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Abstract
Modelling and simulation nowadays permeate virtually any engineering activity, requiring tools
capable of managing complex models efficiently. Nonetheless, whereas modern modelling languages
and tools allow to construct such models even on lightweight platforms (e.g., a laptop), the same
is not true when it comes to numerically integrate those models. For the latter purpose, mod-
ellers usually pursue efficiency by resorting to approximation and reduction techniques. However,
such techniques are unnatural to include in modelling and simulation tools. This is particularly
true with object-oriented ones, which on the other hand are the most interesting for dealing with
complexity from the model construction viewpoint. This paper presents a novel approximation
technique that can be easily included in modelling and simulation tools, and relates the proposal to
literature alternatives so as to evidence its peculiarities. An extended manipulation toolchain is also
proposed, allowing for the introduction of other (classical) efficiency-targeted approximation tech-
niques, within a unified framework. Some application examples illustrate the achieved advantages
and motivate the major design choices from an operational viewpoint.
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1 Introduction and motivation

Nowadays, the availability of powerful and flexible model creation, maintenance, and simulation
tools, is very important at virtually any stage of engineering projects. Even more important is
however the integration of all the mentioned activities in a unified toolchain, allowing the engineer
to take full profit of them without undue overheads, as witnessed by the interest in the emerging
field of Modelling and Simulation (M&S) [1].
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Modern M&S toolchains already take care of the transition between a model expressed, e.g.,
in terms of equations, and the code needed for its simulation. However, the evolution itself of
modelling tools is at present resulting in challenges for simulation ones. In fact, it is now possible
to construct very complex models on lightweight platforms, like a laptop, but the simulation of
those models on the same platform may prove too demanding, unless some “optimisation” (the
reason for the quotes will emerge soon) is introduced in the equations-to-code path. In other words,
computational resources often become the bottleneck of engineering M&S tools, so that making
toolchains capable of transparently obtaining an efficient numerical integration of complex models,
is a key issue.

Quite often, simulation efficiency is obtained by introducing suitable approximations (in the
broadest sense of the term), which is precisely what available M&S toolchains do not allow [2].
This paper is part of a long-term research aimed at filling this gap.

The presented work refers to the context of Equation-based Object-Oriented (EOO) M&S tools,
where the gap appears with particular evidence, for (at least) two main reasons. A first intuitive
one is that in EOO languages managing model complexity at the component level has practically
no cost, thereby exacerbating the possible computational bottleneck. A second and more subtle
reason is that many approximation techniques aimed at numerical efficiency are based on structural
properties of the complete model, not of its components, while the EOO paradigm explicitly relies
on the idea of writing the component models independently of how they will be connected. More
specifically, this paper addresses a particularly effective approximation technique aimed at simu-
lation efficiency, namely the Dynamic Decoupling (DD) one, and its integration in a typical EOO
M&S toolchain.

The rest of the paper is organised as follows. Section 2 reports a brief review of related work,
to contextualise the presented research and evidence the proposed advances. Section 3 describes a
technique to analyse a model in Differential and Algebraic Equation (DAE) form, so as to evidence
the time scales of its dynamics, in both the linear and the nonlinear case, providing the engineer with
easily interpreted information for clustering said time scales in a view to possibly partitioning the
model for the numerical integration phase. That information takes the form of some suitably defined
separability indices, to which Section 4 is devoted. Section 5 then deals with how such partitions
can be exploited with different simulation technologies. Section 6 illustrates how the presented
functionalities can be integrated in a typical EOO M&S toolchain, referring to a Modelica translator
as a representative case. Some application examples are reported in Section 7, while Section 8 draws
some conclusions and sketches out future research developments.

2 Related work and contribution

To contextualise DD in the field efficiency-targeted approximation techniques, with specific emphasis
on their applicability and convenience in EOO M&S tools, we start with a few general remarks on
the typical M&S toolchain, thereby also motivating some statements of Section 1.

Referring to Figure 1, the EOO chain of operations, from component equations to simulation
code, can be broadly divided into two parts. The first one, which we call acting on the continuous-
time equations, transforms the DAE system coming from the flattening phase – in which all the
equations of the single components are collected in a single monolithic system according to the
connections specified by the modeller – into a causal ODE one. This can be done without altering
the equations’ semantic, with techniques such as the Tarjan algorithm, alias elimination, index
reduction, and so forth [3]. It can also be done by accepting some semantic alteration in exchange
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Figure 1: The typical EOO M&S toolchain.

for an efficiency improvement, the major techniques being Model Order Reduction (MOR) [4] or
scenario-based [5] approximations.

The second part of the EOO toolchain, which we call acting on the discrete-time solution,
consists of taking the ODE model as the basis to generate routines that linked to the numeric
solver of choice, result in the simulation code. Assuming that this is done “correctly”, i.e., preserving
numerical stability, here too two ways of operating can be distinguished. The first does not alter the
solution semantic, and the chosen discretisation method is applied as is: thus, errors in the solution
only come from the inherent “imperfection” of that method. The second way conversely alters
the semantic of the discrete-time system, by deliberately deviating from the natural application
of the discretisation method. Notice that most of the co-simulation techniques fall in this class
naturally [6, 7].

In this work we concentrate on this last type of operation, where a technique of election is DD [8,
9]. For the purpose of this section, suffice to say that DD aims at partitioning the monolithic system
into submodels, based on a time-scale separation. The method is a computational approximation
of the original system that makes the submodels mutually independent within an integration step,
by exploiting structural properties of the system. This allows good performance improvements,
especially in some specific context, e.g., process control [8] or multibody system dynamics [10]. The
method is particularly of interest – as will be detailed better in Section 3 – because it can be divided
into two well separated phases: an analysis part performed on the overall model, and a simulation
part that can either be monolithic, or make use of co-simulation.

2.1 Alternative Approaches

To motivate our focus on DD, we now briefly consider the major possible alternatives. As already
stated, among the techniques that act on the continuous-time equations, MOR ones are the most
adopted, and there exists a vast literature on the matter. MOR is based on the idea of approximating
a certain part of a high-dimensional state space of the original system with a lower-dimensional
space, performing a projection. Roughly speaking, the main differences among MOR techniques
come from the way this projection is performed. Most techniques have been developed for linear
systems [4], and this hampers their application to the typical engineering EOO models, that are
often both high-dimensional and nonlinear.

