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Abstract

This manuscript presents a technique that allows Equation-
based Object-Oriented Modelling Tools (EOOMT) to ex-
ploit Dynamic Decoupling (DD) for partitioning a complex
model into “weakly coupled” submodels. This enhances
simulation efficiency, and is naturally keen to parallel in-
tegration or co-simulation. After giving an overview of the
problem and of related work, we propose a method to auto-
mate DD by means of a novel structural analysis of the sys-
tem – called “cycle analysis” – and of a mixed-mode inte-
gration method. Also, some considerations are exposed on
how the presented technique can be integrated in EOOMT,
considering as representative example a Modelica transla-
tor. Simulation tests demonstrate the technique, and the re-
alised implementation is released as free software.

Keywords dynamic decoupling, model partitioning, effi-
cient simulation code generation

1. Introduction and Motivation

Equation-based Object-Oriented (EOO) modelling lan-
guages are known to possess a number of interesting advan-
tages, and in the context of this work, two are particularly
relevant. First, the EOO modelling paradigm is inherently
suited for building modular, multi-physic models. Second,
the model designer has not to take care of how the system
will be simulated, just focusing on how to write the equa-
tions of its components. In one word, with EOO Modelling
Tools (EOOMT) one handles the complete model by just
aggregating components and acting on them. The translator
included in typical EOOMT is then in charge of manipu-
lating all the gathered equations, and producing efficient
simulation code [5, 8].

As long as the obtained simulation efficiency is suffi-
cient, the possibility of managing complexity at the compo-
nent level has practically no cost. However, there are some
cases where to achieve the desired efficiency, approxima-
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tions need introducing, and EOOMT are neither meant nor
suited for that. As will be discussed in this work, approx-
imations can be introduced either by altering some equa-
tions in some components, or by acting on the numerical
solution of the complete model. And while with EOOMT
the first action is natural, the second is not at all. This rules
out several powerful approximation techniques aimed at
enhancing simulation speed, e.g., the Dynamic Decoupling
(DD) one [2–4] treated herein.

To enter the subject, it is convenient to specify why in-
troducing approximation at the level of the solution is “un-
natural” in EOO modelling. The main reason is that the
possibility/opportunity of doing so depends on properties
of the whole model, not of the individual components, and
in the typical toolchain of EOOMT no user interaction is
envisaged at that point. Moreover, assuming that the use of
any approximation technique requires some parameters, it
is necessary to provide the user with the necessary informa-
tion to give them a value, and to accept his/her choices, in
a comprehensible manner, manageable by people who are
more experts of physics than of simulation theory.

In this work we refer as “EOO Modelling Tool” to
a Modelica translator, to allow exemplifying the (more
general) presented ideas. For a Modelica translator, the
EOO modelling toolchain can be synthetically depicted as
in Figure 1.
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Figure 1. The typical EOO modelling toolchain.

For our purposes, said toolchain has to be extended –
and in some sense “opened” – as suggested in Figure 2, in-
troducing some (clearly optional) automatic system-wide
analysis, and taking care of having the user interact with
simple enough information despite operating at the whole
system level. In this work we present a solution assuming
that the desired type of approximation is DD, therefore tai-
loring the analysis and the use of the produced informa-
tion to that case, but nonetheless the way of acting on the
toolchain is general with respect to the approximation type.
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Figure 2. Extending the EOO modelling toolchain.

The rest of the manuscript is organised as follows. Sec-
tion 2 reviews some relevant literature and provides a more
detailed motivation for the presented work, specialising to
the DD technique. Section 3 is devoted to the DD tech-
nique, and particularly to how it is structured – into an anal-
ysis and a simulation part – so as to be applicable to the
addressed context. A few illustrative examples are then re-
ported in Section 4. Some more general considerations are
made in Section 5 on how to integrate the presented tech-
nique in modern EOOMT, ending with some details on an
implementation offered as free software to the community.
Finally, Section 6 draws some conclusions, and sketches
out future research developments.

2. Related Work and Contribution

In this section, we motivate the presented research by relat-
ing DD to other approximation techniques for improving
simulation efficiency, with specific emphasis on their ap-
plicability and convenience in EOOMT.

Referring to Figure 1, the chain of operations of EOO
modelling translators, from component equations to simu-
lation code, can be broadly divided into two parts.

