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Abstract: A recently proposed approach to human intention estimation in goal-oriented motion
is further improved in this paper. The main features of the approach are the fact that the unicycle
model has been rewritten with the natural coordinate as the independent variable, avoiding the
explicit dependence from the walking velocity and lowering the number of input variables to one,
the proposal of a novel cost function, weighting not only the energy needed to perform the path
but also the current distance of the human with respect to the target, and the adoption of the
Frechét metric to assess the similarity of experimental and estimated paths. The proposed cost
function is compared with other two cost functions, adopted in previous works, with reference
to experimental data. The performance improvements with respect to the previous approach
are apparent, either from a qualitative point of view and from a statistical analysis of the error
distances.
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1. INTRODUCTION

In recent years, the problem of human intention estimation
has received a great attention in the robotics research.
The impact of this topic on safety issues is apparent,
particularly in the field of industrial robotics, where the
goal of a real and safe cooperation among robots and
humans is still far from being a common practice (Bascetta
et al. [2011]). In order to achieve this goal the control
system should be able to prevent dangerous situations, by
estimating the human intention in time to perform a safe
robot reaction. Estimation of human intention is also very
important in the field of service robotics, for example to
proactively interact with humans (Kanda et al. [2009]),
and in medical applications, particularly in rehabilitation
and assistive robotics (Kuan et al. [2010]).

While the estimation of the human intention “tout court”,
of course, is quite a hard problem, some results have been
achieved in predicting the human behavior with reference
to a goal-oriented motion, based on a model of the human
motion planning (Mombaur et al. [2010]). The classical
way to approach the problem, first proposed by Flash
and Hogan (Flash and Hogan [1985]) is to assume that
humans plan their motions solving an optimal control
problem, whose dynamic model and cost function have to
be selected in such a way that planned paths are human-
like, i.e. resemble the paths walked by a human. More
properly, what is to be solved is an inverse optimal control
problem (Jameson and Kreindler [1973], Casti [1980]),
where the dynamic model can be reasonably assumed as
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known (unicycle model) while the cost function must be
selected so as to best fit the motion data. This approach
has been adopted in Arechavaleta et al. [2008], Mombaur
et al. [2008] and, in particular, in Puydupin-Jamin et al.
[2012], where optimal control problem has been solved
by minimizing residual functions based on the necessary
conditions for optimality, through an efficient least-squares
minimization.

Very recently, significant improvements have been ob-
tained by Papadopoulos et al. [2013] adopting a similar
approach, while introducing the following modifications:

• the unicycle model has been rewritten with the nat-
ural coordinate as the independent variable, avoiding
the explicit dependence from the walking velocity and
lowering the number of input variables to one;

• a novel cost function has been considered, weighting
not only the energy needed to perform the path but
also the current distance of the human with respect
to the target;

• the Frechét metric (Alt and Godau [1995]), used
in computational geometry as a “similarity” metric
between two curves, has been adopted to assess the
similarity of experimental and estimated paths.

After showing that the unicycle model, either in time or
space domain, is actually well suited to describe the human
walking dynamics with reference to goal-oriented motion,
further improvements are presented in this paper, essen-
tially based on the adoption of a novel cost function. The
new cost function reduces the number of parameters, by
weighting the Euclidean distance from the current to the
target position instead of separately weight the Cartesian



planar coordinates, and by normalizing the length and an-
gular distances with respect to their boundary values. The
proposed cost function is compared with other two cost
functions, adopted in previous works, with reference to
experimental data. The performance improvements with
respect to the previous approach are apparent, either from
a qualitative point of view and from a statistical analysis
of the error distances, showing a reduction of the Frechét
distance between the optimal path and the experimental
one of 20% in the case of the worse path and 80% for the
best path.

