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Abstract. The application of feedback control to computing systems is a promising research
area, but has to date been hindered by the almost unanimously perceived complexity in creating
control-oriented system models. Computing systems are in fact considered very hard to describe
with dynamic models allowing for simple and powerful control design tools, so that complex
ones need bringing in to the detriment of efficiency and result assessment. In this work a novel
approach to the modelling of computing systems is proposed, in a view to explain and partially
avoid such complexity, by capturing only their relevant dynamics with the simplest possible
models. The approach is shown to work at least on two relevant case studies, so that a significant
generality can be inferred from it, being able to reproduce the relevant parts of the system’s
behaviour and paving the way to control design and synthesis.
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1. INTRODUCTION

The complexity of many computing system functionalities
is nowadays abruptly increasing. To give just one exam-
ple, consider the Linux scheduler. In the Kernel version
2.4.37.10 (September 2010) all of its code was contained
in a single file of 1397 lines. In version 2.6.39.4 (August
2011) the scheduler code is spread among 13 files for a
total of 17598 lines. Other examples could be given, but
are omitted for space limitations.

Indeed, when such “explosions” are experienced, the over-
all design approach is to be somehow reconsidered. Observ-
ing the matter from a modelling-oriented standpoint, and
not limiting the scope to the scheduler example, it can be
noticed that hardly any computing systems functionality
has been conceived and developed based on a dynamic
model of some physical phenomenon to be controlled.

In the scheduler case, to stick to the example, the phe-
nomenon is how the CPU is distributed among the running
tasks, depending on control actions (the allotted times-
lices) and exogenous disturbances (task blockings, resource
contentions, and so on).

The situation just sketched has quite clear historical
reasons. Suffice to say that, while in any other context
controlled objects can be modelled based on physical (first)
principles, this is not the case for computing systems,
because there the “physics” is created by the system
designer him/herself.

In the absence of a modelling framework, system design is
carried out directly in an algorithmic setting, leaving the
engineer without any means to assess its behaviour in the

sense that term is given in the system and control theory
domain.

While such a scenario could to date be tolerated, given the
mentioned complexity rate increase, it cannot be assured
that said tolerability will carry over to the future.

In fact, as “more physics” is created, the absence of a
rigorous dynamic description of it may sooner or later
pose intractable problems as for its governance. As a
consequence, rigorous – and possibly simple – modelling
frameworks to ground system design upon are needed.

The main message this paper wants to convey, is that
if one accepts to re-design part of said system, such a
framework can be found by (usefully) limiting the model
scope to describing the real physical phenomenon on which
the addressed aspects of the system behaviour depend. If
this is done, surprisingly simple formalisms can be used—
a noticeable example indeed of process/control co-design,
and a relevant step forward with respect to previous
research as presented e.g. in Hellerstein et al. (2004).

This paper concentrates on the modelling side of the
problem, by showing the ideas above at work. Some words
are spent on the consequent advantages in terms of system
(and control) design, leaving however the matter to other
works.

2. THE QUEST FOR A PHYSICS

At the very core of any computing system behaviour there
is some strictly physical phenomenon. For example, in the
case of an operating system scheduler, that phenomenon
has the form accCPU(k) = accCPU(k − 1) + burst(k) +
disturbance(k), where accCPU is the CPU time accumu-



lated by a task, burst is the CPU timeslice allotted to the
task, and disturbance accounts for any difference between
burst(k) and the actual CPU use by the task. A similar
model can be obtained considering the present state of an
application’s progress toward its final goal which depends
on that at the last resource arbitration instant and on the
allotted resources at that instant; other examples can be
found but the obtained models are almost invariantly very
simple.

In any case, what happens ultimately depends on ex-
tremely fine-grained facts, down to the detailed behaviour
of any single assembler instruction and electronics tran-
sient. This makes computing systems different from most
other objects to model, since in them, the fine-grained
one is often the only physical level that can be rigorously
defined. In thermal controls, for example, one can avoid
treating fine-grain phenomena (in that case, molecular
motions) since there exist suitable macro-physic entities
(e.g., temperature or enthalpy) that allow to write rigorous
balances (e.g., of energy) to base dynamic models upon.