In the literature, some extension to the nonlinear case are present, e.g., based on linearisation
or Taylor expansion [11], or bilinearisation [12], as well as functional Volterra series expansion [13],
followed by a suitable projection. Other interesting extensions are those based on Proper Orthog-
onal Decomposition (POD), that produce approximate truncated balanced realisations [14], often
exploiting POD to find empirical [15] and (for switched systems) generalized [16] gramians. How-
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ever, for the former extension, practical implementations typically stick to quadratic expansions,
limiting simplification capabilities. As for the latter, the cost of evaluating the projected nonlinear
operator is often very high, reducing computational performance.

Recently, works specifically dealing with the reduction of EOO model appeared [5, 17]. The main
idea is that one can define some operation to be performed on the nonlinear system, e.g., neglect a
“term”, linearise a part of the model, and so on, and use some ranking metrics to identify a priori the
“best” (single) such manipulation that can be done. Apparently, the limit of this approach is that
ranking all the possible manipulation combinations is not feasible. Moreover, there is no guarantee
that performing the manipulations in the ranked order will bring to any optimum. Another problem
is the high cost of generating the reduced order models, due to necessity of computing “snapshots”
in the time domain, which in turn requires many simulations of the original nonlinear system.
Furthermore, this approach is scenario-based, i.e., the simplified model is guaranteed to be good
only for a set of initial conditions, a set of inputs, and a time span. If the scenario is changed, the
overall manipulation must be performed again.

A last interesting approach – related to the basic idea of DD – is the one of Transmission
Line Modelling (TLM) [18]. The basic idea of TLM is to model a system so that components
can be somehow numerically isolated, and each can solve its own equations independently. This is
achieved by replacing capacitive components (e.g., volumes in hydraulic systems) with transmission
line elements with a propagation time corresponding to one simulation time step. At the cost of
some internal delays, the result is a physically accurate description of wave propagation in the
system. However, the analyst has to deliberately act on the model, based on his/her intuition. This
work conversely aims at having decoupling emerge from an automated analysis of the model.

2.2 A Brief Comparison

Based on the previous discussion, we now point out the advantages of the proposed technique with
respect to the analysed alternatives. In comparison with MOR, our proposal does not alter the
state vector, nor does it involve base changes in the state space. Also, instead of attempting to
simplify the model in a view to monolithic solution, we go exactly in the opposite direction, as the
model is not reduced but partitioned, allowing for parallel simulation. This can in turn be exploited
in two ways. One is to ease a monolithic solution, in some sense adapting the model to the used
(single solver) architecture. The other is to conversely tailor the solution architecture to the model
as analysed and partitioned by the method ; this can be used to fruitfully employ parallel simulation,
or even co-simulation. Finally, the proposed method is naturally keen to be applied in a nonlinear
context.

With respect to scenario-based approximations, the most computing-intensive part of the pro-
posal (as will be explained later on) is simply not scenario-based: information related to the con-
sidered scenarii come into play only at a later stage, and this separation results in lightening the
computing effort. Furthermore, the proposal does not alter the model equations, thus being less
exposed to the possible unpredictable effects of local modifications at the overall system level.

3 Cycle analysis

Modern EOO M&S tools typically start from a DAE system, and transform it into an ODE one [3].
Notice that it is not necessary to have the ODE system in a symbolic form, yet the numerical
Jacobian is sufficient for performing the overall analysis. This allows to handle both the cases in
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which semi-explicit DAE are the result of the symbolic manipulations, and the cases in which only
a numerical description of the model is available, e.g., thermo-hydraulic systems using steam tables.
Therefore, we can consider as our starting point, without loss of generality, the generic ODE system

ẋCT (t) = f(xCT (t),uCT (t)) (1)

where xCT ∈ R
nCT is the state vector, and uCT ∈ R

mCT the input vector. The core idea of Cycle
Analysis (CA) is to obtain from the discretisation of (1) a directed graph representing the mutual
influence among the state variables along the integration steps, and then to compute quantities
that generalise – details follow – the idea of “time constants” for the linear case.

The mentioned discretisation of (1) can be done with any explicit, fixed-step method, which
we call here the “probe method”, as it is just functional to the analysis, and in no sense constrains
the subsequent simulation phase to use it. The corresponding discrete-time system, h denoting the
time step, can be written as

xk+1 = FN (xk,uk, h) (2)

where x
T
k =

[

x1(k) x2(k) · · · xn(k)
]T

=
[

x
T
CT (kh) ξT (kh)

]T ∈ R
n, with n ≥ nCT is the

discrete-time state, vector ξ possibly containing additional state variables to accommodate for
multi-step methods (see [3, Chapter 4]), while the form of function FN (·, ·, ·) depends on the
particular numerical integration method N .

The dependency directed graph (or digraph) G, straightforwardly built from the structure of (2),
is formally defined as

G = (N,E), N = {1, . . . , n}, E = {ei,j} ⊆ N ×N. (3)

The nodes of G are associated with the discrete-time model state variables, while its edges are
characterised by a source node, a destination node, and a weight, defined by the operators

ς
[

ei,j
]

:= i, δ
[

ei,j
]

:= j, ρ
[

ei,j
]

:=
∂Fi

∂xj
. (4)

We can now give some definitions.

Definition 1. A path p of length L in a digraph G = (N,E) is an ordered sequence of L edges,
where the destination node of each edge is the source node of the following one in the sequence.
Formally,

p := 〈e1, e2, . . . , eL〉, with ei ∈ E, ∀i ∈ {1, . . . , L},
with δ [ei] = ς [ei+1] , ∀i ∈ {1, . . . , L− 1}.

A path can be also denoted by means of the ordered sequence of touched nodes, i.e.

p = 〈ς [e1] , ς [e2] , . . . , ς [eL] , δ [eL]〉.

Definition 2. A path with no repeated nodes is called a simple path (or walk).

Definition 3. A simple cycle c of length L exists in a digraph G = (N,E) iff

1. there exists a simple path 〈e1, e2, . . . , eL−1〉,

2. there exists one edge eL from δ [eL−1] to ς [e1].
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Adopting the same notation used for paths, a simple cycle can be denoted as

c = 〈ς [e1] , ς [e2] , . . . , ς [eL−1] , δ [eL−1] , ς [e1]〉,

i.e., by listing the ordered sequence of the touched nodes. Since in the following we shall only refer
to simple cycles, the terms “cycle” and “simple cycle” will be used interchangeably.