2. EXPERIMENTAL SETUP

In this section we describe the experimental setup used
to collect a dataset of human walking paths. About one
thousand paths were recorded using a 6 cameras motion
capture system (SMART system by BTS S.p.A.). Each
subject was equipped with 3 light reflective markers, two
located on the hips – anterior superior iliac spine (asis) –,
and one located on the sacrum (see Fig. 1).
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Fig. 1. Marker positions and barycentre.

The experimental protocol was inspired to the one adopted
in Arechavaleta et al. [2008]. More specifically, we restrict
the study to the “natural” forward locomotion, excluding
goals located behind the starting position and goals re-
quiring side-walk steps.
Goals are defined both in position and orientation, and in
order to cover at best the accessibility region, the space for
the experiments, a 4m×6m rectangle corresponding to the
calibrated volume, was sampled with 144 points defined by
12 positions on a 2D grid and 12 orientations each. The
final orientation varied from 0 to 2π with steps of π/6 at
each final position (see Fig. 2). The starting position was
always the same.
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Fig. 2. Final porch positions (left) and orientations (right).

Locomotor trajectories of seven normal healthy people
(both males and females), who volunteered for participa-
tion in the experiments, were recorded. Their ages, heights,
and weights ranged from 24 to 50 years, from 1.60 to 1.85
m, and from 50 to 90 kg, respectively.
Each subject performed all the 144 trajectories. Subjects
walked from the same initial configuration to a randomly
selected final configuration (see Fig. 2). The target con-
sisted of a porch that could be rotated around a fixed

position in order to show the desired final orientation (see
Fig. 3).
The subjects were instructed to freely cross over this porch
without any spatial constraint relative to the path they
might take. Further, they were allowed to choose their
natural walking speed to perform the task.
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Fig. 3. An example of experiment.

A pre-processing phase on the paths collected by the
optoelectronic system was required in order to remove the
outliers, fill in the missing data and smooth the curves.
The path of each marker was then interpolated with a
smoothing spline and, considering the triangle that the
three markers form (see again Fig. 1), the path of a unique
“virtual” marker representing the human walking path was
computed, as the barycentre of the triangle.

3. PROBLEM DEFINITION

As far as human trajectory planning is concerned, the
complex activities performed during walking by muscles
and brain in commanding and coordinating many elemen-
tary motor acts can be neglected, and the problem may be
considered from a high-level kinematic model perspective.
Further, the pioneering studies of Flash and Hogan [1985]
introduced the idea that humans plan arm motion solving
an optimal control problem. A similar approach was then
adopted, many years later, in Arechavaleta et al. [2008],
Mombaur et al. [2008], Puydupin-Jamin et al. [2012] to
explain how humans plan walking trajectories.

In the framework just introduced, the problem of planning
human walking paths can be thus formulated as an optimal
control problem, whose dynamic model and cost function
have to be selected in such a way that the planned paths
are human-like, i.e. resemble the paths walked by a human.
These two fundamental aspects, i.e. the selection of the
walking model and of the cost function, are discussed in
detail in Sections 4 and 5.

4. WALKING HUMAN MODEL

A walking human can be represented by a rectangular
box (Fig. 4), that can translate and rotate around an axis
parallel to the vertical dimension of the box, and crossing
the base in its centre.
The pose of the human is thus completely described by
the coordinate of the rectangular box base centre P , with
respect to a reference frame fixed on the ground plane,
and by the angle θ formed by the tangent to the walking
path with the x-axis. Then, a human walking trajectory is
defined as the path followed by the point P through the
ground plane.



Fig. 4. Formalization of a human walking path.

Similarly to previous works (see e.g. Puydupin-Jamin et al.
[2012]) we model the walking human with the following
unicycle kinematic model

ẋP = v cos (θ)

ẏP = v sin (θ)

θ̇ = ω

(1)

where xP , yP are the Cartesian coordinates of the point P ,
v is the linear (nonholonomic) velocity along the direction
of motion, θ is the orientation, and ω is the angular
velocity.

