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Abstract: In some recent papers it was shown that preemptive process schedulers in multitasking
operating systems can be viewed, and above all designed, as discrete-time feedback controls with very
simple (I- or PI-type) regulators, yielding significant advantages over classical scheduling policies as
for time complexity and parameter interpretability. In this work, the same problem is tackled with a
predictive control approach. Doing so allows to release some simplification hypotheses of the mentioned
papers and to improve the achieved solutions’ flexibility, widening the application possibilities at an
affordable additional cost.
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1. INTRODUCTION

Many problems related to computing systems are nowadays be-
ing recognised and tackled as control ones, see, e.g., Hellerstein
et al. (2004) and some papers quoted therein. Along such a
reasoning, in recent years many contributions were proposed
in different areas, from reliability (Kreidl and Frazier, 2004)
to security (Dantu et al., 2007), software testing (Bayan and
Cangussu, 2008), thread-pool management (Hellerstein et al.,
2009), and more.

In such a scenario, a notable interest is encountered by the
problem of scheduling in multitasking environments, as tes-
tified by Abeni et al. (2002); Palopoli et al. (2003), where
a process scheduler allocates the CPU usage to the pool of
running processes, to guarantee properties like fairness, respon-
siveness, and so forth. Feedback-based techniques have been
applied to the scheduling problem to deal with uncertainties
and disturbances, such as the behaviour of the processes and
the availability of resources (shared memory, peripherals, and
so on). This has led to the so-called “feedback scheduling”
research topic, in the sense clarified by Xia and Sun (2006) for
operating systems.

However, in virtually the totality of the feedback scheduling
literature, the idea is (concisely) to “close some loop around an
existing scheduler”, see e.g. Lu et al. (1999, 2002). Since said
scheduler was typically conceived as an algorithm, it is most
often (not to say, always) unnatural to model it as a dynamic
system. This hinders the use of simple - thus powerful - control
synthesis and analysis formalisms.

The research to which this article belongs, takes completely
different an attitude. Instead of acting on the scheduler that is
already present in the considered system, the idea here is to
completely replace that scheduler. Correspondingly, instead of
writing a model to reflect the existing scheduling algorithm,
the modus operandi is to have a new algorithm emerge from
the digital realisation of a controller model (Maggio and Leva,
2010).

The above idea was recently put at work in Leva and Maggio
(2010), where feedback scheduling in a uniprocessor system
was realised by a cascade structure with discrete-time I- and PI-
type controllers. The solutions shown in that paper outperform
classical policies such as the Round Robin, the Earliest Dead-
line First, and so forth: there is a very moderate (if any) addi-
tional computational burden, but the obtained results (in terms
e.g. of fairness or deadline misses) are significantly better, as
proven in practice by a microcontroller-based implementation
(Maggio et al., 2010).

In this work, a predictive controller is used to address the
same problem of the quoted papers, allowing to release some
of the introduced simplifications, and also to sketch out some
interesting developments for future research.

2. BRIEF REVIEW OF PREVIOUS RESULTS

The starting point for this work is Leva and Maggio (2010),
where - as herein - a single-processor multitasking system with
a preemptive scheduler is considered, and the N processes to
be scheduled are activates in a Round Robin fashion, assigning
them a certain amount (possibly zero) of CPU time. Feedback
is introduced in that said CPU time amounts come from the
computation performed by a controller. To briefly review the
matter, define the “scheduling round” as the time between two
subsequent scheduler interventions, and let τp(k)∈ℜN , τr(k)∈
ℜ, b(k) ∈ℜN , δb(k) ∈ℜN represent, respectively,

• the CPU times actually allocated to the processes in the
k-th scheduling round,

• the actual duration of the k-th round,
• the CPU times or bursts assigned to the processes at the

k-th round,
• the disturbances possibly acting on the scheduling action

during the k-th round, that appear as a difference between
the burst and the CPU time actually consumed by the
process.

Denoting by t the total time actually elapsed from the sys-
tem initialisation, the scheduling problem can be addressed by



describing the controlled system (the process pool) with the
simple model {

τp(k) = b(k−1)
τr(k) = r1τp(k−1)
t(k) = t(k−1)+ r1τp(k−1)

(1)

where r1 is an all-ones row vector of length N. The scheduler
is then synthesised as a cascade controller, where the internal
loop manages the CPU time distribution among the processes
within the round, and the external one controls the time between
two subsequent scheduler interventions (i.e., the desired “round
duration”).

