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Abstract— Cloud computing has dramatically simplified
the deployment of new software and, indeed, the number of
applications that are hosted by cloud providers every day is
increasing. The data center owner should provide computing
capacity to a set of customers, each of them powering up
and down virtual machines dynamically, to handle variations
in the incoming requests. Cloud providers, however, should
also optimize for quantities like energy consumption and
managements costs, therefore trying to host all the customers
virtual machines with the fewest amount of physical hardware
machines possible. This leads to virtual machine co-location
and potential performance inefficiency. To limit the inefficiency,
virtual machines are migrated from one physical machine to
another when overload conditions are detected. This paper
analyzes the problem of virtual machine migration and
presents some heuristic solutions to decide when to migrate
a virtual machine from a physical machine to a different
one. Experimental results show the differences between the
proposed heuristics, providing a basis for a fair comparison
among the techniques.

Keywords: Cloud Computing, Virtual Machine Migration,
Systems’ Theory.

I. INTRODUCTION

The massive introduction of virtualization contributed to
the success of computation paradigms like cloud computing.
Data centers use virtualization and host a set of Virtual
Machines (VMs) onto a set of Physical Machines (PMs)
providing efficient resource utilization. Efficient resource
utilization has been one of the main drivers during the data
center evolution. Using a data center, one can reduce the
hardware and operational costs [8] and also take into account
energy consumption and environmental concerns [14], [17].

The entire idea of a data center is based on two main
concepts: virtualization [2] and migration [7]. VMs can be
moved from one PM to another, for example in order to turn
off the source PM and save energy. In general, migration is a
useful tool for administrators of data centers and clusters. A
VM migration is transparent to the applications and modern
virtualization technology invariantly support it [7], [21], [26].
It allows a clean separation between hardware and software,
and facilitates fault management, load balancing, and low-
level system maintenance. Moreover, it enables efficient
resource utilization. Migration, however, comes at the cost of
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packaging the data for the VM to be migrated and sending
it on the network from the source PM to the destination
machine. This might be problematic if there are bandwidth
limitations (both for LANs and WANs) in the data center [25]
and can result in temporary unavailabilities due to migration
latency [18].

Another known problem with VM migration comes from
the necessary detection of workload hotspots, that should
be the migration initiator. Due to this difficulty, initiating
a migration was initially a manual task [26]. Manually-
initiated migration lacked the necessary reactivity to respond
to sudden workload changes and was error-prone, since each
reshuffle might require migrations or swaps of multiple VMs
to re-balance system load. For these reasons in the last
years, industrial and academic researchers focused on how
to improve and automatize the process of migrating VMs in
data centers and clusters [10], [12], [15], [20].

The problem of VM migration is indeed a decision-
making problem. Based on some feedback received from the
data center, a policy should decide when, how, and which
VMs have to be migrated, depending on different objectives
— e.g., consolidating load onto fewer PMs, balancing the
load on the active PMs, maintaining the quality of service
promised to the users and much more. Splitting the prob-
lem in the three separate components, the how question
has been effectively addressed with different live migration
techniques [7], [18], [23], such as pre-copy [7], [11] and post-
copy [13]. Based on the solution of this technological prob-
lem, and on the (realistic) assumption that the technology to
perform live migration is available, it is possible to address
the questions of when to migrate and which VM should be
migrated. This is indeed a control problem, the technology
provides an actuator (live migration) that can be used to
satisfy the goals of the data center owner. There are many
potential formulations of this problem, based on different
modeling techniques like queuing network, equations, or
Markov models. Also, there are many potential objectives,
the most relevant two being energy savings and load balanc-
ing. Given these two remarks, the potential solutions for this
control problem are many. This paper investigates some of
these solutions for the load-balancing problem and compare
the results obtained with them by means of simulating the
execution of the migration manager in the same conditions,
in a simulation environment.

The remaining of this paper is organized as follows.
Section II describes some of the main techniques that are cur-
rently used to solve the VM migration problem. Section III
provides a precise formalization of the problem and of the



proposed migration manager, together with some migration
policies. Section IV presents the obtained simulation results,
and Section V concludes the paper.