In the development of computing systems, in addition,
no set of “first principles” has de facto ever been sought.
Sticking again to the scheduling example, action policies
are typically defined as “give the CPU to the task with
the earliest deadline” by foreseeing their effect in some
nominal conditions (for a schedulable task pool, doing so
there will be no misses).

In the addressed domain, in other words, there is classi-
cally no distinction among the behaviour of the system in
the absence of such actions, the desired behaviour of the
same system, and the way actions are to be determined
based on the above. There is no evidence, in other words, of
the fundamental elements of a (control-oriented) modelling
process.

Deepening the analysis, one may object that many works
deal with computing system control, and do use control-
theoretical methodologies. This is true, but virtually all
of them take the computing system as is and close loops
around it (e.g., aiming at a certain CPU distribution by
altering task deadlines). Doing so however requires to
model the core phenomenon plus all the “created physics”
around it (e.g., the existing deadline-based scheduler).

In the authors opinion, the presence of such “unconsciously
created” physics is a major reason for the complexity of
most computing systems’ models, at least as far as the
ultimate scope of said models is to design parts of those
systems in the form of controllers. To circumvent the
problem, one should thus in the first place evidence the
core phenomenon, i.e., that part of the system behaviour
that really relies on physics and cannot be altered (the
examples later on will clarify). Most often, modelling that
phenomenon is enough to describe the system in a view
to suitably control it. In some cases, in addition, the so
obtained models will be natively (almost) uncertainty-free,
making control design and assessment very straightfor-
ward. In other cases, there may be relevant uncertainty, or
– in other words – some aspects of the system behaviour
will not admit a clear physical interpretation. In such
cases, the advice is to figure out some convenient grey box
description based on qualitative considerations on input-
output relationships. As will be shown, this approach gen-

erally leads to more complex but still tractable models:
control design may be correspondingly harder, but still
there will be the possibility of a rigorous assessment.

In the following, some examples are shown of how the
proposed approach leads to dynamic models of computing
system components that can successfully serve the evi-
denced needs, while being very simple and thus suitable
for powerful and rigorous analysis and control result as-
sessment.

3. EXAMPLES AND APPLICATIONS

3.1 A unified framework for task scheduling

This section shows how the task scheduling in a preemptive
single-processor system can be fully treated having as
model class that of discrete-time dynamic systems, in some
cases even linear and time-invariant. A few words are also
spent on the natural attitude of said modelling formalisms
to scale up towards, for example, multicore or multipro-
cessor contexts, where any other modelling formalism and
design approach do experience severe difficulties.

Consider a single-processor multitasking system with a
preemptive scheduler, preemptive meaning that the sched-
uler can interrupt the current task and substitute it with
another one. Let N be the number of tasks to schedule.
Define the round as the time between two subsequent
scheduler intervention. Let the column vectors τp(k) ∈ R

N ,

τr(k) ∈ R, ρp(k) ∈ R
N , b(k) ∈ R

n(k) and δb(k) ∈ R
n(k),

1 ≤ n(k) ≤ N ∀ k represent, respectively,

• the CPU times actually allocated to the tasks in the
k-th round,

• the time duration of the k-th round,

• the times to completion (i.e., the remaining CPU time
needed by the task to end its job) at the beginning
of the k-th round for the tasks that have a duration
assigned (elements corresponding to tasks without an
assigned duration will be +∞, therefore allowing for
the presence of both batch and interactive tasks),

• the bursts, i.e., the CPU times allotted by the sched-
uler to the tasks at the beginning of the k-th round,

• the disturbances possibly acting on the scheduling
action during the k-th round (for example because
one of the tasks release the CPU before its burst
has expired or because of an interrupt management
amidst the task operation),

where n(k) is the number of tasks that the scheduler
considers at each round. In the traditional scheduling
policies n(k) is constant and equal to one—an example
of aprioristic constraint that in principle can be relaxed,
maybe resulting in better performances. Denote by t the
total time actually elapsed from the system initialisation.