Indicating with τ◦r said required round scheduling duration, and
with

θ
◦
p ∈ℜ

N , θ
◦
p,i ≥ 0,

N

∑
i=1

θ
◦
p,i = 1 (2)

the vector containing the required CPU time fractions to be
allocated to each process, it is quite intuitive to see that virtually
any specification on fairness, tardiness, and so forth, can be
expressed in terms of the two references τ◦r and θ ◦p above. The
“scheduler as controller” scheme is thus represented by Figure
1, where an appropriate choice of the Rr and Rp regulators
allows to attain the round duration set point, and the desired
CPU percentages.

In Leva and Maggio (2010), the important remark is made that
model (1) is diagonal. Hence, employing as Rp in the internal
loop CL1 of Figure 1 a diagonal integral controller with all the
gains equal, i.e., computing the i-th burst bi(k) as

bi(k) = bi(k−1)+ kI
(
τ
◦
p(k−1)− τp(k)

)
, (3)

where kI is the mentioned value of all integral gains, presents
to the regulator Rr of the external loop CL2, controlling system
S2 by introducing the additive “burst correction” bc, the very
simple (discrete-time) transfer function

Tr(z)
Bc(z)

=
kpi

z(z−1)
(4)

where kpi is the gain of all the internal controllers and, notice, is
independent of θ ◦p . The design of Rr too is thereby straightfor-
ward, and a PI controller proves sufficient. The results achiev-
able with the “I+PI” scheme (i.e., when Rp is a diagonal I
controller and Rr a SISO PI) are exemplified in Figure 2, that
reports the round duration τr versus its set point τ◦r and the
additive correction bc exerted by Rr (top left), the process CPU
use τp versus its set point τ◦p (top right), the same data as in
the top right plot but vertically split for the individual processes
to evidence arrivals and terminations (bottom left), and finally
the process bursts normalised between two conveniently chosen
saturation values (bottom right). Note, incidentally, that model
(1) is valid whatever burst (feedback) calculation scheme is
adopted.

The simulations presented here were obtained by replicating
the scheduling algorithms in the Scilab environment (Campbell
et al., 2006). Such a choice is motivated by the innovative
character of the new proposed algorithms, that can be hardly
represented in the typical environments used for schedulers’
assessment.

In said simulations, the applied stimuli are (a) some modifica-
tions of the required CPU distribution, to show that the basic
goal of the scheduler is attained, (b) some modifications to the
pool of processes, to prove that re-initialising the controller - a
matter omitted here for brevity - is possible and quite straight-

forward, (c) some process blockings, to test the treatment of that
case by the various solutions, and (d) some modifications of the
desired round duration, to illustrate that the system responsive-
ness can actually be changed on-line thanks to the nested loop
structure of Figure 1.

Referring the reader to the quoted works for the details here
omitted, two basic questions remain open. First, is it possible
to improve results by adopting (slightly) more complex reg-
ulator blocks? Second, and more relevant, is it possible with
analogous complications to release the assumptions that the
inner controllers have equal gains, in the absence of which the
design of the external one may sometimes be critical? The rest
of this manuscript aims at answering those questions, by means
of predictive control.

3. PREDICTIVE CONTROL FOR FEEDBACK
SCHEDULING – A MOTIVATION

As noticed in Leva and Maggio (2010), with the PI-based
structure adopted therein, two main problems stand open. The
first one is the significant complication introduced by possibly
different gains in the inner I loops. The second one is that if
some process gets blocked (i.e., continues refusing to execute
and returning the CPU to the scheduler immediately at the be-
ginning of its burst) this pushes the controller into a saturation
state, that is merely managed by standard antiwindup.

Both problems appear to be manageable by adopting for the
external loop controlling S2 in Figure 1 a predictive structure,
and theoretically such a solution should yield some improve-
ment. In fact, in the considered control system, cross-coupling
is introduced by the outer loop only, and both the mentioned
problems can be seen as an alteration of the dynamics seen
by the outer controller. Applying a predictive controller with
suitably extended prediction and control horizons should in
principle allow to cope with such modification better than a
mere integrator.