Definition 4. The cycle gain µc(h) of a cycle c is defined as

µc(h) =
∏

ei∈c

ρ [ei] . (5)

3.1 An explanatory example

Let us consider the continuous-time linear time-invariant dynamic system

ẋCT = AxCT =





−1 0.5 0
0.5 −1.5 0.5
0 0.5 −1



xCT ,

Using as probe method the Heun’s one [3], the corresponding discrete-time system (2) is

xk+1 = FHeun(xk, h), FHeun(xk, h) =

(

I3×3 +Ah+
(Ah)2

2

)

xk, (6)

where I3×3 is a 3× 3 identity matrix, and xk = xCT (kh). Therefore, the dependency graph G has
the weight matrix

W =
∂FHeun

∂x
= I3×3 +Ah+

(Ah)2

2
= I3×3 +

h

8





5h− 8 4− 5h h
4− 5h 11h− 12 4− 5h

h 4− 5h 5h− 8



 , (7)

and is completely connected, see Figure 2.
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Figure 2: Dependency graph associated with the discretised system (6).
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In this case, the set of simple cycles C = {c1, c2, c3, c4, c5, c6, c7, c8} in G, and the corresponding
cycle gains, are

c1 = 〈e1,1〉, µc1 (h) =
5h2

8
− h+ 1, c2 = 〈e2,2〉, µc2(h) = 1 +

h

8
(11h− 12) ,

c3 = 〈e3,3〉, µc3 (h) =
5h2

8
− h+ 1, c4 = 〈e1,2, e2,1〉, µc4(h) =

h2

64
(4− 5h)2 ,

c5 = 〈e1,3, e3,1〉, µc5 (h) =
h4

64
, c6 = 〈e2,3, e3,2〉, µc6(h) =

h2

64
(4− 5h)2 ,

c7 = 〈e1,2, e2,3, e3,1〉, µc7 (h) =
h4

512
(4− 5h)2 , c8 = 〈e1,3, e3,2, e2,1〉, µc8(h) =

h4

512
(4− 5h)2 .

3.2 The analysis technique

The analysis goal is to (automatically) recognise the presence in the model of different time scales,
and cluster the state variables accordingly, based on a convenient interpretation of the cycle gains
as per Definition 4. For this interpretation, consider system (2) at an asymptotic stable equilibrium,
and suppose to apply a small impulsive perturbation to one state variable xi. In the so provoked
transient two situations can occur:

• if in G, there is no cycle involving node i, the perturbation affects the other state variables,
but without re-affecting xi;

• if in G there exists at least one cycle involving node i, the perturbation re-affects xi after
some integration steps.

In the first case, the (probe) integration method cannot introduce numerical instability, while
this is possible in the second case, if the perturbation undergoes a sufficient amplification along at
least one of the involved cycles. Said amplification is quantified by the corresponding cycle gain,
allowing to conjecture that the perturbation vanishes if all the gains of the involved cycles are in
magnitude less than a certain µ, while instability arises if at least one of them exceeds in magnitude
a certain µ > µ.

Consider now an ODE system at a certain stable equilibrium. Apparently, if the state remains
near enough to that equilibrium for the linearisation of the original system to be reliable enough,
there exists one boundary value of h between a stable and an unstable behaviour of the discrete-time
solution. With explicit methods, also, instability notoriously originates from dynamics that are too
fast with respect to the integration step. And since the cycle gains depend on h, if an unstable
behaviour is observed, one can legitimately say that the state variables involved in the cycles with
the “excessive” amplification, are evolving with a time scale that is “fast” with respect to h.

The qualitative considerations above form the basis of the CA procedure, that can be sum-
marised as follows.

1. Select an explicit fixed-step integration method as the probe one (the choice is discussed later
on).

2. Discretise the system with that method.

3. Construct the corresponding digraph.

4. Find the set C of all the (simple) cycles.
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5. Express the cycle gains with (5).

6. Construct the set of inequalities

|µc(h)| ≤ α, ∀c ∈ C,
where α ∈ (0, 1) is the (single) CA parameter, discussed in the following.

7. Solve each single inequality for h, which associates each cycle with a value for h producing
“low enough” a gain magnitude.

8. Associate each xi with the largest h value, hxi
to name it, among those found for the cycles

involving xi, which is formally expressed as

hxi
=max h

s.t. h > 0,

|µc(h)| ≤ α, ∀c ∈ Cxi
.

The result of the analysis is that each state variable is associated with a time scale, since if α
was correctly chosen (in a sense to be discussed) and h is set below the so obtained hi, then the
discretised ODE equation that computes xi,k+1 cannot be responsible for instabilities.

Ranking the state variables by hi can thus provide the basis for their clustering, and for de-
coupled integration. Before entering that subject, it is however convenient to exemplify how the
procedure above can be implemented.

3.3 A possible implementation

Taking the Explicit Euler (EE) method as the probe one, the discretised system is

xk+1 = xk + h · f (xk,uk) . (8)

Thus, the edge weights of G take the form

ρ
[

ei,j
]

(h) =











1 + h · ∂fi
∂xi

if i = j,

h · ∂fi
∂xj

if i 6= j.

The cycle gains (5) can be computed as

µc(h) =















1 + h · ∂fi
∂xi

if L = 1 and
∂fi
∂xi

≤ 0,

hL
∏

ei,j∈c

∂fi
∂xj

otherwise,
(9)

resulting in the constraint set

|µc(h)| ≤ α ⇒























0 < h ≤ (1 + α)

∣

∣

∣

∣

∂fi
∂xi

∣

∣

∣

∣

−1

if L = 1 and
∂fi
∂xi

≤ 0,

0 < h ≤ L
√
α ·
∣

∣

∣

∣

∣

∏

ei,j∈c

∂fi
∂xj

∣

∣

∣

∣

∣

−
1

L

otherwise.

(10)
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Notice that in the case that ∂fi/∂xi = 0, (10) leads to the constraint that h < ∞, which
is correct since the variable has no dynamic. On the other hand, if ∂fi/∂xi > 0 the constraint
|1 + h · ∂fi/∂xi| < α cannot be satisfied for any value of α ∈ (0, 1]. It is thus necessary to compute
the cycle gain as specified in (9) in order to obtain a sensible upper bound for the integration step.

Moreover, Equation (10) shows that there is a direct relationship between the maximum mag-
nitude of a cycle gain α and the integration step h. The same result can be obtained (in a more
complex form) for virtually any explicit method. Recalling that for the generic explicit method, it is
possible to make all the eigenvalues lie in the region of numerical stability, by choosing a sufficiently
small value of h, the above remark implies that stability can always be achieved with sufficiently
small value of α.

The presented CA implementation is summarised by the pseudo-code in Algorithm 1. The
functions pop and append applied to a queue mean that the first element of the queue is extracted,
and the the input elements are added to the rear of the queue respectively. Notice that the problem
of finding all the cycles in a directed graph is a widely studied problem, and different algorithms
have been proposed in the literature [19, 20].