A very simple model for the phenomenon of interest is then














τp(k) = Sσb(k − 1) + δb(k − 1)

τr(k) = r1τp(k − 1)

ρp(k) = max (ρp(k − 1)− Sσb(k − 1)− δb(k − 1), 0)

t(k) = t(k − 1) + τr(k)
(1)



where r1 is a row vector of length N with unit elements,
and Sσ ∈ Σ a N × n(k) switching matrix. The elements
of Sσ are zero or one, and each column contains at most
one element equal to one. Matrix Sσ determines which
tasks are considered in each round, to the advantage of
generality (and possibly for multiprocessor extensions).
Notice that, since n(k) is bounded, the set Σ is finite for
any N .

Several scheduling policies can be described with the
presented formalism, by merely choosing n(k) and/or
Sσ(k). For example

• n = 1 and a N -periodic Sσ with

Sσ(k) 6= Sσ(k − 1), 2 ≤ k ≤ N (2)

produce all the possible Round Robin (RR) policies
having the (scalar) b(k) as the only control input,
and obviously the pure round robin if b(k) is kept
constant,

• generalisations of the RR policy are obtained if the
period of Sσ is greater than N , and (2) is obviously
released,

• n = 1 and a Sσ chosen so as to assign the CPU
to the task with the minimum row index and a
ρp greater than zero produces the First Come First
Served (FCFS) policy,

• n = 1 and a Sσ that switches according to the
increasing order of the initial ρp vector produces the
Shortest Job First (SJF) policy (notice that this is the
same as SRTF if no change to the task pool occurs),

• n = 1 and a Sσ selecting the task with the minimum
ρp yields the Shortest Remaining Time First (SRTF)
policy.

The capability of model (1,2) to reproduce the mentioned
policies is shown in Figure 1, in the case of n(k) = 1,
N = 5, and Sσ(k) chosen as described above.

In all these policies, the core phenomenon can be noticed in
the form τp(k) = Sσb(k − 1) + δb(k − 1). Also the “added
physics” can be noticed, as the algorithm used to select
n(k) and/or Sσ(k).

If one attempts to model both things together, to close the
loop around the existing scheduler, then switching systems
must be brought into play.

If, on the contrary, one models the core phenomenon only,
and treats all the rest as part of the controller, the single
and trivial equation just written is enough. Notice that
here in modelling the core phenomenon no uncertainty is
present, nor is there any measurement error, since the only
required operation is to read the system time.

Based on model (1) one can thus abandon “non control
theoretical” (and often not even closed-loop) choices of Sσ

as in the examples just sketched, and synthesise schedulers
as controllers with very simple blocks, for example of the
PI or Model Predictive Control type (Leva and Maggio,
2010; Maggio et al., 2012).

3.2 A unified framework for resource allocation

This section shows that, also in the case of resource alloca-
tion, a core phenomenon can be identified and modelled.

In this case, however, uncertainties are generally present
but if one installs additional sensors in the system so as to
measure exactly what pertains to the core phenomenon,
the resulting models are still much simpler and reliable
than those obtained by attempting to describe the system
as is.

The resource allocation problem consists in dynamically
modifying the amount of system resources (memory, band-
width, number of computing units and so forth) allotted to
an application, in such a way the said application progress
towards its goal at the desired rate. For example, one may
want a video encoder to process exactly 30 frames per sec-
ond, despite different amount of computational resources
needed by the individual frames, and the overall system
load. Quite intuitively, the progress rate – that in this
work is measured in WorkLoad Units (WLU) per second
– is defined on a per application basis (e.g., for a video
encoder it could be the completion of one frame).

In most cases, however, a measure of the mentioned
progress rate is not available, since usually hardware per-
formance counters are used Kufrin (2005); Sprunt (2002).
The relationship between the progress rate and typically
measured quantities is another clear example of added
physics – or better, in this case, physics that should not
be in the control loop – as the core phenomenon is here
“how the progress rate dynamically reacts to resources”.