II. RELATED WORK

Many reasons motivate the use of migration in modern
data center. One of the most prominent reasons is server
consolidation, where the objective is to pack the load on the
least possible amount of PMs that would still ensure some
performance characteristics. Most of the existing migration
strategies for server consolidation rely on eager migrations,
that try to minimize the amount of PMs turned on. VMs
that have been assigned the same PM end up sharing the
resources according to different models [10] and having
problems due to co-location [19].

In [9], the authors proposed a Linear Programming (LP)
formulation and heuristics to control the VM migration. The
approach prioritizes VMs with steady capacity, and aims at
minimizing the number of PMs required to host a group of
VMs. The server consolidation problem can be mapped to
the multidimensional bin-packing problem [16], just by con-
sidering each VM as an item, the dimensions as the required
capacities, and the goal is to minimize the PMs hosting the
VMs, while respecting the physical capacities. This problem
is NP-complete and was addressed both through LP and
various heuristics. Another notable approach is based on an
exponentially weighted moving average prediction model of
the workload [27], and on the introduction of a quantity that
is aimed at quantifying the unevenness in the utilization of
multiple resources on a server, i.e., the skewness. Minimizing
the skewness can improve the overall utilization of servers
in the face of multidimensional resource constraints. In [3],
the authors propose novel adaptive heuristics for dynamic
consolidation of VMs based on an analysis of historical data
from the resource usage by VMs. The algorithms proposed
therein were proven to reduce energy consumption, while
ensuring a high level of adherence to prescribed service level
agreements.

All these solutions tend to co-locate many of the VMs by
construction and to generate unnecessary migrations when
VMs are subject to unpredictable workloads. Other tech-
niques look at the number of PMs as a fixed given quantity
and try to balance the load on the amount of machines that
are turned on [1], [4]–[6], [22]. These are mainly heuristics
that try to optimize different objectives, possibly conflict-
ing [22]. These techniques may focus on a stream of deploy
and undeploy requests [4], or be based on different tools, like
Markov Decision Processes [5] or their extensions [6], and
greedy strategies [1]. We advocate that different solutions
should be compared, and therefore propose a comparison of
some strategies to handle migrations.

III. MIGRATION MANAGER

A. Terminology

The problem addressed in this paper is the placement
of a set V = {v1,v2, . . . ,vnv} of nv VMs on a set P =

{p1, p2, . . . , pnp} of np PMs. In the following, k ∈ N repre-
sents the discrete time, and it counts the time instants when
the migration manager can take a decision.

Definition 1 (Location function): The location function is
a map L : N×V×P→{0,1} that, for a given discrete time
instant k ∈N, gives 1 if the VM v ∈V is running on the PM
p ∈ P, 0 otherwise. The location function is such that

∑
p∈P

L(k,v, p) = 1, ∀k ∈ N,∀v ∈ V (1)

0≤∑
v∈V

L(k,v, p)≤ nv, ∀k ∈ N,∀p ∈ P (2)

where (1) means that each VM must run on exactly one PM,
and (2) indicates that a PM can be either empty (no VM is
running on it), or can run different VMs.

Definition 2 (Virtual Machine): A Virtual Machine v ∈ V
is a collection v = (pv, `

◦
v , `v,m◦v ,mv,µv,πv), where

• pv ∈ P is the PM on which the VM is running.
• `◦v ∈ R is the nominal CPU demand of the VM when

running on pv.
• `v(·) : N→ R is the actual CPU demand of the VM

at time k; this quantity is time varying and depends
on what is happening inside the VM. This quantity is
bounded as

0≤ `v(k)≤ `◦v , ∀k ∈ N. (3)

• m◦v ∈ R is the nominal memory required by the VM
(here expressed in GB).

• mv(·) : N→ R is the actual memory occupied by the
VM (here expressed in GB).

• µv(·) : N→N is the number of migrations that the VM
has experienced, as a function of the discrete time.

• πv ∈Π = {GOLD,SILVER,BRONZE,BASIC} is the ser-
vice plan that the customer associated with the VM.