Algorithm 1 Algorithm to detect all the cycles in the dependency digraph.
function get_path_from_a_to_b(graph, a, b)

paths = ∅; // Initialise two empty lists
q = ∅;
q.append(a);
while q 6= ∅ do

path = q.pop(); // Get the first element of q
final = path(end);
if final == b and length(path)>1 then

paths.append(path);
end if

for e ∈ graph.successors(final) do

if e /∈ path(2:end) then

next = path;
next.append(e);
q.append(next);

end if

end for

end while

return paths;
end function

function get_cycles(graph)
cycles = ∅; // Initialise an empty list of dependency cycles
nodes = graph.nodes(); // Get the list of all the nodes in the graph
while length(nodes) 6= ∅ do

n = nodes.pop(); // Get the first node in the list
paths = get_path_from_a_to_b(graph,n,n);
if paths is not empty then

cycles.append(paths);
end if

graph.remove_node(n); // All the cycles involving n are detected
end while

return cycles
end function

Of course the analysis could use any explicit fixed-step probe method other than EE, which
however has two main advantages. First, it yields explicit constraints with α as the sole parameter.
This makes it computationally affordable to analyse the model at hand for different values of α,
i.e., to conduct a parametric separability analysis (this is shown in Section 7). Then, it results in
the maximum sparsity degree of the discrete-time model dynamic matrix, in apparent favour of an
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efficient cycle detection. In the example of Section 3.1, should one use EE instead of the Heun’s
method, the resulting dynamic matrix would in fact be

W =
∂FEE

∂x
= I3×3 +Ah = I3×3 +

h

2





−2 1 0
1 −3 1
0 1 −2



 ,

which is remarkably more sparse than (7). The EE method thus provides reasonably conservative
stability regions with a low computational effort, and is thus chosen here as the probe one.

3.3.1 Discussion

The possible implementation of CA presented in the last section allows for a parametric analysis
on any set of scenarii in an analytical manner. In particular, one could explore the set of interest
offline, on the basis of the considered operating point, and then obtain more than one partition,
each one to be used for the scenario to which it pertains.

When considering non-linear systems, it may happen that some simulation traverse operating
points that are so different to not belong to any single scenario. In such a case, one could take the
examined set of scenarii, and perform a partition that only preserves the surviving cuts, representing
the worst case scenario. It may even turn out that for some simulation the only way to go is to
keep the model not partitioned, but the presented method may be a mean to detect and motivate
such a necessity.

A possible issue that may raise using CA is that the index reduction techniques [21], that are
present for example in the Modelica compilers, acting on the DAE system may adjust the state
variable selection at runtime. As mentioned before, the proposed technique considers only an
offline analysis of the structural properties of the system aimed at finding a partition, and does
not take into account possible adjustments of the state variables selection at runtime. Although
it is in accordance to many of the co-simulation techniques present in the literature [6, 22], this is
apparently an issue to be addressed in future works.

To end this section, some words are also in order on the two major techniques that can provide an
alternative about time scale analysis, namely eigenvalue [23] and Lyapunov exponent analysis [24,
25].

Concentrating for brevity on the former, as the latter is its natural extension to the nonlinear
case, we can intuitively observe that in general a value of α can be found so that the CA constraints
also guarantee stability, as the eigenvalue ones conversely do by construction [9]. Despite this
apparent inferiority, nonetheless, CA has also two relevant strong points. First, the CA bounds are
inherently related to the interactions among state variables, while eigenvalue-based ones are not.
Second, the number of the CA bounds is that of the cycles, not the state variables, thus yielding a
more fine-grained structural information. In other words, with eigenvalue analysis one just observes
the system mode by mode, while CA explicitly evidences the mode couplings.

Incidentally, in the linear case, CA provides exactly as many constraints as the system order in
the particular case of a triangular system with real eigenvalues, and in this case, not surprisingly,
the value of α discriminating stability from instability is the unity.
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Figure 3: Two cases of linear systems with the same stiff ratio.

4 Separability indices

The result of CA is that we associated a time scale, expressed in terms of hxi
, with each dynamic

variable xi. Based on those time scales some synthetic indices can thus be defined for deciding
how to partition the original model into weakly coupled submodels. Such indices can also be
interpreted so as to extend the idea of “stiffness”, in the same way as CA was shown to yield more
decoupling-related information than eigenvalue analysis.

We start the discussion by considering the classical eigenvalue-based stiffness indicator, i.e., the
stiffness ratio [3].

Definition 5 (Stiffness ratio). The stiffness ratio σR is defined as the ratio between the absolute
largest real part and the absolute smallest real part of any eigenvalue:

σR =
maxi |ℜ{λi}|
mini |ℜ{λi}|

.

Apparently, σR is defined for a linear system, and quantifies the span from the fastest to the
slowest time scale. This is useful to decide on the usefulness of an integration method for stiff
systems on the entire model, but gives no information on how many “time scale clusters” exist, nor
on which state variables they contain.

To exemplify, consider Figure 3. In the left graph, the continuous-time eigenvalues of the system
multiplied by h (indicated with the cross) are not equally spaced in the left-half-plane, and can be
divided into two clusters: those that are close to the origin are associated with “slow dynamics”,
while the others are associated with “fast dynamics”. The presence of the two different time scales
is also evidenced by computing the stiffness ratio of Definition 5, i.e., σR = 4.5/0.5 = 9. Consider
now the right graph of the same figure. The stiffness ratio is the same, since the closest and the
farthest eigenvalues from the origin are the same, while the eigenvalues of the system are almost
equally distributed in the left-half-plane. This feature of the system is strictly related to how much
the system is “separable”, and is not evidenced by the stiffness ratio.
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Coming back to the CA approach, two different indices based on it can be defined. One,
the stiffness index, quantifies the span of the time scales in the model, analogously to the one
of Definition 5. The other, the separability index, indicates to what extent the clusters of state
variables corresponding to those time scales can be computed in a decoupled manner. Both indices
are function of α, and being based on CA, they can be computed also for nonlinear systems.

Denote by H the set of integration steps hxi
associated with each state variable, and assume H

ordered by ascending values of h, i.e., H = {h1 ≤ h2 ≤ . . . ≤ hN}. Based on that, the following
definitions can be given.

Definition 6 (Stiffness index). The stiffness index for a given α is the ratio between the minimum
and the maximum integration step found with the cycle analysis, i.e.,

σ(α) =
hmax(α)

hmin(α)
. (11)

Analogously to the stiffness ratio σR, also for the stiffness index highly stiff systems are associated
with high values of σ.