The first part, which we call acting on the continuous-

time equations, transforms the DAE system coming from
the flattening phase, into a causal ODE one. This can be
done without altering the equations’ semantic, by resorting
to techniques, such as the Tarjan algorithm, alias elimina-
tion, index reduction and so forth [5]. The same operation
can also be done by accepting some semantic alteration in
exchange for an efficiency improvement. The techniques of
election for such a purpose are, e.g., MOR [1] or scenario-
based [13] approximations.

The second part of the EOO modelling toolchain, which
we call acting on the discrete-time solution, consists of
taking the mentioned ODE model as the basis to gener-
ate suitable routines that, once linked to the numeric solver
of choice, result in the required simulation code. Assum-
ing that acting on the discrete-time solution is done “cor-
rectly”, i.e., preserving numerical stability, also in this case
two ways of operating can be distinguished. The first way
does not alter the solution semantic, and the chosen dis-
cretisation method is applied as is. In this case, errors in
the solution only come from the inherent imperfection of
the considered method. The second way conversely alters
the semantic of the discrete-time system, by deliberately
deviating from the natural application of the chosen dis-
cretisation method. Notice that most of the co-simulation
techniques fall in this class naturally.

In this manuscript we concentrate on this last type of
operation, where a technique of election is DD [2, 14]. For

the purpose of this section, suffice to say that this technique
aims at partitioning the monolithic system into submodels,
based on time-scale separation. The method is particularly
of interest – as will be detailed better in Section 3 – because
it can be divided into two well separated phases: an analysis
part performed on the overall model, and a simulation part
that either can be monolithic or makes use of co-simulation
technique.

To motivate the choice of focusing on DD, we now
briefly consider the major possible alternatives, and evi-
dence the advantages of our proposal.

2.1 Alternatives Approaches

As already stated, among the techniques that act on the
continuous-time equations, MOR ones are the most adopted,
and there exists a vast literature on the matter. MOR is
based on the idea of approximating a certain part of a
high-dimensional state space of the original system with
a lower-dimensional state space, performing a projection.
Very roughly speaking, the main differences among MOR
techniques come from the way the projection is performed.

Most MOR techniques have been developed for linear
systems [1], and this hampers their application to object-
oriented models, that usually are high-dimensional and
nonlinear; developing effective MOR strategies for non-
linear systems is quite a challenging and relatively open
problem.

In the literature, some extension to the nonlinear case are
present, e.g., based on linearisation or Taylor expansion [7],
or bilinearisation [15], as well as functional Volterra series
expansion [10], followed by a suitable projection. Other in-
teresting extensions worth mentioning are those based on
Proper Orthogonal Decomposition (POD) [6], that produce
approximate truncated balanced realisations for nonlinear
systems [16], often exploiting POD to find approximate
Gramians [11]. The main problem with those extensions
is that, of the former, practical implementations typically
stick to quadratic expansions, strongly limiting the simpli-
fication capabilities. As for the latter, the cost of evaluating
the projected nonlinear operator often remains very high,
and reduces computational performance.

Recently, other works dealing with model reduction
specifically conceived for object-oriented models have ap-
peared [12, 13]. The main idea is that one can define some
operation to be performed on the nonlinear system, e.g.,
neglecting a “term”, linearise a part of the model, and so
on, and use some ranking metrics to identify a priori which
is the “best” (single) manipulation that can be done on the
model. Apparently, the limit of this approach lies in the fact
that ranking all the possible manipulation combinations is
not feasible. Moreover, there is no guarantee that perform-
ing the manipulations in the ranked order will bring to the
optimal manipulation. Another problem is the high cost of
generating the reduced order models, due to necessity of
computing “snapshots” in the time domain, which in turn
requires performing numerous simulations of the original
nonlinear system. Furthermore, this approach is scenario-
based, i.e., the simplified model is guaranteed to be good
only for a set of initial conditions, a set of inputs and a time
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span. If the scenario is changed, the overall manipulation
must be performed again, limiting again the applicability
of the method.

The old idea of DD has also been recently reconsidered,
for example by the Transmission Line Modelling (TLM)
approach of [18]. This, however requires that the analyst
introduces decoupling by deliberately acting on the model
based on his/her intuition. This work conversely aims at
having decoupling emerge from an automated analysis of
the model.