Without loss of generality we assume that `◦v , m◦v , and πv do
not vary over time. In case a customer wants to upgrade one
of the VMs he owns, adding some cores to it, increasing the
required memory, or upgrade the service plan, a new machine
is generated and the previous one is removed. Notice that the
ideas presented in this paper apply also to the case when less
or more service plans Π are defined.

A VM is here also characterized by the actual load `v(k)
and memory mv(k) utilization. VMs are usually configured
during creation with a specific amount of required resources,
but at runtime the actual utilization is less than required one.
This fact has been exploited in [24] with an overbooking
approach, i.e., they allocate the VMs according to their actual
resources request, with the assumption that the VMs’ size
will be usually less than the nominal one. In this paper we
adopt the same idea.

Definition 3 (Nominal volume): Similarly to what has
been done in [26], one can define the nominal volume of
a VM v ∈ V as

V ◦v := `◦v ·m◦v . (4)



Definition 4 (Actual volume): The actual volume of a VM
v ∈ V is

Vv(k) := `v(k) ·mv(k). (5)

Definitions 3 and 4 give a synthetic information on the
resource utilization of a VM and are here used in the
migration policies. Notice that the definitions of nominal and
actual volumes can be easily generalized to the case where
more resources are considered in the problem.

Definition 5 (Physical Machine): A Physical Machine
p ∈ P is a collection p = (cp, fp,Mp,λp), where

• cp ∈ R is the number of cores associated with the PM.
• fp ∈ R is the frequency of the cores of the PM.
• Mp ∈ R is the memory of the PM (here expressed in

GB).
• λp(·) : N→ R is the physical load, i.e., the sum of the

loads that all the VMs hosted on the PM demand at a
given time. It can be defined as

λp(k) := ∑
v∈V

L(k,v, p)`v(k). (6)

For the sake of simplicity, and without loss of generality,
in the rest of the paper we consider homogeneous PMs, i.e.,
all the cores with the same frequency. If this is not true, one
can simply normalize the number of cores to the frequency of
the slowest machine in the data center with a scaling factor

σ = max
p∈P

f−1
p .

Let us consider an example of non-homogeneous ma-
chines. Assume that we have two PMs, p1 and p2, and
that p1 has 16 cores running at f1 = 4.5GHz and p2 has
8 cores running at f2 = 2.5GHz. Then, the scaling factor
is σ = 1/2.5GHz = 0.4ns. Then one obtain the equivalent
number of cores for p1 as cp1 = 16 · f1σ = 28.8; obviously,
for p2, we have that cp2 = 8 · f2σ = 8.

Sticking to the non-homogeneous machines example, the
nominal CPU demand becomes a function of the PM on
which v is running, i.e., `◦v = `◦v(pv). Thus, if the customer
requires two cores, on p2 the nominal CPU demand would be
`◦v(p2)= 2, while on p1 it would become `◦v(p1)= 2/( f1σ)=
1.11.

Analogously to the VM case, one can define the volume
of a PM p ∈ P as

Wp = cpσ fpMp. (7)

Definitions 6 and 7 directly follow from (7), and the
quantities above.

Definition 6 (Nominal available volume): The nominal
available volume NAWp of p ∈ P is the nominal residual
capacity in the physical machine, and it can be computed as

NAWp(k) =Wp−∑
v∈V

L(k,v, p)V ◦v (8)

p1

m◦
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Fig. 1: Illustration of terminology.

Definition 7 (Actual available volume): The actual avail-
able volume NAWp of p ∈ P is the actual residual capacity
in the physical machine, and it can be computed as

AAWp(k) =Wp−∑
v∈V

L(k,v, p)Vv(k) (9)

