliography

G. Calafiore and M. Campi. Uncertain convex programs: randomized so-
lutions and confidence levels. Mathematical Programming, 102(1):25–46,
2005.

M. Campi and S. Garatti. A sampling-and-discarding approach to chance-
constrained optimization: Feasibility and optimality. Journal of Optimiza-
tion Theory and Applications, 148(2):257–280, 2011.

M. C. Campi, S. Garatti, and M. Prandini. The scenario approach for systems
and control design. Annual Reviews in Control, 33(2):149–157, 2009.
ISSN 1367-5788. doi: 10.1016/j.arcontrol.2009.07.001.

F. Casella. A strategy for parallel simulation of declarative object-oriented
models of generalized physical networks. In 5th International Workshop
on Equation-Based Object-Oriented Modeling Languages and Tools.,
pages 45–51, 2013.

F. Casella and A. Leva. Modelica open library for power plant simulation:
design and experimental validation. In Proc. of the 3rd Modelica confer-
ence, Linköping, Sweden, 2003.

F. Casella, F. Donida, and M. Lovera. Automatic Generation of LFTs from
Object-Oriented Non-Linear Models with Uncertain Parameters. In Pro-
ceedings MATHMOD 09 Vienna, Vienna, Austria, pages 1359–1367,
2009.

F. E. Cellier and E. Kofman. Continuous system simulation. Springer, Lon-
don, UK, 2006. ISBN 9780387261027.

J. Chen and S.-M. Kang. Model-order reduction of nonlinear MEMS devices
through arclength-based Karhunen-Loeve decomposition. In Circuits and
Systems, 2001. ISCAS 2001. The 2001 IEEE Int. Symposium on, volume 3,
pages 457–460 vol. 2, 2001. doi: 10.1109/ISCAS.2001.921346.

J. Chen, S.-M. Kang, J. Zou, C. Liu, and J. Schutt-Aine. Reduced-order mod-
eling of weakly nonlinear MEMS devices with Taylor-series expansion
and Arnoldi approach. Microelectromechanical Systems, Journal of, 13
(3):441– 451, 2004. ISSN 1057-7157. doi: 10.1109/JMEMS.2004.828704.

E. Christen and K. Bakalar. VHDL-AMS-a hardware description language
for analog and mixed-signal applications. Circuits and Systems II: Analog
and Digital Signal Processing, IEEE Transactions on, 46(10):1263–1272,
1999. ISSN 1057-7130. doi: 10.1109/82.799677.

143

Bibliography

J. B. Danby and T. L. Harman. Mastering Simulink. Pearson/Prentice Hall,
2003. ISBN 9780131424777.

I. S. Duff and J. K. Reid. An implementation of tarjan’s algorithm for the
block triangularization of a matrix. ACM Trans. Math. Softw., 4(2):137–
147, Jun 1978. ISSN 0098-3500. doi: 10.1145/355780.355785.

H. Elmqvist andM. Otter. Methods for tearing systems of equations in object-
oriented modeling. In ESM’94 European Simulation Multi- conference,
volume 94, pages 326–332, 1994.

A. Fehnker and F. Ivancic. Benchmarks for hybrid systems verification. In
In Hybrid Systems: Computation and Control (HSCC 2004) (2004, pages
326–341. Springer, 2004.

G. Ferretti, S. Filippi, C. Maffezzoni, G. Magnani, and P. Rocco. Modular
dynamic virtual-reality modeling of robotic systems. Robotics Automation
Magazine, IEEE, 6(4):13–23, 1999. ISSN 1070-9932. doi: 10.1109/100.
813823.

S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–
174, 2010.

G. Frehse. Phaver: Algorithmic verification of hybrid systems past hytech.
In Hybrid Systems: Computation and Control, pages 258–273. Springer,
2005.

P. Fritzson. Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. Wiley, 2003.

S. Garatti and M. Prandini. A simulation-based approach to the approxi-
mation of stochastic hybrid systems. In Analysis and Design of Hybrid
Systems, pages 406–411, 2012.

C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software En-
gineering. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition,
2002. ISBN 0133056996.