2.2 A Brief Comparison

Based on the previous discussion, we now point out the
advantages of the proposed technique with respect to the
analysed alternatives.

In comparison with MOR, our proposal does not alter
the state vector, nor does it involve base changes in the
state space. Also, instead of attempting to simplify the
model in a view to monolithic solution, we go exactly in
the opposite direction, as the model is not reduced but
partitioned. This can in turn be exploited in two ways. One
is to ease a monolithic solution, in some sense adapting the
model to the used (single solver) architecture. The other is
to conversely tailor the solution architecture to the model
as analysed and partitioned by the method; this can be
used to fruitfully employ parallel simulation, or even co-
simulation. Finally, the proposed method is naturally keen
to be applied in a nonlinear context.

With respect to scenario-based approximations, the
most computing-intensive part of the proposal (as will be
explained later on) is simply not scenario-based: informa-
tion related to the considered scenarii come into play only
at a later stage, and this separation results in lightening
the computing effort. Furthermore, the proposal does not
alter the model equations, thus being less exposed to the
possible unpredictable effects of local modifications at the
overall system level.

The next section will delve into details on the proposed
technique, thereby providing evidence for the statements
made so far.

3. Dynamic Decoupling

Multi-physics systems are usually made of parts evolving
within different time-scales. For example, in mechatronic
systems a “slow” mechanical part is often controlled by
“fast” electric circuits or by a hydraulic drive. The under-
lying idea of DD is to find a way to separate the different
dynamics present in the model and to numerically integrate
them with a suitable mixed-mode method, in order to im-
prove simulation efficiency.

DD is composed of two subsequent phases, termed here
analysis and decoupled integration. The former consists
in performing an offline structural analysis of the system
and in identifying which are the time-scales involved in the
model. The latter exploits the information coming from the
analysis to improve simulation efficiency.

Both phases can be carried out with multiple techniques.
For the analysis phase, we propose here a novel method,

called cycle analysis, that carries most of the merit for
the applicability of the entire technique to the nonlinear
case. For the latter, we conversely resort to mixed-mode
integration.

3.1 Cycle Analysis

Cycle analysis is based on the idea that explicit integra-
tion methods are the most suited to enhance simulation
speed [5]. Their computational effort is relatively low and
constant, and the number of calculations per step can be
easily estimated. However, those methods show their lim-
its when dealing with stiff-systems. For simplicity, in the
following we consider the Explicit Euler (EE) integration
method, but similar (and less restrictive) results can be ob-
tained for other explicit single-step methods, e.g., Explicit
Runge-Kutta of any order.

The main idea of the cycle analysis – and of DD, in
general – is that in a causal ODE model, both each variable
and each equation can be associated with a characteristic
time-scale.

A first possible idea to achieve this is to perform an
eigenvalue analysis of the linearised system, and to par-
tition the state space, as spanned by the eigenvectors, on
the basis of the corresponding time constants (or natural
frequencies). However, this is not always a good idea, be-
cause it involves a coordinate transformation; if the linear
system involved in the eigenvalue analysis comes from the
linearisation of a nonlinear one, the management of that
transformation results in additional computations at each
integration step. Different criteria for state space partition-
ing are thus advisable, like that proposed in [17].

Coming to our proposal, consider the state space form
of a continuous-time ODE system

ẋ = f(x,u)

that discretised with EE with an integration step h yields

xk+1 = xk + h · f (xk,uk) . (1)

Suppose now that the system is at an asymptotic stable
equilibrium, i.e., xk+1 = xk. If a small perturbation is
applied to a single state variable xk, a transient occurs, and
two things may happen:

1. the perturbation affects the other state variables, how-
ever without in turn re-affecting xk;

2. the perturbation, after some integration steps, re-affects
xk.

In the first case, no numerical instability can occur, but
in the second case there is a “dependency cycle” among
some state variables that may lead to unstable behaviours,
depending on how the perturbation propagates.

The proposed method detects the dependency cycles
that are present in the system, and defines conditions under
which the perturbation cannot lead to numerical instability.