Also, when managing blocked processes, the PI-based structure
inherently preserves the round duration. In such a case one may
want the CPU time assigned to each process to remain the same
(with some idle time corresponding to the blocked processes) or
to be re-distributed among non blocked processes (increasing
the CPU time percentage of each non blocked process). A
predictive controller allows to manage such choices in more
neat a way than control structures like those presented in Leva
and Maggio (2010).

More in general, although the matter is not treated here, prob-
lems analogous to the scheduling one are quite naturally formu-
lated as optimisation ones, where (strictly) there is no set point
to follow, but the system has to optimise some performance
metrics while at the same time strictly remaining within certain
constraints or bounds—bandwidth allocation is a natural exam-
ple to think about. Predictive control techniques are apparently
more suited for such kind of desires than PI-based control,
whence the interest for their use in the addressed problem in
view of devising more general a formalism.

4. THE PROPOSED CONTROL SCHEMES

4.1 Foreword

In this work, controller Rr in Figure 1 is replaced by a RHPC
(Receding Horizon Predictive Controller), while for Rp the



Fig. 1. The proposed “scheduler as controller” scheme as per Leva and Maggio (2010); double-line arrows denote vector signals.

Fig. 2. Example of the results achievable with the I+PI structure.

solution of Leva and Maggio (2010) is maintained. Referring
the reader e.g. to Camacho and Bordons (2004) for further
information on RHPC, this section just illustrates the specific
choices adopted for its application in the addressed context.

First, reconsider the scheme of Figure 1 with the inner loops
closed. If all the I gains are equal and no process is blocked,
the transfer function from B(z) to Tr(z) is given by (4). Suppose
now that said gains are not equal anymore: expressing the i-th
gain as βikpi, and representing a blocked process by zeroing
its gain - i.e., replacing the first equation of (1) with τp(k) =
Γb(k− 1) where Γ := diag{γi} is a matrix with one or zero
diagonal elements (zero means a blocked process) - the same
transfer function becomes

Tr(z)
Bc(z)

=
kpi

z(z−1)
∆N(z)
∆D(z)

(5)

where ∆N(z) and ∆D(z) are polynomials in z of degree N, the
expression of which is lengthy and thus omitted. Suffice to say
that the multiplicative term ∆N(z)/∆D(z) can alter the dynamics
of (5) significantly with respect to (4).

Suppose then to select as Rp a diagonal integral regulator with
different gains βikpi, see above, which corresponds in the state-
space to

ARp =CRp = IN×N
BRp = kpi[β1 β2 . . . βN ]IN×N
DRp = 0N×N

(6)

where IN×N and 0N×N are respectively the identity and the
zero matrix of dimensions N × N. Now, denote by τ◦r the
required scheduling round duration, and let the required CPU
time fractions to be allotted to each process be defined as per
(2). If τ◦p were chosen as θ ◦p τ◦r , then CL1 would control both the
CPU distribution and the round duration, but there would be
two problems. First, the dynamics of those two controls would
be ruled by the same eigenvalues, which can be inadequate in
some cases. For example, one may want the CPU distribution
to move smoothly from one situation to another, but the round
duration to respond very quickly to its set point. Second, and
more serious, as anticipated, if some processes are blocked,
the round duration set point cannot be attained. Introducing the
information of blocked processes, the system denoted in Figure



1 by S2 assumes a switching nature, having the dynamic matrix

AS2 =

[
0N×N BΓCRp

BRp(θ
◦
p r1− IN×N) ARp

]
(7)

where

BΓ = γIN×N =


γ1 0 . . . 0
0 γ2 . . . 0
...

...
. . .

...
0 0 . . . γN

 (8)

is the (switching) dynamic matrix for the processes to be
controlled containing the information on the blocked ones, i.e.,
γ j = 1 if the process is active and γ j = 0 if the process is
blocked.