A. Girard and C. Guernic. Zonotope/hyperplane intersection for hy-
brid systems reachability analysis. In Proceedings of the 11th inter-
national workshop on Hybrid Systems: Computation and Control,
HSCC ’08, pages 215–228, Berlin, Heidelberg, 2008. Springer-Verlag.
ISBN 978-3-540-78928-4. doi: 10.1007/978-3-540-78929-1_16. URL
http://dx.doi.org/10.1007/978-3-540-78929-1_16.

144

http://dx.doi.org/10.1007/978-3-540-78929-1_16

Bibliography

A. Girard and G. Pappas. Approximation metrics for discrete and continuous
systems. IEEE Trans. on Automatic Control, 52(5):782–798, 2007.

A. Girard, A. A. Julius, and G. J. Pappas. Approximate simulation relations
for hybrid systems. Discrete Event Dynamic Systems, 18(2):163–179, 2008.

A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic mod-
els for incrementally stable switched systems. IEEE Transactions on Au-
tomatic Control, 55(1):116–126, Jan 2010.

L. Goldberg and G. Ann. Efficient algorithms for listing combinatorial struc-
tures, volume 5. Cambridge Univ Pr, 2009.

F. González, M. Á. Naya, A. Luaces, and M. González. On the effect of multi-
rate co-simulation techniques in the efficiency and accuracy of multibody
system dynamics. Multibody System Dynamics, 25(4):461–483, 2011.
ISSN 1384-5640. doi: 10.1007/s11044-010-9234-7.

C. Gu. Model Order Reduction of Nonlinear Dynamical Systems. PhD
thesis, University of California, Berkeley, 2011.

S. Gugercin and A. C. Antoulas. A survey of model reduction by balanced
truncation and some new results. International Journal of Control, 77(8):
748–766, 2004.

D. Hanselman and B. Littlefield. Mastering MATLAB Seven. Pearson/Pren-
tice Hall, 2005. ISBN 9780131857148.

W. E. Hart, C. Laird, J.-P. Watson, and D. L. Woodruff. Pyomo – Optimiza-
tion Modeling in Python. Springer, 2012. ISBN 978-1-4614-3225-8.

M. Hast, J. Åkesson, and A. Robertsson. Optimal robot control using model-
ica and optimica. In Proc. of the 7th International Modelica Conference,
2009.

B. Hendrickson and K. Devine. Dynamic load balancing in computational
mechanics. Computer Methods in Applied Mechanics and Engineering,
184(2–4):485–500, 2000. ISSN 0045-7825. doi: 10.1016/S0045-7825(99)
00241-8.

A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shu-
maker, and C. S. Woodward. Sundials: Suite of nonlinear and differ-
ential/algebraic equation solvers. ACM Transactions on Mathematical
Software (TOMS), 31(3):363–396, 2005.

145

Bibliography

M. Innocent, P. Wambacq, S. Donnay, H. Tilmans, W. Sansen, and
H. De Man. An analytic volterra-series-based model for a mems vari-
able capacitor. Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Trans. on, 22(2):124–131, 2003. ISSN 0278-0070. doi:
10.1109/TCAD.2002.806603.

D. Johnson. Finding all the elementary circuits of a directed graph. SIAM
J. Comput., 4(1):77–84, 1975.

A. Julius and G. Pappas. Approximations of stochastic hybrid systems. IEEE
Transactions on Automatic Control, 54(6):1193–1203, 2009.

B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell system technical journal, 29:291–307, 1970.

G. Kunze, J. Frenkel, C. Schubert, and K. Jankov. Using modelica for inter-
active simulations of technical systems in a virtual reality environment. In
Proceedings of the 7th International Modelica Conference, Como (Italy),
2009.

A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for hybrid dynam-
ics: the reachability problem. In in New Directions and Applications in
Control Theory, pages 193–205. Springer, 2005.

Y. Kuznetsov. Elements of Applied Bifurcation Theory, volume 112 of Ap-
plied Mathematical Sciences. Springer, 2004.

S. Lall, J. Marsden, and S. Glavaski. A subspace approach to balanced trun-
cation for model reduction of nonlinear control systems. International
Journal of Robust and Nonlinear Control, 12:519–535, 2002.

D. C. Lane and R. Oliva. The greater whole: Towards a synthesis of
system dynamics and soft systems methodology. European Journal
of Operational Research, 107(1):214–235, 1998. ISSN 0377-2217. doi:
10.1016/S0377-2217(97)00205-1.