Definition 7 (Separability term). The separability term for a given α, and for a given couple of
variables xi and xj is

sα(i, j) =
|hi(α)− hj(α)|

maxm (hm+1(α) − hm(α))
, hi, hj ∈ H.

Definition 8 (Separability index). The separability index for a given α is the unity minus the
ratio between the maximum and the average difference among two subsequent values of the time
scales, i.e.,

s(α) = 1−
1

N − 1

∑N−1

i=1
hi+1(α) − hi(α)

maxi (hi+1(α) − hi(α))
= 1− 1

N − 1

N−1
∑

i=1

sα(i+ 1, i).

5 Mixed-mode integration

This section deals with how the information coming from CA can be exploited to improve simulation
efficiency. Broadly speaking, since a complete treatise of this matter will require more than one
future work, we can say that such an exploitation takes place along two fundamental axes. One
refers to the used integration methods, the other to the adopted simulation architecture.

5.1 Exploiting by integration methods

Having clustered the dynamic variables by time scale, one can use explicit integration methods for
the slow ones, and implicit methods for the fast ones. This implies loosing a precise representation
of fast phenomena, but apparently improves efficiency. Moreover, the type of information provided
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by CA facilitates the modeller, as he/she has just to decide which is the smallest time scale of
interest for the simulation study at hand.

We now illustrate some applications of this idea, limiting the scope to a system partitioned in
two subsystems. This is done for simplicity and without loss of generality, since after a first partition
one could simple re-apply the proposed technique to one or more of the obtained subsystems. We
also use different couples of integration methods, to show that the proposed exploitation is feasible
whatever couple (in general, set) of such methods is selected [26]. Incidentally, this further highlights
the neat separation between the analysis and the simulation part, thus between the probe method
used for CA, and the integration methods. Finally, we show that once the order of accuracy of the
used methods is chosen, the technique leads to the same mixed-mode integration algorithm whatever
the particular methods are. This means that the couples of considered methods are equivalent from
an accuracy viewpoint.

Coming to the exploitation technique, consider the generic nonlinear ODE system

ẋ = f (x) (12)

and assume it to be partitioned into two subsystem: one with slow dynamics, the other with fast
dynamics. Following an approach similar to the one presented in [23], we can left-multiply the state
vector by a projection matrix P = diag{p1, p2, . . . , pn}, with pi ∈ {0, 1} to select the slow part, and
by P = I − P to select the fast part. Therefore (12) can be written as

{

ẋ
S = P ẋ = P f

(

x
S ,xF

)

ẋ
F = P ẋ = P f

(

x
S ,xF

) (13)

where x
S represents the slow variables, and x

F the fast ones.
To qualify the used methods, we adopt the classical notation used for Runge-Kutta ones, i.e., a

method of order s is expressed in the general form

xk+1 = xk + h

s
∑

i=1

biκi, with κi = f



xk + h

s
∑

j=1

aijκj , tk + cih



 , (14)

where the coefficients aij , bi and ci are usually expressed by means of the so-called Butcher tableau

c A
b

=

c1 a11 · · · a1s
...

...
. . .

...
cs as1 · · · ass

b1 · · · bs

.

Recall for convenience that an explicit Runge-Kutta method is characterised by aij = 0 for all
j ≥ i, which is not true for implicit ones.

5.1.1 Explicit-Implicit Euler

First of all we consider the simplest exploitation case, i.e., using Explicit Euler (EE) for the slow
part, and Implicit Euler (IE) for the fast part. This approach has already been presented in [23]
for the linear case.
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The Butcher tableaux of the two methods are respectively

EE:
0 0

1
IE:

1 1
1

Correspondingly, equation (13) can be expressed as

x
S
k+1 =Pxk+1 = Pxk + hP f

(

x
S
k ,x

F
k , tk

)

x
F
k+1 =Pxk+1 = Pxk + hP f

(

x
S
k+1,x

F
k+1, tk

)

,

which in the linear case becomes

x
S
k+1 =Pxk + hPAxk

x
F
k+1 =Pxk + hPAxk+1.

Composing those two equations, and solving for xk+1, we can obtain

xk+1 = (I − h (I − P )A)
2
(I + hPA)xk.

5.1.2 Explicit-Implicit midpoint

In this section we consider the Explicit Midpoint (EM) and Implicit Midpoint (IM), two second-
order accurate integration methods. The corresponding Butcher tableaux are

EM:
0 0 0
1/2 1/2 0

0 1
IM:

1/2 1/2
1

According to (14), the slow part of equation (13) becomes

x
S
k+1 =Pxk+1 = Pxk + hκ2 with κ1 =P f

(

x
S
k ,x

F
k , tk

)

κ2 =P f

(

x
S
k +

h

2
κ1,x

F
k , tk +

h

2

)

,

leading to the more compact equation

x
S
k+1 = Pxk + hP f

(

x
S
k + P

h

2
fk,x

F
k , tk +

h

2

)

where
fk , f

(

x
S
k ,x

F
k , tk

)

.

As for the fast part, the IM method can be used. Thus, using the numerical solution of the slow
part as an input for the fast part, leads to

x
F
k+1 =Pxk+1 = Pxk + hPκ1 with κ1 =f

(

xk +
h

2
κ1, tk +

h

2

)

. (15)

Observing that κ1 = (xk+1 − xk)/h, equation (15) can be written in a more compact form

x
F
k+1 = Pxk + hP f

(

x
S
k+1 + x

S
k

2
,
x
F
k+1 + x

F
k

2
, tk +

h

2

)

.
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In the linear case, the two expressions become

x
S
k+1 =Pxk + hPAxk +

h2

2
(PA)

2
xk

x
F
k+1 =Pxk +

h

2
PAxk +

h

2
PAxk+1

.

Composing the two expressions, the overall dynamics can be computed as

xk+1 =

(

I − h

2
(I − P )A

)−1(

I +
h

2
(I + P )A+

h

2
(PA)

2

)

xk.