Consider now the forward velocity v. In principle it varies
with time along the path and depends on a large num-
ber of factors (see Öberg et al. [1994] and Knoblauch
et al. [1995]). In many cases, however, the variations of
v are limited, in particular in the absence of obstacles
and environmental stimuli that can trigger unpredictable
human reactions. It can thus be considered constant (see
e.g. Arechavaleta et al. [2008]). On the other hand, if one
is interested in studying the geometry of the walking path
only, instead of the complete trajectory as a function of
time, it is possible to rewrite model (1) with the natural
coordinate s as the independent variable, avoiding the
explicit dependence of the model from the velocity v, and
lowering the number of input variables to one. Thus, if
v > 0 along the path, i.e. if the assumption of “natural
walking” introduced in Arechavaleta et al. [2008] holds,
the relation between the natural coordinate s and the time
t is given by

s(t) =

∫ t

0

v(τ) dτ

and can be inverted, defining t = t(s). As a consequence,
model (1) can be rewritten as

x′P = cos (θ)

y′P = sin (θ)

θ′ = σ

(2)

where σ = ω/v is a new input variable, and the notation
′ represents the derivative with respect to the natural
coordinate s: x′ = dx/ds.

Considering now how complex are the activities performed
during walking, but how simple are models (1) and (2)
herein introduced, a question naturally arises: is the unicy-
cle model well-suited to describe the dynamics of a human
that is walking in a free space?
In order to reply to this question, either the unicycle model

in time domain (1) and in space domain (2) were simu-
lated, fed by the velocities computed by the experimental
data, comparing each simulated path with the correspond-
ing experimental one. This comparison was based on the
Fréchet metric [Alt and Godau, 1995], that the authors
consider the best way to measure the geometrical differ-
ence between two curves, and on the Hausdorff metric,
that, though being less reliable than the previous one, is
definitely less computational expensive.
Fig. 5 shows the results of this validation, obtained using
the dataset presented in Section 2. From the box plots it is
apparent that independently of the time or space domain
or of the chosen metric, the unicycle model is very suited
to describe the dynamics of a walking human.
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Fig. 5. Validation of the unicycle model.

5. CHOOSING THE COST FUNCTION

The approaches to human planning as an optimal control
problem already mentioned in Section 3 reveal that the
choice of the cost function is the most critical issue. In
fact, apart from obvious criteria such as minimisation of
the energy consumption or minimisation of the distance
and the derivative of the curvature, the way humans plan
walking paths depends in general from the situation, from
environmental constraints, and so forth.
In this paper we will therefore focus on the definition of
a cost function that, apart from obviously being experi-
mentally validated, it should be physically grounded and
as simple as possible. To this extent, three different cost
functions, two of which have been already introduced in
previous works, are presented in the following, comparing
the paths they generate with the experimental dataset
mentioned in Section 2.

Energy-based cost function In Puydupin-Jamin et al.
[2012] an energy related cost function was proposed.
Considering the unicycle model in time domain (1), this
cost function can be rewritten in continuous time as follows

J =
1

2

∫ T

0

(
αv2 + ω2

)
dt (3)

where T is the duration of the trajectory, and α is an
unknown parameter that has to be estimated through the
solution of an inverse optimal control problem (for further
details see Puydupin-Jamin et al. [2012]). This parameter
governs how much we penalize control effort v relative to
control effort ω.



As previously mentioned, the cost function introduced
in Puydupin-Jamin et al. [2012] is related to the energy
needed to perform the path, and the underlying rationale
is that humans wants to minimize it.