Y. Liu and B. D. Anderson. Singular perturbation approximation of balanced
systems. International Journal of Control, 50(4):1379–1405, 1989.

L. Ljung. System Identification. John Wiley & Sons, Inc., 2001. ISBN
9780471346081. doi: 10.1002/047134608X.W1046.

J. Lunze and F. Lamnabhi-Lagarrigue, editors. Handbook of Hybrid Sys-
tems Control – Theory, Tools, Applications. Cambridge University Press,
Cambridge, UK, 2009.

146

Bibliography

S. Mattsson, H. Elmqvist, and M. Otter. Physical system modeling with
Modelica. Control Engineering Practice, 6(4):501–510, 1998. ISSN 0967-
0661. doi: 10.1016/S0967-0661(98)00047-1.

S. E. Mattsson and G. Söderlind. Index reduction in differential-algebraic
equations using dummy derivatives. SIAM Journal on Scientific Com-
puting, 14(3):677–692, 1993.

E. Mazzi, A. Sangiovanni Vincentelli, A. Balluchi, and A. Bicchi. Hybrid
system reduction. In Decision and Control, 2008. CDC 2008. 47th IEEE
Conference on, pages 227–232. IEEE, Dec 2008. doi: 10.1109/CDC.2008.
4739350.

L. Mikelsons and T. Brandt. Symbolic model reduction for interval-valued
scenarios. In ASME Conf. Proc., volume 49002, pages 263–272. ASME,
2009. doi: 10.1115/DETC2009-86954.

L. Mikelsons and T. Brandt. Generation of continuously adjustable vehicle
models using symbolic reduction methods. Multibody System Dynamics,
26:153–173, 2011. ISSN 1384-5640.

L. Mikelsons, T. Brandt, and D. Schramm. Real-time vehicle dynamics using
equation-based reduction techniques. In IUTAM Symposium on Dynam-
ics Modeling and Interaction Control in Virtual and Real Environments,
volume 30 of IUTAM Bookseries, pages 91–98. Springer Netherlands,
2011. ISBN 978-94-007-1642-1. doi: 10.1007/978-94-007-1643-8_11.

I. Mitchell. Application of Level Set Methods to Control and Reachability
Problems in Continuous and Hybrid Systems. PhD thesis, Ph.D. Disser-
tation. Dept. Scientific Computing and Computational Mathematics, Stan-
ford Univ., CA, 2002.

F. J. Monssen. OrCAD PSpice with Circuit Analysis. Prentice-Hall PTR,
Upper Saddle River, N.J., 2001.

B. Moore. Principal component analysis in linear systems: Controllability,
observability, and model reduction. Automatic Control, IEEE Transac-
tions on, 26(1):17–32, Feb 1981. ISSN 0018-9286. doi: 10.1109/TAC.1981.
1102568.

A. Norton. Utilising rapid product development and late customisation
methodologies within manufacturing smes, 2001.

147

Bibliography

M. Oh and C. Pantelides. A modelling and simulation language for com-
bined lumped and distributed parameter systems. Computers & Chem-
ical Engineering, 20(6–7):611–633, 1996. ISSN 0098-1354. doi: 10.1016/
0098-1354(95)00196-4.

A. W. Ordys, A. Pike, M. A. Johnson, R. M. Katebi, and M. Grimble. Mod-
elling and Simulation of Power Generation Plants. Advances in Indus-
trial Control. Springer-Verlag, 1994. ISBN 978-3-540-19907-6.

C. Pantelides. The consistent initialization of differential-algebraic systems.
SIAM Journal on Scientific and Statistical Computing, 9(2):213–231,
1988. doi: 10.1137/0909014.

A. V. Papadopoulos and A. Leva. Automating dynamic decoupling in object-
oriented modelling and simulation tools. In 5th International workshop
on Equation-Based Object-Oriented Modeling Languages and Tools,
pages 37–44, Apr. 2013a. ISBN 978-91-7519-621-3.

A. V. Papadopoulos and A. Leva. A model partitioning method based on dy-
namic decoupling for the efficient simulation of multibody systems. Multi-
body System Dynamics, 2013b. (accepted).