On a time scale suitable for evaluating (and possibly con-
trolling) an application behaviour, the effect of allotting
more or less resources to it is practically instantaneous.
However, the efficacy of a given resource on the application
progress may vary over time. For example, if an application
is presently executing operations that do not require par-
allelism, the effect of allotting more computational units is
modest. Similar considerations hold for memory or other
resources.

Contrary to the remark above, the time scale of resource-
to-performance effects is almost invariantly comparable to
that suitable for monitoring and controlling.

Therefore, if one accepts to introduce a progress rate
measurement, it turns out that many relevant problems
can be treated with discrete time nonlinear dynamic
systems of simple structure, obtained with a grey box
approach.

For example, when the resources to allot are computa-
tional units c and clock frequency f while the application
progress rate pr is measured with the Application Heart-
beats framework (Hoffmann et al., 2010), a vast campaign
of experiments and data analysis indicated that a suitable
model is

pr(k) = p · pr(k − 1)+

+ (1− p) · (kc c(k − 1)αc + oc)(kf f(k − 1)αf + of ) (3)

where parameter p ∈ [ 0, 1 ) is essentially related to the
sampling time used for the performance measurements,
thus not application specific; the other (time varying) pa-
rameters account for resource response of the application.
Note that (3) contains a nonlinear static (multi-)input
characteristic cascaded to a linear dynamics, in accordance
with the idea that the control time scale is very slow



Figure 1. Capability of the presented single model of reproducing classical scheduling policies such as RR, FCFS, SJF,
and SRTF.

with respect to the actuation one, and complexity resides
essentially in the actuators’ influence on the process.

In fact, in most of the addressed situations, parameter p
(the discrete-time pole) typically takes low values in the
0–1 interval, indicating that at the control time scale,
the action of actuators is nonlinear but practically in-
stantaneous. Some exceptions may arise for example when
some actuating action requires to negotiate resources with
the operating system, e.g. posting requests that may be
fulfilled at a time scale comparable to that of control,
but nonetheless the modelling hypotheses introduced hold
reasonably true in all the cases of interest, and in most
of them the system to be controlled actually behaves as a
nonlinear static one cascaded to a pure one-step delay.

As a further possible objection, then, application be-
haviour variabilities can be present and depend on many
factors, including for example the processed data, so the
proposed modelling approach may not seem very useful.

To explain why on the contrary it is, consider the following.
With a sufficiently wide (yet in general affordable) number

of profiling tests, one can obtain range and rate bounds for
parameter variations.

By generating parameter behaviours based on that in-
formation, one can then simulate a potentially infinite
number of possible application behaviours in much less
time than the same number of real runs would require,
which is very useful in a view to synthesise and assess
controllers.

Notice that attempting to do the same thing with classi-
cal black-box identification applied to linear models – a
widely used approach – is for the problem at hand less
effective, as such models are structurally inadequate, and
any order selection procedure would eventually produce
very complex structures.

Needless to say, reverting for a moment to control, the
simplicity of (3) – once that model was tested for the ca-
pability of actually replicating application runs – suggests
correspondingly simple regulators, contrary to what one
would conclude based on standard black-box models.

Coming to some examples referring to benchmark applica-
tions, Figure 4(a) shows the bodytrackmeasured progress
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Figure 2. Collected data from the specified software application (solid blue line) and simulation with the grey-box
identified model (dashed green line).
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Figure 3. Identification results for the vips software application with different model structures, namely
ARMAX(10, 10, 10), ARX(30, 30), ARX(20, 20), ARX(10, 10), and ARX(1, 1).

rate and the one estimated with the identified simulation
model (3) for a particular run, where the parameters’
behaviour was obtained by means of an Extended Least
Squares procedure.