The first step in cycle analysis is to build the dependency
digraph G = (N,E) associated with the ODE model. In
particular, there is a node n ∈ N for each state variable,
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and the set of edges E ⊆ N ×N is formed as

ei,j = h · ∂fi
∂xj

.

In other words, the Jacobian of the model corresponds
to the adjacency matrix of the weighted graph. The weights
come from (1) and characterise the way the perturbation
propagates.

The second step is to detect the set C of all cycles con-
tained in the digraph G. Unfortunately, the problem of
finding all the cycles in a directed graph has complexity
O
(

2|E|−|N |+1
)

, as shown by a vast research in the oper-
ation research domain [9, 19, 20]. This is of course a limi-
tation with strongly connected graphs, but sparse ones are
more common in real applications, especially if weak cou-
plings exist. On the other hand, it is worth stressing that
the cycle analysis must be performed only once for a given
model, during an offline phase before the simulation is
started. According to practical experience, spending some
additional time to perform a structural analysis aimed at
speeding up the simulation is an acceptable tradeoff, espe-
cially when the simulation is run many times. Anyway, in
all the performed tests (with up to 100 state variables), the
analysis phase always took less than one second on a note-
book with a 2.4GHz Intel Core 2 Duo processor and 4GB
of RAM.

At this point, for every cycle c ∈ C detected in G a cycle

gain can be defined.

DEFINITION 1. A cycle gain µc of a cycle c ∈ C is

µc =
∏

xi,xj∈c

ei,j = hL ·
∏

xi,xj∈c

∂fi

∂xj

where ei,j are the edges involved in the cycles and L is the

length of the cycle.

The meaning of this gain is related to how the pertur-
bation propagates. Starting from the computed cycle gains,
for each cycle an inequality in the form

|µc| ≤ α ⇒ 0 < h ≤ L
√
α ·

∣

∣

∣

∣

∣

∣

∏

xi,xj∈c

∂fi

∂xj

∣

∣

∣

∣

∣

∣

−
1

L

(2)

is written, where α > 0 is a design parameter of the
method, related – as discussed later on – to the required
simulation accuracy. Suffice for now to say that lower val-
ues of α make the method less keen to consider a certain
coupling “weak”.

So far, each cycle has been associated with a constraint
on the integration step, i.e., with an upper bound for the
integration step which prevents the perturbation from pro-
ducing unstable behaviours.

Finally, each variable xi is associated with the most
restrictive constraint on hxi

among the set of cycles Cxi
=

{c ∈ C|xi ∈ c}, i.e., formally

hxi
=max h

s.t. h > 0,

0 < hi ≤ L
√
α ·

∣

∣

∣

∣

∣

∣

∏

xj,xk∈c

∂fj

∂xk

∣

∣

∣

∣

∣

∣

−
1

L

, ∀c ∈ Cxi
.

3.2 Decoupled Integration

The second phase of DD is decoupled integration, which
exploits the partition coming from cycle analysis in a view
to improve simulation efficiency. Among the various pos-
sible ways to do so, we consider here the use of a mixed-
mode integration method. The underlying idea is that im-
plicit methods are able to simulate stiff systems with larger
integration periods, at the cost of solving a nonlinear set
of algebraic equations at each step, while explicit ones are
better in terms of performance but cannot deal with stiff
systems equally well. Having separated the system in (at
least) two parts with different time scales, it is possible to
use an implicit method for the fast part(s), and an explicit
one for the slow part(s), exploiting the advantages of both
kinds of integration algorithms.

Coming back to the proposal, the discrete-time system
associated with the continuous-time one reads







x
s
k+1 = x

s
k
+ h · f

(

x
s
k
,x

f
k
,uk

)

x
f
k+1

= x
f
k
+ h · f

(

x
s
k+1

,x
f
k+1

,uk+1

)

showing that the fast and the slow parts are integrated with
the Implicit Euler (IE) and the EE method, respectively.

This means that the fast component xf
k+1

can be com-
puted considering x

s
k+1

as an input. Figure 3 shows the
resulting mixed-mode integration scheme.

EE

IE

uk
x
s
k+1

x
f
k+1

Figure 3. Explicit/Implicit Euler integration scheme.