A. V. Papadopoulos and A. Leva. Automating efficiency-targeted approxima-
tions in modelling and simulation tools: dynamic decoupling and mixed-
mode integration. SIMULATION: Transactions of The Society for Mod-
eling and Simulation International, 2013c. (under review).

A. V. Papadopoulos and A. Leva. Enhancing dynamic simulation perfor-
mance for models of energy systems and smart grids. IEEE Transactions
on Industrial Informatics, 2013d. (under review).

A. V. Papadopoulos and M. Prandini. Model reduction of switched affine sys-
tems: a method based on balanced truncation and randomized optimiza-
tion. In 17th International Conference on Hybrid Systems: Computation
and Control (HSCC 2014), 2014. doi: 10.1145/2562059.2562131.

A. V. Papadopoulos, M. Maggio, F. Casella, and J. Åkesson. Function inlining
in modelica models. In Proceedings of the 7th International Conference
of Mathematical Modelling, MATHMOD’12, volume 7, pages 1091–1094.
IFAC, Feb. 2012. doi: 10.3182/20120215-3-AT-3016.00193.

A. V. Papadopoulos, J. Åkesson, F. Casella, and A. Leva. Automatic partition-
ing and simulation of weakly coupled systems. In Decision and Control

148

Bibliography

(CDC), 2013 IEEE 52nd Annual Conference on, pages 3172–3177, Dec.
2013. ISBN 978-1-4673-5716-6.

A. V. Papadopoulos, F. Casella, and A. Leva. Model separability indices for
efficient dynamic simulation. In 19th IFAC World Congress, 2014. (under
review).

M. Petreczky and R. Vidal. Metrics and topology for nonlinear and hybrid
systems. In Proceedings of the 10th International Conference on Hybrid
Systems: Computation and Control, volume 4416 of Lecture Notes in
Computer Sciences, pages 459–472, 2007.

M. Petreczky, R. Wisniewski, and J. Leth. Theoretical analysis of balanced
truncation for linear switched systems. In Analysis and Design of Hybrid
Systems, pages 240–247, 2012. doi: 10.3182/20120606-3-NL-3011.00039.

L. Petzold. Description of DASSL: a differential/algebraic system solver.
Sep. 1982.

A. Pfeiffer, M. Hellerer, S. Hartweg, M. Otter, and M. Reiner. Pysimulator–a
simulation and analysis environment in python with plugin infrastructure.
In Proceedings of 9th International Modelica Conference, Munich, Ger-
many, Sept, 2012. doi: 10.3384/ecp12076523.

J. R. Phillips. Projection frameworks for model reduction of weakly nonlinear
systems. In Proc. of the 37th Annual Design Automation Conf., DAC ’00,
pages 184–189, New York, NY, USA, 2000. ACM. ISBN 1-58113-187-9.
doi: 10.1145/337292.337380.

M. Pidd and A. Carvalho. Simulation software: not the same yesterday,
today or forever. Journal of Simulation, 1(1):7–20, 2006.

M. Prandini and J. Hu. Stochastic reachability: Theoretical foundations and
numerical approximation. In Stochastic hybrid systems, volume 24 of
Control Engineering Series, pages 107–138. Taylor & Francis Group/CRC
Press, 2006.

A. Prèkopa. Probabilistic programming. In A. Ruszczyǹski and A. Shapiro,
editors, Stochastic Programming, volume 10 of handbooks in operations
research and management science, London, UK, 2003. Elsevier.

S. Robinson. Soft with a hard centre: Discrete-event simulation in facilitation.
The Journal of the Operational Research Society, 52(8):905–915, 2001.
ISSN 01605682.

149

Bibliography

R. G. Sargent, R. E. Nance, C. M. Overstreet, S. Robinson, and J. Talbot. The
simulation project life-cycle: models and realities. In Proceedings of the
38th conference on Winter simulation, WSC ’06, pages 863–871. Winter
Simulation Conference, 2006. ISBN 1-4244-0501-7.

J. Scherpen. Balancing for nonlinear systems. Systems & Control Letters, 21
(2):143–153, 1993.

A. Schiela and H. Olsson. Mixed-mode integration for real-time simulation.
In Modelica Workshop 2000 Proceedings, pages 69–75, 2000.