Figure 3 conversely shows the outcome of model (3) to-
gether with some ARX (AutoRegressive with eXogenous
input) and ARMAX (AutoRegressive and Moving Aver-
age with eXogenous input) ones for a run of the vips ap-
plication. The data used for the identification are denoted
in black, the simulation results of the ARMAX(10, 10, 10)
in violet, the ARX(30, 30) in light blue, the ARX(20, 20)
in red, the ARX(10, 10) in green and the ARX(1, 1) in
blue.

The bodytrack and vips applications are taken from the
PARSEC benchmark suite. The rationale behind the suite,
together with its use, is presented in Bienia et al. (2008),
to which the interested reader is referred for details.

Figure 4(a) illustrates that (3) is actually capable of repli-
cating the data, by catching main variabilities and trends
in a way suitable for control design—its sole purpose here.

Figure 3 also suggests that AR(MA)X models are not
keen to capture the relevant application behaviour. In fact,
if one tries to identify the same data with the Matlab Iden-
tification toolbox, performing an order selection for the

ARX(na, nb) model, the result is that the identification
procedure tries to give to the model as much higher an
order as it can, indicating that the structural choice is not
adequate.

For completeness, the grey box model (3) used in the pre-

sented examples, denoting with ϑ̂ the estimated parameter
vector, is parametrised for bodytrack as

ϑ̂vips =

[

kc
αc

oc

]

=

[

258.75388
1.1930687
681.67218

]

, (4)

and for vips as

ϑ̂bodytrack =















kc
αc

oc
kf
αf

of















=















0.1931659
1.613834
3.5964752
2.3736936
0.1609101
−1.9965658















. (5)

In addition, by introducing a fit measure, the obtained
models can be ranked. In the example proposed herein,
said fit expression is set to

[

1−
‖Y − Ŷ ‖2

‖Y − Ȳ ‖2

]

· 100 (6)

and Table 1 shows the obtained results in the vips case.
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Figure 4. Experimental control results with bodytrack and vips: the application progress (heart) rate is required to
attain a specified set point value.

Model Delay Best Fits

ARMAX(10, 10, 10) 1 62.24

ARX(30, 30) 9 61.63

ARX(20, 20) 9 61.53

ARX(10, 10) 9 61.36

ARX(1, 1) 1 58.98

Table 1. Results obtained with the Matlab
Identification Toolbox for the vips application

with various model structures.

Notice that, starting from the system insight induced by
the grey box model, successful adaptive control could be
achieved with an ARX(1, 1) structure.

To end this section, although this paper focuses on mod-
elling and not on control, just a minimum example is
presented on what can be achieved in that respect. Figure 4
shows experimental results with both the bodytrack and
the vips applications, when their progress – measured
via HeartBeats – is regulated by an adaptive predictive
controller based on the presented model.

As can be seen, the required set point is well attained
also in the presence of application behaviour’s variations,
thus proving the effectiveness of the underlying modelling
approach.

4. CONCLUSIONS AND FUTURE WORK

In this work a novel approach to the modelling of com-
puting systems was proposed, in a view to capture their
relevant dynamics with the simplest possible models,
grounded on some “physical” principles.

The two cases just shown are only a small example of
the model usefulness improvement yielded by the idea of
isolating the core phenomenon.

Although the focus of this work is not set on control, and
in accordance with that only a very short example on the
matter was shown, undoubtedly control is maybe the main
reason why the proposed approach should be adopted. In
fact, starting from the core phenomenon and its desired
behaviour is indeed a mean for streamlining both control
and system design, to the advantage of a better operation
of their compound.

The so envisaged scenario is quite neat an example of
process/control co-design. In the opinion of the authors,
the characteristics of the computing system domain make
it a privileged arena for co-design, and it is quite curious
that so promising a matter has not been exploited to date.

Of course much further work is required, but in any case
an innovative attempt was here made to circumvent one
of the main obstacles for co-design success.

Along this research line, future developments can be fore-
seen as the application of the presented ideas to other
computing system problems, like for example bandwidth
allocation, and their exploitation through the application
of simple (thus computational lightweight) control tech-
niques.
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