4. Application Examples

4.1 DC Motor

The DC motor is a very simple example of system with two
well separated time scales (electric and mechanic), and can
be represented by a third order model in the form







L · İ = −R · I − km · ω + u(t)
J · ω̇ = km · I − b · ω − τ(t)

ϕ̇ = ω

(3)

where L = 3mH is the armature inductance, R = 50mΩ
is the armature resistance, J = 1500 kg m2 is the inertia,
b = 0.001 kg m2 s−1 is the friction coefficient, and km =
6.785V s is the electro-motorical force (EMF) constant of
the motor. These parameter values correspond to those of a
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real system. The inputs are the armature voltage, u(t), and
the torque load, τ(t), respectively. In the given example,
u(t) is 500V, and the torque is of 2500N m.

The cycle analysis leads to the constraints

I : h ≤ 0.060

ω : h ≤ 0.313

ϕ : h ≤ +∞

Hence, choosing an integration step h = 0.3 induces
a partition of the system that is natural, as it clearly sepa-
rates the electric components from the mechanic ones. The
constraint associated with ϕ comes from the fact that there
is a pure integral action that does not influence the cycle
analysis. Figure 4 shows the simulation results.
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Figure 4. Simulation results of Model (3). Dashed lines
represent the real trajectories, while the solid lines are the
trajectories obtained with DD.

Table 1 shows the simulation statistics for different in-
tegration methods. It is worth noticing that the dimension
of the system the Newton iteration has to solve is reduced
from 3 to 1 in the mixed-mode method. Notice also that the
EE method needs a smaller step size, hence h = 0.05 was
chosen for numerical stability reasons. Apparently, using
DD improves simulation efficiency also in this very simple
case.

Mixed-mode BDF IE EE

# Steps 28 136 28 162
# Function ev. 86 157 86 –
# Jacobian ev. 2 3 2 –
# Fun. ev. in Jac. ev. 4 9 8 –
# Newton iterations 58 153 58 –
# Newton fail 0 0 0 –
Accuracy 1.118 – 1.213 10.043
Sim time 0.04s 0.05s 0.06s 0.04s

Table 1. Simulation statistics for Model (3).

4.2 Counterflow Heat Exchanger

This example refers to a counterflow heat exchanger with
two incompressible streams (Figure 5).

Ta,i pa,i pa,o

Wall
pb,o Tb,i pb,i

L

Ta,1

Tw,1

Tb,N

Figure 5. Counterflow heat exchanger scheme.

Both streams and the interposed wall are spatially dis-
cretised with the finite volume approach, neglecting axial
diffusion in the wall – as is common practice – and also
in the streams (zero-flow operation is not considered for
simplicity). Taking ten volumes for both streams and the
wall, with the same spatial division (again, for simplicity)
leads to a nonlinear dynamic system of order 30, having as
boundary conditions the four pressures at the stream inlets
and outlets, and the two temperatures at the inlets. More
precisely, the system is

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






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







pa,i − pa,o =2cf,aL/(ρaπ
2r5) · wa|wa|

pb,i − pb,o =2cf,bL/(ρbπ
2r5) · wb|wb|

caρaπr
2 L

N
Ṫa,j =waca · (Ta,j−1 − Ta,j)

+γa

(

wa

wa,nom

)0.8

πr
L

N
· (Tw,j − Ta,j)

cwρwπr2
L

N
Ṫw,j =− γa

(

wa

wa,nom

)0.8

πr
L

N
· (Tw,j − Ta,j)

−γb

(

wb

wb,nom

)0.8

πr
L

N
· (Tw,j − Tb,N−j+1)

cbρbπr
2 L

N
Ṫb,j =wbcb · (Tb,j−1 − Tb,j)

+γb

(

wb

wb,nom

)0.8

πr
L

N
· (Tw,N−j+1 − Tb,j)

(4)
where T stands for temperature, w for mass flowrate, p
for pressure, cf for the friction coefficient, c and ρ for
(constant) specific heat and density, and γ the coefficient of
heat transfer; the a, b and w subscripts denote respectively
the two streams and the wall, while j ∈ [0, N ] (j = 0 for
boundary conditions) is the volume index, counted for both
streams from inlet to outlet, the wall being enumerated like
stream a; the i and o subscripts, finally, stand for “inlet”
and “outlet”. Table 2 shows the parameter values used in
the example.