Hybrid energy/goal-based cost function Following the
same approach already introduced in Puydupin-Jamin
et al. [2012], in Papadopoulos et al. [2013] the authors
proposed a new cost function, that is based on the space
domain unicycle model (2), and accounts either for the
energy related to the control effort σ, and for the distance
between the current state and the final state.
This cost function can be formulated in continuous time
as follows

J =
1

2

∫ S

0

σ2
(
1 + βT∆2

)
ds (4)

where S is the length of the path,

βT = [β1 β2 β3]

is a set of unknown parameters that need to be estimated
through the solution of an inverse optimal control problem,
and (

∆2
)T

=
[(
xP − xPg

)2 (
yP − yPg

)2
(θ − θg)2

]
(
xPg

, yPg
, θg
)

being the final pose of the human.
The rationale behind this cost function is that the distance
of the current state from the goal can be interpreted as a
space-varying weight on the control effort σ.

Modified hybrid energy/goal-based cost function A new
cost function, based on the one already introduced in Pa-
padopoulos et al. [2013], is here considered, with the aim
of simplifying the identification of the β parameters, and
of improving the quality of the planned walking paths.
To this extent, two changes are introduced:

(1) a reduction of the number of parameters, weighting
the Euclidean distance from the actual to the final
human position instead of separately weight the x-
and y-distances;

(2) a normalisation of the Euclidean and angular dis-
tances with respect to their boundary values.

The modified cost function can be thus formulated as
follows

J =
1

2

∫ S

0

σ2
(

1 + γT ∆̃2
)
ds (5)

where

γT = [γ1 γ2]

is a set of unknown parameters that need to be estimated
through the solution of an inverse optimal control problem,
and(

∆̃2
)T

=

[ (
xP − xPg

)2
+
(
yP − yPg

)2(
xPs
− xPg

)2
+
(
yPs
− yPg

)2 (θ − θg)2

(θs − θg)2

]
(xPs

, yPs
, θs) being the initial pose of the human.

The results achievable with the three cost functions here
introduced, in reproducing a human walking path, are
compared in Section 7.

6. SOLVING THE INVERSE OPTIMAL CONTROL
PROBLEM

The basic assumption is that the problem formulation
is assumed to be only “approximately optimal”, while
observations are assumed to be perfect (Puydupin-Jamin
et al. [2012]). Accordingly, the discrete version of the cost
function, say (5), can be rewritten as

J(χ, γ) =
1

2

N−1∑
k=0

δ(k)σ2(k)
[
1 + γT ∆̃2(k)

]
where χT = [ xP yP θ σ ] and δ(k) = s(k)−s(k−1), while
model (2) gives rise to the following system of constraints

g(χ) =


...

xP (k + 1)− [xP (k) + δ(k) cos (θ(k))]
yP (k + 1)− [yP (k) + δ(k) sin (θ(k))]

θ(k + 1)− [θ(k) + δ(k)σ(k)]
...

 = 0

for k = 0, . . . , N − 1.

Defining the Lagrangian of the problem as

L(χ, γ, λ) = J(χ, γ) + λT g(χ)

where λT =
[
λ0x λ

0
y λ

0
θ . . . λ

N−1
x λN−1y λN−1θ

]
, recalling

the necessary conditions for equality constraint optimiza-
tion

∇(χ,λ)L(χ, γ, λ) = 0

and the fact that the Lagrangian is linear with respect to
γ and λ, the inverse optimal control problem can be solved
by minimizing the residual function

min
γ,λ

1

2
‖∇(χ,λ)L(χ, γ, λ)‖2 = min

γ,λ

1

2
‖Az − b‖2 (6)

where zT =
[
γT λT

]
, while A and b depend only on the

collected data.

Finally, in order to ensure that the value of γ resulting from
(6) is actually positive, the solution of (6) is here taken as
the initial guess for the solution of a new optimization
problem, i.e., a constrained version of (6), which reads as

min
γ,λ

1

2
‖Az − b‖2

s.t. γ ≥ 0

7. EXPERIMENTAL RESULTS

This Section presents a comparison, based on the exper-
imental set of paths introduced in Section 2, among the
three cost functions described in Section 5.