Based on the state-space model just sketched, a “vanilla” RHPC
control law can be designed disregarding its switching nature,
i.e., acting as if no blocking ever occurred. The resulting control
law is

bc(k) = bc(k−1)+∆bc(k) (9)
where the ∆bc(k) is computed as

∆bc =

Nc︷ ︸︸ ︷
[1 0 . . . 0](Φ′Φ+ R̄)−1

Φ
′ (T̄ ◦r τ

◦
r (k)−Fx(k)) (10)

and Φ and F depend on the model matrices as explained e.g. in
Camacho and Bordons (2004), R̄ is a diagonal matrix in the
form that R̄ = wINc×Nc(w ≥ 0) where w is used as a tuning
parameter for the desired closed-loop performance, and finally
T̄ ◦r is an all-ones column vector of length Np. Of course, in the
case of “symmetric desires”, where the integral gains are equal,
and if no information about the blocked processes is available
(or equivalently, the processes are always considered not to be
blocked), then the resulting SISO system with input bc and
output τr has the transfer function (4), which yields the state-
space model

AS2 =

[
0 1
0 1

]
, BS2 =

[
0
1

]
, CS2 = [kpi 0] , DS2 = 0 (11)

It was verified (details are inessential here) that the so obtained
control is equivalent to the I+P solution prosed in Leva and
Maggio (2010). More interesting are the additional possibilities
of the RHPC, explored below.

4.2 The “asymmetric desires” case

Processes running on a generic system have very different pur-
poses, requirements, and behaviours, yet they have to coexist
all together on the same computing system. This leads to the
fact that the OS scheduling algorithm must fulfil several con-
flicting objectives: fast process response time, good throughput
for background jobs, avoidance of process starvation, reconcil-
iation of the needs of low- and high-priority processes, and so
on. These objectives cannot be easily satisfied with classical
approaches.

In the mainstream computer science literature, when speaking
about scheduling, processes are traditionally classified as “I/O-
bound” or “CPU-bound”. The former type makes heavy use of
I/O devices and spends much time waiting for I/O operations
to complete; the latter type are number-crunching applications
that require a lot of CPU time.

Alternatively, another classification distinguishes three classes
of processes: the interactive ones (processes which interact
constantly with their users, and therefore spend a lot of time

waiting for key-presses and mouse operations), batch ones
(processes which do not need user interaction, and hence often
run in the background) and real-time processes (processes
which should never be blocked by lower-priority processes,
have a short response time and, most important, exhibit for such
response as low a variance as possible).

Whatever is the case, different kind of processes which must
run on the same computing system are treated as different
entities. This explains in practice why nowadays there exist a
variety of ad hoc scheduling techniques for specific classes of
application, e.g., real-time application scheduling. This is far
from being a general approach, apparently.

The main advantage in a control theoretical standpoint is that,
such a classification does not lead to different scheduling algo-
rithms, but it is easier to generalise the case in which the pro-
cesses have different features and must be treated in different
ways, according to their specifications and nature.

In the previous section, a symmetric internal loop CL1 was
considered (see Figure 1), making the assumption that all the
processes can be treated in the same manner. A more general
approach is to use different weights for the different processes’
I controllers in the internal loop, in order to distinguish the
low-priority processes from the high-priority ones by means of
lower or higher gains respectively, leading to different response
times.

The I+PI approach can still lead to good results, from the above
point of view, as exemplified in Figure 3, but when the internal
loop has different regulators its design is not so simple as it is
in the symmetric case, and in particular, it is not independent of
θ ◦p anymore, and if not carried out properly, can also produce
unstable behaviours. Since only the external loop is considered,
Figure 3 and the subsequent analogous ones are organised in
the same way as the top left plot of Figure 2.

Fig. 3. The round duration controlled with an external PI
controller and with different gains in the internal loop.

With the RHPC it is on the contrary quite straightforward to
design the controller by resorting to (7) and merely releasing the
symmetry assumption. Analysing the corresponding simulation
plots of Figure 4, one can see how the predictive approach
leads to substantially analogous results with respect to the I+PI,
although its design is simpler.

4.3 Accounting for blockings: an actuation problem

Blocked processes may lead to undesired behaviour of the
system. Both with the PI (see Figure 2) and with the RHPC,
we have reached the goal of rejecting such disturbances and



Fig. 4. The round duration controlled with an external RHPC
controller and with different gains in the internal loop.

of following the set point signal. However, there is an open
actuation problem: what happens to the burst assigned to each
process when one or more processes are blocked? How should
the actuator distribute the CPU time among the processes
within the round?

With the I+PI approach, there are two main solutions of this
actuation problem. The first solution is to maintain the round
duration constant, as if all processes were scheduled, and the
time that should have been allotted to the blocked processes
were considered “idle time”. This idea implies an action on
the actuators, not on the controller, in that if a process returns
the CPU before the expiration of its burst, the system (more
precisely, its actuating part) just has to wait till the allocated
burst is exhausted. The second solution is to re-distribute the
time of the round duration among the active non blocked
processes. As in the first case, the round duration remains
constant, but the percentage of CPU time of each process
changes.