Figure 1 shows a graphical representation of the presented
quantities at time k. In this case, there are 2 PMs, P =
{p1, p2}, hosting 4 VMs, V = {v1,v2,v3,v4}. The first PM
is loaded with a GOLD and a SILVER VMs, respectively v1
and v2. v1 has a nominal CPU demand of 4 cores, but is
using only 3.5 of them at time k, and has a nominal memory
of 8GB, but using only 6GB at time k. Its nominal volume
is V ◦1 = 32, while its actual volume is V1(k) = 21. It has also
been migrated twice since the staring time. v2 has a nominal
demand of 4 cores but it is using only 1.3 of them at time k
and a nominal memory of 8GB, but using only 4GB at time
k. Its nominal volume is V ◦2 = 32, and its actual volume is
V2(k) = 5.2. It has already been migrated 10 times. While
p1 has only 4 cores, the two machines are co-located, and
interfering with each other. The volume of p1 is W1 = 32, and
the total demand λ1 is equal to 4.8. The nominal available
volume is NAWp1 =−32, and its actual available volume is
AAWp1 = 5.9. The two machines are therefore sharing some
of the computing capacity and not obtaining the amount that
they are requiring at time k, but the actual utilization of the
VMs is still sufficiently low to be hosted by p1. Similar
considerations hold for the second PM p2.

B. Load monitor

To identify and avoid overload situations – also called
hotspots in [26] – one can define overload indexes for the
PMs belonging to the data center. We propose to migrate



VMs based on the observation of overload indexes. For a
given PM p ∈ P, we define the integrated overload index
IOIp(k). It represents the integral of the weighted fraction of
load that exceeds a prescribed maximum capacity λ p(k) on
each PM. Denoting with x+ the positive part of the number
x, and with ∆k the continuous time elapsed from the last
intervention, formally one can write it as follows.

ep(k) =
λp(k)−λ p(k)

λp(k)
(10)

IOIp(k) =
k

∑
i=1

[ep(i−1)]+ ·∆k (11)

Notice that if the PM p is not fully loaded the positive part
of ep is equal to zero and the index does not increase. The
presence of a threshold per each PM, λ p(k) allows the data
center owner to distinguish between machines that should
be more loaded and others that should have more spare
capacity, for example because they are hosting gold VMs and
must provide a prescribed quality of service. If a migration
occurs from source p at time k, the integrated overload index
IOIp(k) is reset to zero. If the PM is still overloaded, its IOI
will tend to grow, while if the migration solved the overload
problem, the index will remain zero until a new overload
condition occurs.

Apparently, the choice of λ p(k) affects the number of
overload detections. A wrong choice of λ p(k) would lead
to an unnecessary number of migrations, thus to bad perfor-
mance. In the following we are describing a simple technique
able to adapt its value to the actual load present on the PMs,
aimed at spreading the load across the data center.

On the basis of the chosen overload index, one must set
a threshold OIp ∈ R+. Once the threshold is hit by the
chosen overload index, an overload situation is detected, and
a migration is needed. Thus, the migration manager needs to
decide which is the VM to migrate and where to migrate it.

The choice of the threshold OIp decides for how much
time the PM can stand an overload situation. The lower the
OIp, the more reactive the system is to detect the need of
a migration. The higher the OIp, the fewer migrations will
occur.

C. Proposed policies

We use the described load monitor to understand when one
should intervene, migrating a VM. The migration manager
needs to select three different objects: the source PM, the VM
to be migrated, and the destination PM. Ideally, the selection
should be done so that the migration results in a reduction
(and possibly in the complete recovery) of the overload. A
migration is therefore identified by the tuple M = (k,s,w,d),
where k ∈ N is the time index of the migration, s ∈ P is the
source PM, w ∈ V is the VM to be migrated and d ∈ P is
the destination PM.

We propose four different policies.
a) Random: For the first policy, we set the relocation

threshold OIp for p ∈ P as OIp = 1.1 · cp. If at time k at
least one of the overload indexes IOIp(k) is greater than

the corresponding threshold, we perform a migration. The
migration manager selects a random PM s among the set of
PMs where IOIp(k) > OIp as the migration source. It also
randomly selects w among the VMs currently hosted on s to
be migrated. The destination PM d ∈ P\{s}, is the PM that
has less load.

d = argmin
p∈P\{s}

λp(k) (12)