5.1.3 Heun-Lobatto mixed-mode

Analogous computations can be done with different integration methods. For example the Heun’s
method can be taken as the explicit method, and the second-order Lobatto IIIA one for the implicit
part. The Butcher tableaux of the two methods are respectively

Heun:
0 0 0
1 1 0

1/2 1/2
Lobatto IIIA:

0 0 0
1 1/2 1/2

1/2 1/2

With similar computations to the ones performed for the midpoints methods, it is easy to show
that the slow part dynamics are ruled by

x
S
k+1 =Pxk + hfk

h2

2
f
(

x
S
k + hP fk,x

F
k , tk + h

)

x
F
k+1 =Pxk +

h

2
P (fk + fk+1)

Which in the linear case become

x
S
k+1 =Pxk + hPAxk +

h2

2
(PA)2 xk

x
F
k+1 =Pxk +

h

2
PAxk +

h

2
PAxk+1

Leading to the overall dynamics

xk+1 =

(

I − h

2
(I − P )A

)−1(

I +
h

2
(I + P )A+

h2

2
(PA)2

)

xk

which is exactly the same dynamic obtained by the combination of any second-order accurate couple
of Runge-Kutta methods.

5.1.4 General application

Alternatively to the proposed techniques, other couples of Explicit-Implicit Runge-Kutta methods
can be used, for example all the ones proposed in [26]. In principle one could also use completely
different methods, which however we do not discuss here owing to the predominant diffusion of
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Runge-Kutta ones, and also because abandoning that class generally means giving up also the
Butcher tableau formalism, to the (sole, however) detriment of the treatise simplicity.

Summarising, exploiting CA by integration method leads to join the best of implicit and explicit
integration in a knowledgeable manner for the case under question. The resulting integration scheme
is represented in Figure 4.

Explicit

method

Implicit

method

uk
x
S
k+1

x
F
k+1

Figure 4: Mixed-mode integration scheme.

This kind of scheme will be used in Section 7 to evaluate the performance of the proposed
methods.

5.2 Exploiting by simulation architecture

Independently of the time scale associated with each subsystem, CA provides structural information
on the mutual dependencies among the dynamic variables, as it inherently analyses the graph of
said dependencies. As such, one can further exploit CA by introducing any kind of parallelism for
the parts of the system that CA has shown to be weakly coupled—it is worth stressing, no matter
what integration method is selected for them.

This idea can have several applications. For example, if two subsystems are not coupled to
one another but only via a third one, then apparently the first two can be solved in parallel (such
a situation may appear in the presence of several hydraulic circuits connected to a large central
capacity, and a number of other similar cases can be thought of). Most important, detecting such
parallelisation possibilities is done easily by applying e.g. BLT-like techniques to the subsystems
obtained from CA, i.e., also this kind of exploitation can be automated: an example of this modus
operandi can be found in [27].

From a more technological standpoint, one can then just employ parallel computing architec-
tures, or even use the so obtained information to structure a co-simulation setup. In the latter case,
the proposed technique provides more formally grounded an alternative to heuristics based e.g. on
the minimisation of the number of signals exchanged among the co-simulation units [28, 29]. Of
course such optimisations are not possible when the structure of the simulation setup is dictated
by the used software tools, but in the last years formalisms and standards have been emerging to
provide designers with more freedom in this respect, see e.g. [30, 31].

As a final but important remark, the proposed approach allows to obtain a co-simulation setup
starting from a monolithic model. This can be extremely useful to solve the initialisation problem,
as doing so in a centralised manner generally yields improved convergence guarantees with respect
to a distributed approach [32].
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6 Toolchain extension

This section presents a possible way of complementing the typical EOO M&S manipulation toolchain
(see Figure 5) so as to include simplification techniques like that proposed herein. The goal is to
allow the analyst to provide the tool with approximation-related specifications at a high level, like
it is already possible with information pertaining e.g. to tolerances, integration algorithm, and the
like.

Figure 5 depicts the extended toolchain. The decision nodes (the diamond ones in the diagram)
show where additional manipulation for simplification can be performed. If no simplification is
required, clearly, the classical manipulation toolchain comes out, while in the opposite case, the
desired approximation techniques are applied at the suitable points. The diagram also reports
some coloured dashed boxes on the right side. Red boxes stand for already available methodologies,
automatically applicable at the corresponding level of the manipulation. Green ones stand for
potential methodologies which may be introduced as automatic procedures, but to date are not
exploited in the context of EOO modelling.

6.1 An example toolchain implementation

To prove the feasibility of our extension proposal, the task of realising it was actually carried out
by using JModelica1 as the Modelica translator, exporting the model as a Functional Mockup Unit
(FMU), and employing Assimulo2 for the numerical integration, having developed the mixed-mode
integrator ad hoc.

More in detail, the toolchain of Figure 5 was modified – for the case when “simplify” is desired
– as shown in Figure 6: the output of the continuous-time part (the manipulated model.mo) is
exported by means of the Functional Mockup Interface (FMI) to model.fmu, elaborated by the
external python module jd2.py that performs CA (i.e., takes care of the “discretisation” and the
“solution manipulation” blocks); the partitioned model is then simulated with Assimulo, with the
developed mixed-mode method. It is worth noticing that the integration of a new functionality
(like DD) into an EOO modelling toolchain was greatly eased by adopting tools that allow for some
common interchange format—a feature of great importance indeed.

The developed code, including the reported examples, is available as free software3, within the
terms of the Modelica License v2.

7 Application examples

In this section two different application examples are described and analysed. In particular a
parametric separability analysis is presented (so as to analyse the system behaviour independently
of the choice of α), and a mixed-mode integration method is used to evaluate the simulation
performance.

The obtained results are compared with other integration methods, i.e., two first-order fixed
step integration methods – Explicit Euler (EE) and Implicit Euler (IE) – and another sophisticated
multi-step methods – Backward Differentiation Formulas (BDF) – is used as baseline to compute

1http://www.jmodelica.org
2http://www.jmodelica.org/assimulo
3The code is available at http://home.dei.polimi.it/leva/jd2.html .
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Figure 5: Activity diagram of the modified manipulation toolchain.
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Figure 6: Integration of DD in the toolchain of Figure 5.
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the quality of the computed solution in terms of Root Mean Square Error (RMSE)

RMSE = max
i=1,...,n

√

∑⌊ T
h
⌋

k=1
(x̂i,k − xi,k)

2

T
,

where T is the final time, h is the integration step, xi,k and x̂i,k represent the reference and the
approximated solution of the i-th variable, respectively. All the simulation results were obtained
using JModelica and Assimulo.

7.1 Automotive suspension
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h

z kf df kr dr

θ

Lf LrC

Figure 7: Half-car suspension model.