First, the paths generated with the methods proposed
in Puydupin-Jamin et al. [2012], herein called “time”
method for brevity, and in Papadopoulos et al. [2013],
herein called “space” method, are compared.
From Fig. 6 it is apparent that the “time” solution,
whatever distance measure is selected (i.e., the Hausdorff
distance, “HD”, or the Frechét distance, “FD”), is not able
to reliably reproduce the collected data. In fact, though
Fig. 6 shows only the paths which are characterised by
the minimum and the maximum error with respect to the
experimental ones, this kind of behaviour is also present in
many other optimised trajectories, omitted here for space
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Fig. 6. The best and the worse path generated with the
Puydupin-Jamin, here called “time”, and with the
Papadopoulos, here called “space”, approach. The
blue lines represent the experimental paths.

limitations. A concise representation of the performance of
the method presented in Puydupin-Jamin et al. [2012], in
reproducing the dataset herein considered, is given by the
statistical analysis of the distance between each generated
path and the corresponding experimental one (see Fig. 7)
and by the comparison of the paths that give rise to the
median distance (see Fig. 8). It is opinion of the authors
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Fig. 7. Statistical analysis of the distance between each
generated path and the corresponding experimental
one.

that this kind of error in reproducing data is not only
due to the fact that the chosen value of α may not be
the optimal one, but also to the selected cost function (3)
which is inherently not able to replicate the human way of
planning paths.
In some cases both the time and the space methods man-
age to reproduce the human path - but also in those
cases, the space method seems to be closer - but there
are several other cases in which the time method fails.
The performance improvement achieved by the cost func-
tion (4) is apparent, either from a qualitative comparison
among the paths generated by the two approaches and the
corresponding experimental ones (see Fig. 6), and from
the statistical analysis of the error distances (see Fig. 7).
Further, the Frechét distance between the generated path
and the experimental one (see Fig. 6) shows that the space
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Fig. 8. A comparison among the paths, corresponding to
the median distance error, generated with the time
(red line) and the space (black line) approach and the
corresponding experimental path (blue line).

method outperforms the time approach in the worse case
and in the best case as well.

The results achieved with the approach presented in Pa-
padopoulos et al. [2013] have been further improved by the
cost function (5) herein proposed. The reduction of the
distance error is apparent from the qualitative analysis of
the best and the worse path (Fig. 9), and of the path
corresponding to the median distance error (Fig. 11).
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Fig. 9. The best and the worse path generated with
the proposed approach. The blue lines represent the
experimental paths.

Further, the quantitative analysis shows that the Frechét
distance between the generated path and the experimental
one has been reduced, with respect to the space method
presented in Papadopoulos et al. [2013], of 20% in the case
of the worse path and 80% for the best path (see Figs. 6
and 9).
Finally, the statistical analysis (Fig. 12) confirms that the
previous conclusions hold for the whole dataset. As it is
clearly shown by the comparison between the box plots
obtained with the space approach and with the one herein
proposed, whatever distance measure is considered, the
last one yields a definite improvement in the reproduction
of the human walking paths.
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to the median distance error, generated with the
proposed approach (black line) and the corresponding
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8. CONCLUSION

A comparative evaluation of human motion planning poli-
cies has been described in this paper. The basic assump-
tion, widely adopted in the literature, is that humans plan

their motions solving an optimal control problem, with
the unicycle as the dynamic model and with an unknown
cost function, to be selected in such a way that planned
paths are human-like. In particular, a modification of a
recently proposed approach has been compared with two
approaches adopted in previous works, with reference to
experimental data. The main features of the approach are
the fact that the unicycle model has been rewritten with
the natural coordinate as the independent variable, the
proposal of a novel cost function, weighting not only the
energy needed to perform the path but also the current
distance of the human with respect to the target and the
adoption of the Frechét metric to assess the similarity
of experimental and estimated paths. The performance
improvements with respect to the previous approaches are
apparent, either from a qualitative point of view and from
a statistical analysis of the error distances.
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