Notice that this is not supposed to be fair, since less load
does not mean more spare capacity. In the case where all
the PMs have equal capacity, this policy is supposed to be
non-optimized but fair, while in the heterogeneous case, not
only the solution is non-optimized, but also fairness is not
guaranteed.

b) Volume-aware (VA): As a second policy, we take
into account the PMs’ actual volume. As done for the random
policy, we use the relocation threshold OIp and randomly
select a source PM s among those that satisfy the condition
IOIp(k) > OIp. For each PM p we select the couple (w,d)
so that

(w,d) = argmax
v∈V,p∈P\{s}

(AAWp(k)−L(k,v,s) ·Vv(k)) (13)

This means that the policy selects the VM that is filling the
biggest gap among the ones that could possibly be migrated.
This policy is supposed to exploit the information about the
heterogeneity of the PMs and be more fair with respect to
the additional load they can stand.

c) Volume-aware with setpoint normalization (VAx):
As a third policy we discuss an extension of the second
one. We compute the migration as in (13) but we try to
equalize the load. For this, we consider a time varying
setpoint λ p,varying(k) and we update the setpoint every x time
steps using a padding q and encouraging each PM to host the
average load times a padding constant, which for example
could be set as q = 1.1.

λ p,varying(k) =q · 1
np
·∑

i∈P
λi(k). (14)

This is supposed to work very well in homogeneous data cen-
ter, where the load should be equalized among the different
PMs. Alternatively, one can normalize the setpoints taking
into account the heterogeneity of the data center, therefore
substituting (14) with the following.

λ p,varying(k) = q · cp

∑ j∈P c j
·∑

i∈P
λi(k). (15)

d) Migration likelihood with setpoint normalization
(MLx): In this fourth strategy, we select all the VMs hosted
on PMs that are currently overloaded computing the set of
VMs that could possibly be migrated Vm. We denote with
Pm the set of overloaded PMs, which is the set of PMs that
satisfy IOIp(k)> OIp. We select the VM to be migrated and
the source PM by computing

(w,s) = argmin
v∈Vm,p∈Pm

(L(k,v, p)Vv(k)+AAWp(k))
−ψπv

+ψπv ·µv(k)

(16)



where ψπv is a constant depending on the VM plan. We use
2 for a GOLD VM, 1.5 for a SILVER VM, 1.2 for a BRONZE
and 1 for a BASIC one. The idea is that we select the machine
trying to minimize the distance between the volume freed on
the corresponding PM that would make PM non-overloaded.
At the same time we penalize having too many migrations
and the choice of machines that have more expensive plans.
The destination d is selected as the one having higher spare
volume, i.e.,

d = argmax
p∈P\{s}

AAWp(k). (17)

D. Reference policy

In Section IV the policies presented above are compared
with the migration policy proposed in [26], i.e., Sandpiper.
In Sandpiper, an overload is flagged if at least κ out the n
most recent observations and the next predicted value exceed
a threshold. The prediction is performed using a one-step-
ahead predictor of an AR(n), i.e., autoregressive model of
n-th order. In [26] it is suggested to select κ = 3 and n = 5,
and a CPU utilization threshold for a PM of λ p = 0.75cp.

Then, in [26] the volume of a VM v ∈ V is defined as

V Sand piper
v :=

1
1−%`◦v

· 1
1−%m◦v

(18)

where %`◦v and %m◦v are respectively the percentage of
requested load and memory with respect to the PM on which
v is running. Analogously, the volume of a PM p ∈ P is
defined as

W Sand piper
p =

cp

cp−∑v∈V L(k,v, p)`◦v
· Mp

Mp−∑v∈V L(k,v, p)m◦v
(19)

The authors also define the volume-to-size ratio (VSR) of a
VM as the ratio between the volume of v and its memory
requirement m◦v .

Whenever a migration is detected in a PM p ∈ P the
following steps are performed.

1) The VMs in p are ordered by decreasing VSR.
2) The VM with the highest VSR is migrated to the

least loaded PM, i.e., the PM with the least value of
W Sand piper

p .
3) If the least loaded PM does not fit the selected VM,

then the next least loaded PM is considered.
4) If no match is found for the selected VM, the next VM

with the highest VSR is considered.
The described procedure is performed for all the PMs that
are overloaded in the system.