Figure 7 illustrates the modelled characteristics of a half-car. The front and rear suspension
are modelled as spring/damper systems. A more detailed model would include a tire model, and
damper nonlinearities such as velocity-dependent damping (with greater damping during rebound
than compression). The vehicle body has pitch and bounce degrees of freedom. They are represented
in the model by four dynamic states: vertical displacement z, vertical velocity ż, pitch angular
displacement θ, and pitch angular velocity θ̇. The front and rear suspensions influence the bounce
(i.e., vertical degree of freedom) according to the equations

Ff =2kf (Lfθ − z) + 2df

(

Lf θ̇ − ż
)

, Fr =2kr (Lrθ + z)− 2dr

(

Lrθ̇ + ż
)

,

where Ff and Fr are the upward force on body from front and rear suspension, kf and kr are the
front and rear suspension spring constant, df and dr are the front and rear damping factors, Lf

and Lr are the horizontal distance from the center of gravity (C) to front and rear suspensions.
The pitch contribution to the front and rear suspension is given by

τf =− LfFf , τr =LrFr,

where τf and τr are the pitch torque due to the front and rear suspension. Hence, using the
Newton’s law, the forces and moments are balanced as

Mz̈ =Ff + Fr −mg, Jθ̈ =τf + τr + τa,
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where M is the body mass, J is the body momentum of inertia about the center of gravity and τa
is the pitch torque induced by vehicle acceleration. In this example we initially consider the vehicle
accelerating, so τa = 500Nm for t ≥ 0 (0 otherwise). Hence, at time t = 2, we consider the road
height h increased by 0.15m. The parameters used for this example are reported in Table 1.

Parameters

M 1000 kg kf 28 000N/m df 3500Ns/m Lf 0.9m
J 2100 kgm2 kr 21 000N/m dr 3500Ns/m Lr 1.2m

Table 1: Half-car suspension parameters.

The result of a parametric cycle analysis is presented in Figure 8, showing that it is possible
to separate the model between the first and the second variable, if a medium value of α is chosen.
However, in this very simple case it is quite hard to understand if a neat separation exists.

1

2

3

0.5

1

0

2

4

·10−2

sα(xi, xi+1)

α

0

0.5

1

1.5

2

2.5

3

3.5

·10−2

Figure 8: Separability parametric analysis of half-car suspension model.

According to CA there are 7 cycles in the model digraph, and choosing α = 0.5, the following
constraints on the integration step are obtained.

ż : h ≤ 0.0384615 z : h ≤ 0.0714286

θ̇ : h ≤ 0.0769231

θ : h ≤ 0.0996024

(16)

hence, choosing an integration step h = 0.05, we can separate the system accordingly to what
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suggested by Figure 8. Figure 9 shows the simulation results with respect to a reference solution,
obtained with a BDF (Backward Differentiation Formulas) method, with both the absolute and
relative tolerances set to 10−6.
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Figure 9: Simulation results of the half-car suspension model.

Table 2 shows the simulation statistics for different integration methods. It is worth noticing
that the dimension of the system the Newton iteration has to solve is reduced from 4 to 1 in the
mixed-mode method. Notice, also that the EE method needs a smaller step size (h = 0.02) for
numerical stability reasons. The mixed-mode method in this very simple example represents a
tradeoff between the IE and EE, as achieve the same precision in terms of RMSE as IE, but with
a lower simulation time. Notice also that the time required for the cycle analysis is negligible with
respect to the overall simulation time.

Mixed-mode BDF IE EE

# Steps 100 198 100 250
# Function ev. 376 236 375 –
# Jacobian ev. 6 5 6 –
# Fun. ev. in Jac. ev. 12 20 30 –
# Newton iterations 250 228 249 –
RMSE 0.056 – 0.053 0.059
Sim time 0.1s 0.16s 0.13s 0.08s

CA time 0.654× 10−3s

Table 2: Simulation statistics for half-car model.

To complete the example, the indices proposed in Section 4 are here computed, yielding the
following indices

σR = 1.869, σ(0.5) = 2.590, s(0.5) = 0.382.

The stiffness σ(α) index shows that the system is stiff, while the separability one shows that this
kind of system is sufficiently suited for separation.

21



7.2 Counterflow heat exchanger

This example refers to a counterflow heat exchanger with two incompressible streams (Figure 10).
Both streams and the interposed wall are spatially discretised with the finite volume approach,

Ta,i wa

Wall

Tb,i wb

Ta,1

Tw,1

Tb,N

Figure 10: Counterflow heat exchanger scheme.

neglecting axial diffusion in the wall – as is common practice – and also in the streams, as zero-flow
operation is not considered for simplicity. Taking ten volumes for both streams and the wall, with
the same spatial division (again, for simplicity) leads to a nonlinear dynamic system of order 30,
having as boundary conditions the four pressures at the stream inlets and outlets, and the two
temperatures at the inlets. Notice that the indices counting the sections go from the inlet flow to
the outlet flow. Formally, the system is given by































ca
Ma

N
Ṫa,i =waca · (Ta,i−1 − Ta,i) +

Ga

N
· (Tw,i − Ta,i)

cw
Mw

N
Ṫw,i =− Ga

N
· (Tw,i − Ta,i)−

Gb

N
· (Tw,i − Tb,N−i+1)

cb
Mb

N
Ṫb,i =wbcb · (Tb,i−1 − Tb,i) +

Gb

N
· (Tw,N−i+1 − Tb,i)

(17)

where T stands for temperature, w for mass flowrate, c for (constant) specific heat, M for mass,
and G for thermal conductance; the a, b and w subscripts denote respectively the two streams and
the wall, while i ∈ [1, N ] (i = 0 for boundary conditions) is the volume index, counted for both
streams from inlet to outlet, the wall being enumerated like stream a.

The parameter values used in the example are reported in Table 3.

Parameters

N 10 Mb 1 kg cw 3500 J/(kg K)
Ta,in 323.15K Mw 10 kg Ga 8000W/K
Tb,in 288.15K ca 4200 J/(kg K) Gb 8000W/K
Ma 0.1 kg cb 3500 J/(kg K)

Table 3: Parameter values of Model (17).

A parametric CA is performed so as to analyse the structure of the system, and Figure 13 shows
its result. In particular, 95 cycles are present in the system.