Parameters

pa,i 1.216kPa r 0.1m ρb 3500kg/m3

pb,i 1.216kPa s 0.005m ρw 4200kg/m3

pa,o 1.013kPa cf,a 0.1 γa 100W/(m2K)
pb,o 1.013kPa cf,b 0.2 γb 100W/(m2K)
Ta,i 323.15K ca 4200J/(kg K) wa,nom 0.5kg/s
Tb,i 288.15K cb 3500J/(kg K) wb,nom 0.5kg/s
N 10 cw 3500J/(kg K)
L 30m ρa 4200kg/m3

Table 2. Parameter values of Model (4).

In this example, contrary to the previous one, there is
no neat physical separation between the time scales of the
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involved dynamics. In fact, the cycle analysis leads to the
constraints

Ta,j : h ≤ 10.383

Tb,j : h ≤ 13.327

Tw,j : h ≤ 13.658

which show that the time scales associated with the vari-
ables are quite close one to another. Due to the physical
nature of this system, DD is not expected to take particular
advantage of the partition.

Choosing an integration step h = 13.0 yields a partition
that considers the Ta,j as the fast while the Tb,j and Tw,j

as the slow states. Figure 6 shows the simulation results
— notice that the temperatures are reported with different
scales.
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Figure 6. Simulation results of (4) with α = 1.0. Dashed
lines represent the real trajectories, while the solid lines are
the trajectories obtained with DD.

Table 3 shows the simulation statistics for different in-
tegration methods. It is worth noticing that the dimension
of the system is reduced from 30 to 10 in the mixed-mode
method. Also, the EE method needs a smaller step size,
hence h = 10.0 was chosen, again for numerical stability
reasons.

Mixed-mode BDF IE EE

# Steps 38 212 38 50
# Function ev. 114 241 114 –
# Jacobian ev. 2 4 2 –

# Fun. ev. in Jac. ev. 22 120 62 –
# Newton iterations 76 237 76 –

Accuracy 0.017 – 0.014 0.059
Sim time 0.04s 0.15s 0.06s 0.08s

Table 3. Simulation statistics for Model (4) (h = 13.0).

As can be seen in (2), the integration step depends on
the choice of α. Choosing a value of α = 1.0 is usually
a good choice—in fact the value of α used in the previous

examples. This choice is however quite aggressive from the
point of view of accuracy, even if the low frequency dynam-
ics are caught (see, for instance, Tb,j in Figure 6). Choosing
a smaller value of α, e.g., α = 0.5, will conversely yields a
more conservative partitioning but more accurate a numer-
ical solution. In particular, the output of the cycle analysis
changes to

Ta,j : h ≤ 5.191

Tb,j : h ≤ 6.664

Tw,j : h ≤ 6.829

and choosing h = 6.0 leads to the same partition as be-
fore, but producing more accurate solutions (see Figure 7).
Apparently enough (see Table 4), the performance of the
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Figure 7. Simulation results of (4) with α = 0.5. Dashed
lines represent the real trajectories, while the solid lines are
the trajectories obtained with DD.

mixed-mode method is still better in terms of simulation
speed, and the accuracy is improved.

Mixed-mode BDF IE EE

# Steps 83 213 83 100
# Function ev. 234 243 243 –
# Jacobian ev. 4 4 4 –

# Fun. ev. in Jac. ev. 44 120 124 –
# Newton iterations 151 239 160 –

Accuracy 0.011 – 0.008 0.018
Sim time 0.08s 0.15s 0.16s 0.10s

Table 4. Simulation statistics for Model (4) (h = 6.0).

The presented examples have been kept as small as pos-
sible in order to improve results readability, but the method
can be applied to larger models as well. For example, by
changing in (4) the parameter N to 30, the model becomes
of order 90, and the obtained simulation results are sum-
marised in Table 5.
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Mixed-mode BDF IE EE

# Steps 125 304 125 250
# Function ev. 336 337 345 –
# Jacobian ev. 6 6 6 –

# Fun. ev. in Jac. ev. 186 540 546 –
# Newton iterations 211 333 220 –

Accuracy 0.014 – 0.014 0.084
Sim time 0.21s 0.43s 0.41s 0.20s

Table 5. Simulation statistics for Model (4) (h = 4.0).