IV. RESULTS

To produce comparable results, we implemented a sim-
ulator where we can execute the proposed policies on the
same case study. The simulator is available as open source
software1 and can be reused by other researchers to compare
their own policies on the same scenarios. All the sources of
randomness in the simulator have been customized so as to
produce the same sequence for the same experiment. Here we

1https://github.com/cloud-control/vm-migration-sim

briefly describe our comparison indexes and then we discuss
our experimental results.

A. Comparison indexes

In order to assess the quality of the proposed techniques,
we here consider some indexes accounting for different
aspects.

1) First of all we consider the Integral Square Error (ISE)
of overload over a finite horizon T , which is defined as

ISE = max
p∈P

T

∑
k=0

((
λp(k)−λ p(k)

)+
)2

∆k. (20)

2) Then, we consider the number of migrations per VM
µv, v ∈ V. In particular we are going to analyze the
Empirical Cumulative Distribution Functionss (ECDFs)
of µv for all v ∈ V.

3) Another aspect that must be taken into account is
the inter-arrival migration time for a single VM τv,
v ∈ V, i.e., the time elapsed between two subsequent
migrations of a VM. Migrating a VM too often is
very costly in terms of performance, and too frequent
migrations leave few time to the VM to deliver its
service. Thus, low values of τv should be avoided. For
the sake of simplicity, we here show only the inter-
arrival migration time of the VM that has the highest
µ , i.e., that has been migrated the most.

B. Experimental results

In the following we present two case studies. The first one
is a small size data center, while the second one is a larger
one. The small data center models a private cloud, hosting
only a few services. The larger data center models a large
company facility.

1) Small data center: The small data center is composed
of a set of three PMs, P= {p1, p2, p3}, each of them having
8 cores and 8GB of memory, and have a frequency of 2GHz.
On top of these three PMs, eight VMs are deployed. The first
two VMs, v1 and v2 have a GOLD plan, three VMs, v3, v4
and v5 have a SILVER plan, while the remaining three v6, v7
and v8 have a BASIC plan. The nominal loads are defined as
follows: `◦1 = 4, `◦2 = 2, `◦3 = 4, `◦4 = 3, `◦5 = 2, `◦6 = 6, `◦7 = 2,
`◦8 = 2. The VMs have similar memory demands: for each
VM v ∈ V, m◦v = 1GB. At the beginning of the simulation,
all the VMs are deployed on p1. The data center is simulated
for 10000 steps.

During the simulation, we assume that each VM v de-
mands a varying amount of CPU and memory, that are nor-
mally distributed with average equal respectively to 0.75 · `◦v
and 0.75 ·m◦ and standard deviation equal 0.25.

Figure 2 shows the ISE obtained with the different mi-
gration strategies, as defined by (20). As can be seen, the
introduced policies achieve a lower ISE value with respect to
the reference algorithm (Sandpiper). The policy that achieves
the lower ISE is the volume-aware with setpoint normaliza-
tion, where the normalization is performed every five steps
(VA5). The migration likelihood with setpoint normalization
every five steps (ML5) strategy and the volume-aware policy
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without normalization (VA) achieve a low ISE compared to
the Random policy and Sandpiper.

Figure 3 shows the ECDFs of the number of migrations
µv for each v ∈ V — lines represent the probability that
the corresponding VM was migrated less than or equal to
a certain amount of times (on the x-axis). The VMs with a
GOLD plan are represented with yellow lines, the SILVER
with gray lines and the BASIC with red lines. While the
Random and the VA policies treat all VMs equally, the ML
policy distinguishes between different plans, migrating the
GOLD and SILVER VMs less than the BASIC ones. While
this is a desirable property, it should also be noted that the
number of total migrations increases due to the additional
requirement of plan differentiation. The plot of the ECDFs
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Fig. 4: Box plot of the distribution of inter-arrival migration
times.

of Sandpiper shows that the number of migrations performed
with this technique exceeds very much the numbers obtained
with the proposed techniques. Moreover, two VMs are con-
tinuously migrated, a GOLD and a BASIC one, while the
others experience a lower number of migrations.