The separability analysis evidences that there are at least a couple of points where the system
can be separated. However, for α = 1.0 there is only one point in which the system can be split, and
it is between the 10-th and the 11-th variable. It is worth noticing that in this example, there is no
neat physical separation between the dynamics, since they all belong to the same physical domain,
and also to the same physical object. Separability analysis, however, can detect those structural
properties of the system independently of its nature.
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Figure 11: Separability analysis of the heat exchanger (17) with N = 10.
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Hence, choosing α = 1.0 CA leads to the following constraints:

Ta,i : h ≤ 0.0084

Tb,i : h ≤ 0.0478

Tw,1,10 : h ≤ 0.0478

Tw,2,9 : h ≤ 0.0498

Tw,3,8 : h ≤ 0.0524

Tw,4,7 : h ≤ 0.0559

Tw,5,6 : h ≤ 0.0606

Choosing an integration step h = 0.04 yields a partition of the system that considers the Ta,i as
the fast while the Tb,i and Tw,i as the slow states. Fig. 12 shows the simulation results compared
to a reference solution, obtained again with a BDF method, with both the absolute and relative
tolerances set to 10−6. Notice that the temperatures are reported with different scales.
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Figure 12: Simulation results of (17). Black lines represent the reference trajectories, while the
coloured lines the mixed-mode ones.

Table 4 shows the simulation statistics for different integration methods. It is worth noticing
that, since the complexity of IE is O(n3), where n is the dimension of the model, integrating
implicitly only Ta,i instead of the whole model, reduces the computations from 303 = 27000 to
103 = 1000, leading to a significant improvement in terms of simulation efficiency. Notice also that
the EE method needs a smaller step size (h = 0.01) for numerical stability reasons. In this example,
the simulation time is half of the one needed by IE, while achieving slightly worse performance in
terms of RMSE.
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Mixed-mode BDF IE EE

# Steps 125 260 125 500
# Function ev. 375 296 375 –
# Jacobian ev. 6 5 6 –
# Fun. ev. in Jac. ev. 66 150 186 –
# Newton iterations 250 292 250 –
RMSE 0.091 – 0.080 0.836
Sim time 0.06s 0.21s 0.12s 0.15s
CA time 6.708× 10−3s

Table 4: Simulation statistics for Model (17) (h = 0.04).

Now, the indices proposed in Section 4 are here computed, yielding the following results—notice
that also in this case, due to the nonlinearity of the system, σR cannot be computed.

σ(0.5) = 13.612, s(0.5) = 0.954.

The stiffness σ(α) index shows that the considered system is sufficiently stiff, but the more
interesting aspect is that the separability one shows that it is very suited for the partition, since its
time scales are very well separated.

The presented examples have been kept as small as possible in order to improve results read-
ability, but the method can be applied to larger models as well. For example, by changing in (17)
the parameter N to 30, the model becomes of order 90. Thus, CA detects 585 cycles and the same
parametric separability analysis can be performed.

In this case, the chosen integration step here is h = 0.01. The obtained simulation results are
summarised in Table 5.

Mixed-mode BDF IE EE

# Steps 500 290 500 2000
# Function ev. 1321 323 1348 –
# Jacobian ev. 24 6 24 –
# Fun. ev. in Jac. ev. 744 540 2184 –
# Newton iterations 820 319 847 –
RMSE 0.126 – 0.131 0.023
Sim time 0.76s 0.96s 1.43s 0.80s
CA time 0.022s

Table 5: Simulation statistics for Model (17) with N = 30.

In this case the indices become

σ(0.5) = 9.771, s(0.5) = 0.986,

thus, even if the order of the system is changed, but the system is actually the same, those structural
indices have the same order of magnitude, and, what is more important are not changed too much,
providing the same information.

7.3 Discussion

After showing the examples, their collective outcome could be summarised as follows. First, when
there is an evident dynamic separation in the system, the proposed technique finds it without
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Figure 13: Separability analysis of the heat exchanger (17) with N = 30.
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requiring a priori information on the part of the user. In other words, the technique is backed up
by observing that the produced results are in accordance with intuition, when intuition can figure
them out.

Also, and in some sense as a complement, the proposed indices allow to synthetically appreciate
the possible internal model couplings that can be exploited via DD, even when these are not apparent
at all.

Moreover, and specific to the use of the technique for mixed-mode integration, its characteristics
are very suited to the typical studies that are required to really have simulation follow the life-cycle
of the project, as envisaged in the introduction. On this final point, however, some more words are
in order.

When a simulation study is required, the simulation time becomes critical, since a large number
of simulations must be run, e.g., for optimization purposes. The presented cycle analysis takes less
than 1 second in all the presented examples, and must be performed only once, during an offline
phase. However, the structural analysis, and the consequent improved simulation efficiency speed
up the simulation time, allowing for a faster simulation study.

In addition, when a simulation study is required to answer a specific question, most frequently
the focus is on part of the system, or – somehow equivalently – on part of the phenomenon occurring
in it. In such a very frequent case, the rest of the system does not need to be simulated accurately,
provided that the boundary conditions presented to the part that is relevant for the study, allow for
a precise evaluation of the investigated quantities. In many situations of the type just mentioned,
the interest of the analyst is on certain time scales on the system phenomena, and provided these are
well reproduced, loosing faster behaviours is not only acceptable, but in fact necessary to achieve
the desired performance. In fact, the same remark holds also for almost the totality of MOR
techniques, where low-frequency approximations of the original model are the typical result, and
the quality of a reduction is not evaluated in terms of time error – which is typically large due to the
transients – but rather in terms H∞-norm of the difference between the original and the reduced
model, i.e., in the frequency domain. This is totally analogous to the proposed approach, where a
good approximation is not strictly related to a small simulation error, but to a good representation
of the time scales of interest.

8 Conclusions and future work

A technique was presented to allow EOO M&S tools to take profit of DD, partitioning a complex
model into “weakly coupled” submodels in a view to enhancing the obtained simulation efficiency.
With respect to the major available alternatives, the presented technique has more than one advan-
tage. It preserves the state space of the model, can be considered scenario-free, and is applicable
both in the case of a monolithic solution and of co-simulation.

The technique is based on a structural analysis of the system – called here cycle analysis, and
novel – coupled to a convenient use of mixed-mode integration. Both aspects were discussed, leading
also to the definition of convenient separability indices, that allow the engineer to tailor the model
partitioning transparently, based on easily interpreted information. The emphasis was also set on
how the presented technique can be integrated in the typical EOO M&S toolchain, considering
a Modelica translator as a representative case. Simulation tests were reported to illustrate the
achieved benefits, and the realised implementation was made available as free software to the
community.
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Future work will concern the exploitation of the mentioned keenness to co-simulation, and a com-
prehensive user interface to further ease the toolchain integration, having as ultimate goal a unifying
approximation framework comprising the proposed technique and alternative ones like MOR, TLM,
and so forth. Another subject will be a further investigation of the physical interpretation of α,
and on how to formally relate it to the simulation accuracy.

Finally, models of higher complexity will be addressed, so as to possibly improve the time
performance of the software implementation.
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