4.3 Remarks

The presented examples prove the usefulness of the ap-
proach, and show its potentialities, concluding the presen-
tation of the DD technique. However, a last statement need
motivating, i.e., the DD technique can complement existing
EOOMT. To this end, we need discussing how to insert the
presented technique in a manipulation toolchain of modern
EOOMT (Section 5).

5. A Unifying Manipulation Toolchain

As already stated, nowadays MOR techniques do not allow
to introduce approximations in the solution of DAE sys-
tems, neither acting on equations (e.g., MOR techniques)
nor acting on the solution (e.g., DD). In this section we pro-
pose a complementing manipulation toolchain that bridges
those concepts, without altering the classical manipulation
framework, but adding some useful functionalities for the
model designer (see Figure 8).

In particular, the idea is that if the analyst wants to per-
form some approximations in order to improve simulation
speed, he/she needs to be able to specify high-level prop-
erties, e.g., upper bounds on the approximation error, and
which technique must be used for it, e.g., the MOR tech-
nique as well as whether or not the use of DD is advisable.

Figure 8 depicts the proposed toolchain of model ma-
nipulations, from the EOO description to the simulation
algorithm ready for code generation. The decision nodes
(the diamond ones in the diagram) show where additional
manipulation for simplification can be performed. If, in ev-
ery decision node, the simplification is not performed, the
classical manipulation toolchain comes out. Otherwise, a
simpler model is produced at the end of the toolchain. The
diagram also reports some coloured dashed boxes on the
right side. Red boxes stand for already available method-
ologies that can be automatically applicable at this level
of the manipulation, while green ones stand for potential
methodologies which may be introduced as automatic pro-
cedures, but to date not exploited in the context of EOO
modelling.

5.1 An Example Toolchain Implementation

To prove the feasibility of extending an EOO modelling
toolchain as here suggested, the task was actually carried
out by using JModelica1 as the Modelica translator, export-
ing the model as a Functional Mockup Unit (FMU), and

1 http://www.jmodelica.org
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Figure 8. Activity diagram of the modified manipulation
toolchain.

employing Assimulo2 for the numerical integration, having
developed the mixed-mode integrator ad hoc.

More in detail, the toolchain of Figure 8 was modified –
for the case when “simplify” is desired – as shown in Fig-
ure 9: the output of the continuous-time part (the manipu-
lated model.mo) is exported by means of the Functional
Mockup Interface (FMI) to model.fmu, elaborated by the
external python module jd2.py that performs the cycle
analysis (i.e., takes care of the “discretisation” and the “so-
lution manipulation” blocks); the partitioned model is then
simulated with Assimulo, with the developed mixed-mode
method. It is worth noticing that the integration of a new
functionality (like DD) into an EOO modelling toolchain
was greatly eased by adopting, for the various phases, tools
that allow for some common interchange format—a feature
of great importance indeed.

The developed code, including the reported examples, is
available as free software, within the terms of the Modelica
License v2, at the URL http://home.dei.polimi.

it/leva/jd2.html.

6. Conclusion and Future Work

A technique was presented to allow equation-based EOOMT
to take profit of DD, partitioning a complex model into
“weakly coupled” submodels in a view to enhancing the

2 http://www.jmodelica.org/assimulo
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obtained simulation efficiency. Also, differently from some
alternatives that were comparatively reviewed, the tech-
nique is naturally keen to the use of parallel simulation, or
co-simulation.

The technique is based on a structural analysis of the
system – called here “cycle analysis”, and novel – coupled
to a convenient use of mixed-mode integration. Some con-
siderations were made on how the presented technique can
be integrated in EOOMT, considering a Modelica transla-
tor as example. Simulation tests were reported to illustrate
the achieved benefits, and the realised implementation was
made available as free software to the community.

Future work will concern the exploitation of the men-
tioned keenness to co-simulation, and a tighter integration
into EOOMT by developing a consistent and informative
user interface. Also, the analysis will be deepened by defin-
ing convenient “separability indices” – on which some pre-
liminary ideas are already available – to form the basis
for said informative interfaces, and possibly to further au-
tomate the overall decoupling process. Finally, models of
higher complexity will be addressed, so as to possibly im-
prove the time performance of the software implementa-
tion.
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