The use of the RHPC implies new possibilities in this panorama.
For instance, one can open the external loop, releasing the
round duration control, which may change at each scheduling
round. The round duration becomes the sum of the bursts as-
signed to the processes at the k-th round, except that assigned
to the blocked processes. The information about blocked pro-
cesses at the last step can be used by RHPC to predict the
output. For instance, if we have 10 processes to be scheduled, a
round duration of 10, each process has a burst of 1 unit and one
process is blocked, the round duration becomes 9.

This solution is much better than those offered by the simple
PI control structure. For example, in the case of a CPU for a
desktop PC, it may not be so dramatic if the CPU is idle because
of a blocked process, but in the case of a web server or a router,
where the waste of CPU time is a greater damage, it would be
better to use all the available CPU time or bandwidth, or, in
general, all the available resources.

Also, with RHPC, it is resonably simple to account for process
blockings by simply having them detected by the operating
system (details on that would stray from this work but pose non
serious technical problems), and change the predictive model
used in the controller by acting on (8). The so obtained results
are shown in Figure 5, organised in the same way as Figure 2.

5. DISCUSSION AND PERSPECTIVES

In the context of this work, there is a huge interest in designing
applications according to specific requirements, and sometimes

in strictly limiting the behaviour under certain constraints or
bounds. Predictive control techniques offer a means to satisfy
such desires, allowing more flexibility in the transitory man-
agement.

Furthermore, in the scheduling context, with the PI regula-
tion structure, the blocked processes management corresponds
to the switching of the system and does not impact on the
round duration which remains the same, while the CPU time
assigned to each process may remain the same (with some
idle time corresponding to the blocked processes) or may be
re-distributed among non blocked processes (increasing each
CPU time percentage). A predictive control approach can lead
to better solutions for the blocking processes problem.

One could object that the results obtained with the I+P(I)
scheme are quite good, so it is not convenient to use a more
complex control technique. However, the simple I+PI structure
is not scalable, in the sense that if we decide to use different
weights on each computed error, the model becomes much
more complicated and it is no longer reducible to a second order
model, i.e., denoting by N the number of the running processes,
in the worst case (a different weight for each process) the model
becomes of order 2N. Thus, in this case, it is convenient to use
a more complex (predictive) control technique, which allows
to specify different weights, with the same computational com-
plexity.

In other words, to summarise the reported (brief) comparison of
I+PI and RHPC, one can state that the former is tendentiously
simpler to set up but less scalable. As such, the I+PI scheme
is a good solution for “symmetric” problems, i.e., where the
error weights can be taken equal. On the other hand, in situ-
ations characterised by asymmetry on the desires, it is more
convenient to use predictive schemes such as the RHPC one
just envisaged and exemplified. In fact such schemes, although
they have greater computational complexity, are guaranteed to
be successful in almost each situation.

6. CONCLUSIONS AND FUTURE WORK

This work is part of a long-term research aimed at the design of
computing system (and more specifically, operating systems)
critical parts, in the form of feedback controllers.

Previous papers have shown that for process scheduling, very
simple control schemes can serve the duty under quite loose
simplifications. In this manuscript, some slightly more complex
solutions were proposed, based on a predictive approach, and
leading to some advantages in terms of generality, at a moderate
additional cost.

As such, it is even more firmly proven that the control theory
provides a wealth of tools and methods, the majority of which
to date unexploited, for the design of computing system—
provided that the “correct” method is chosen for each problem,
i.e., in turn, that the classification of said problems is faced
with a system-theoretical attitude. Future work will further
investigate so vast and promising a field.

In addition, predictive-like techniques are being applied to more
complex problems, where substantial model uncertainty and/or
variability exists, contrary to the case addressed herein. Encour-
aging results are already emerging from the use of predictive
control in conjunction with on-line parameter identification and
adaptation, thanks also to the fact that computer systems prac-



Fig. 5. Example of the results achievable with the RHPC in the presence of process blockings.

tically never pose state accessibility problems. Also those re-
search developments, for which the present work is de facto an
important preparatory stage, will be documented in the future.
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