Finally, Figure 4 shows the box plots of the inter-arrival
migration times of the VM that was migrated the most during
the simulation for each of the considered algorithms. Higher
values of the inter-arrival time are preferable, while lower
values indicate that the VM was migrated too frequently.
Sandpiper is the algorithm that shows the worst performance,
while VA5 has the best distribution of inter-arrival times.

2) Large data center: For the second experiment we
model a public cloud provider infrastructure. The data center
is composed of 150 homogeneous PMs, each having 16
cores, 8GB of memory, and a frequency of 2GHz. We deploy
400 VMs, of which 30 have a GOLD plan with a CPU
demand of `◦g = 2, g ∈ {1, . . . ,30}, 70 have a SILVER plan
with `◦s = 1, s∈ {31, . . . ,100}, 100 have a BRONZE plan with
`◦b = 6, b ∈ {101, . . . ,200}, and 200 have a BASIC plan with
`◦r = 8, r ∈ {201, . . . ,400}. The VMs have similar memory
demands: for each VM v ∈ V, m◦v = 1GB. At the beginning
of the simulation, the VMs are uniformly random distributed
among the PMs. The data center is simulated for 10000 steps.

Figure 5 shows the ISE for the large data center experi-
ment. The introduced policies achieve comparable values of
ISE with respect to Sandpiper, with the exception of ML
which performs worse. As for the number of migrations,
however, VA and VA5 show remarkable improvements (see
Figure 6). On the other hand, none of the proposed policies
distinguishes between the different kind of plans, except for
ML5.
Finally, Figure 7 shows the box plots of the inter-arrival
migration times, confirming that VA and VA5 behave better
than the other algorithms, migrating VMs less frequently.

V. CONCLUSION AND FUTURE WORK

VM migration is an important problem in modern data
centers and the migration strategy greatly affects the data
center performance. Migrations can be performed to optimize
the behavior of the data center in many different dimensions.
A possibility is to compact the load as much as possible to
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Fig. 6: ECDFs of the number of migrations for each VM for
the large data center.

turn off the greatest amount of PMs possible. Another option
is to equalize the load among the different PMs, to reject
external disturbances in the best possible way. In this paper,
we defined some policies that can be used for load balancing
and compared them to one of the most known migration
policies, Sandpiper, by means of a simulator. Our simulation
results show that it is possible to define policies that behave
better with respect to some optimization criteria (avoid the
migration of VMs that were purchased with expensive plans,
or follow a balancing setpoint).

In the future, we plan to extend the set of policies,
introducing a policy specially designed for consolidation to
enable the possibility of switching between different stages:
Once the migration manager has figured out the number of
PMs that are needed to serve a specific load, it is possible
to switch to one of the load-balancing policies defined in
this paper. We also plan to implement the proposed policies
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Fig. 7: Box plot of the distribution of inter-arrival migration
times for the large data center.

in a cloud environment and test them in a private cloud
infrastructure.
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[23] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth. Evaluation of delta
compression techniques for efficient live migration of large virtual
machines. SIGPLAN Not., 46(7):111–120, Mar. 2011.

[24] L. Tomás and J. Tordsson. Improving cloud infrastructure utilization
through overbooking. In Proceedings of the 2013 ACM Cloud and
Autonomic Computing Conference, CAC ’13, pages 5:1–5:10, New
York, NY, USA, 2013. ACM.

[25] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe.
CloudNet: Dynamic pooling of cloud resources by live WAN migration
of virtual machines. SIGPLAN Not., 46(7):121–132, Mar. 2011.

[26] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box
and gray-box strategies for virtual machine migration. In Proceedings
of the 4th USENIX Conference on Networked Systems Design &
Implementation, volume 7 of NSDI, pages 229–242, 2007.

[27] Z. Xiao, W. Song, and Q. Chen. Dynamic resource allocation using
virtual machines for cloud computing environment. Parallel and
Distributed Systems, IEEE Transactions on, 24(6):1107–1117, June
2013.