T. Schierz, M. Arnold, and C. Clauß. Co-simulation with communication
step size control in an FMI compatible master algorithm. In Proc. of the
9th International Modelica Conference, 2012.

T. Schmitt, D. Zimmer, and F. E. Cellier. A virtual motorcycle rider based on
automatic controller design. In Proc. 7th Modelica Conference, volume 3,
pages 19–28, 2009.

H. R. Shaker and R. Wisniewski. Model reduction of switched systems based
on switching generalized gramians. International Journal of Innova-
tive Computing, Information and Control, 8(7(B)):5025–5044, 2012. ISSN
1349-4198.

M. Sjölund. TLM and Parallelization. Technical report, Linköping Univer-
sity, 2012.

M. Sjölund, R. Braun, P. Fritzson, and P. Krus. Towards efficient distributed
simulation in modelica using transmission line modeling. In 3rd Int.
workshop on Equation-Based Object-Oriented Modeling Languages and
Tools, pages 71–80, 2010.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1971.

R. Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM
J. Comput., 2(3):211–216, 1972.

C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi. Computational techniques
for the verification of hybrid systems. Proceedings of the IEEE, 91(7):986–
1001, 2003.

A. Varga, G. Looye, D. Moormann, and G. Gräbel. Automated generation of
lft-based parametric uncertainty descriptions from generic aircraft models.

150

Bibliography

Mathematical and Computer Modelling of Dynamical Systems, 4(4):249–
274, 1998. doi: 10.1080/13873959808837082.

L. Žlajpah. Simulation in robotics. Mathematics and Computers in Simu-
lation, 79(4):879–897, 2008. ISSN 0378-4754. doi: 10.1016/j.matcom.2008.
02.017.

A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov
exponents from a time series. Physica D: Nonlinear Phenomena, 16(3):
285–317, 1985. ISSN 0167-2789. doi: 10.1016/0167-2789(85)90011-9.

L. Zhang, B. Huang, and J. Lam. h∞ model reduction of Markovian jump
linear systems. Systems & Control Letters, 50(2):103–118, 2003.

D. Zimmer and M. Otter. Real-time models for wheels and tyres in an object-
oriented modelling framework. Vehicle System Dynamics, 48(2):189–216,
2010. doi: 10.1080/00423110802687596.

151

	Introduction and background
	Dynamic modelling and simulation
	Modelling and simulation technologies
	General concepts
	A brief overview of current tools
	A brief review of modelling languages and paradigms

	The life cycle of a simulation model
	The enabling power of simplification
	Motivation and contributions of the thesis

	Related Work and Problem Statement
	Literature review
	The Modelica compilation and simulation process
	The manipulation toolchain: a novel view
	Alternatives Approaches
	A Brief Comparison
	``Simpler models'' from the modeller viewpoint

	Model simplification from a general viewpoint
	Terminology and preliminary definitions

	Dynamic Decoupling
	Introduction
	Dynamic decoupling
	Cycle analysis
	Preliminaries and definitions
	The analysis technique
	A possible analysis implementation
	Cycle analysis and eigenvalue analysis

	Separability indices
	Separability analysis
	Exploiting the partition

	Mixed-mode integration
	Exploiting by integration methods
	Exploiting by simulation architecture

	Application-oriented remarks

	Dynamic Decoupling: simulation examples
	DC motor
	Mechanical system with brake
	Triangle of masses
	Counterflow heat exchanger
	Power supply with electric loads
	Discussion

	Model Order Reduction for Hybrid Systems
	Balanced truncation for linear systems: a brief review
	Modeling framework
	System reduction
	Reformulation of the SA system as a SL system with state reset
	Reduction of the SL system
	Reconstruction of the SA system output

	A randomised method for model order selection
	A numerical example
	Model description
	The switching control policy
	The considered system
	Proposed model reduction method
	Discussion

	Concluding remarks

	Model manipulation toolchain
	The manipulation process
	Advantages and disadvantages of EOO languages
	The technological solution: Functional Mockup Interface
	An example toolchain implementation
	A Unifying Manipulation Toolchain

	Conclusion and open problems
	Open problems
	Future work

	Additional Examples on Dynamic Decoupling
	Automotive suspension
	Double-mass, triple spring-damper
	A small smart grid

	Bibliography

