
Efficient Partitioning of
Sporadic Real-Time Tasks with

Shared Resources and Spin Locks
Alexander Wieder

Björn B. Brandenburg

Max Planck Institute for Software Systems
(MPI-SWS)

8th IEEE International Symposium on Industrial Embedded Systems
Porto, Portugal

19.06.2013

Motivation

2

space, weight and power constraints
tasks with real-time requirements
multi-core architectures
shared resources protected by spin locks

constrained embedded devices
tasks with real-time requirements
multi-core architectures
shared resources protected by spin locks

Motivation

3

Our Focus: Processor Efficiency
Make best use of multi-core
architectures despite shared

resources protected by spin locks

partitioned
fixed-priority
scheduling

multicore architectures:

Example: Autosar

4

shared resources:
sensors
communication bus
kernel objects

partitioned
fixed-priority
scheduling

global resources:
non-preemptable

spin locks
local resources:

Priority Ceiling Protocol (PCP)

multicore architectures:

Example: Autosar

5

6

The Task Assignment Problem

Assignment
Algorithm

T1 T2 T3 T4

l2l1

T2

T3 T4

l2l1

core 1 core 2

core 3core 4

sporadic  
real-time tasks

T1

7

The Task Assignment Problem

Assignment
Algorithm

T1 T2 T3 T4

l2l1

T2

T3 T4

l2l1

core 1 core 2

core 3core 4

shared resources
protected by
spin locks

T1

8

The Task Assignment Problem

Assignment
Algorithm

T1 T2 T3 T4

l2l1

T2

T3 T4

l2l1

core 1 core 2

core 3core 4

T1

tasks mapped to
processor cores

s.t. all deadlines met

9

The Task Assignment Problem
T1 T2 T3 T4

l2l1

T2

T3

l2l1

core 1 core 2

core 3core 4

T1

Challenge:
Task sets using

spin locks
Assignment
Algorithm

T4

10

The Task Assignment Problem
T1 T2 T3 T4

l2l1

T2

T3 T4

l2l1

core 1 core 2

core 3core 4

T1

Challenge:
Task sets using

spin locks
Assignment
Algorithm

Suppose assigned
to core 3 instead…

T4

11

The Task Assignment Problem

Assignment
Algorithm

T1 T2 T3 T4

l2l1

T2

T3

T4

l2l1

core 1 core 2

core 3core 4

T1

Challenge:
Task sets using

spin locks

12

The Task Assignment Problem

Assignment
Algorithm

T1 T2 T3 T4

l2l1

T2

T3

T4

l2l1

core 1 core 2

core 3core 4

T1 Remote task can
miss deadline!

Challenge:
Task sets using

spin locks

13

The Task Assignment Problem

Assignment
Algorithm

T1 T2 T3 T4

l2l1

T2

T3

T4

l2l1

core 1 core 2

core 3core 4

T1

How efficient
are prior

heuristics...?

This Paper

14

Optimality matters!
with shared resources,

potential wasted by
prior heuristics

Part I
Observation Contribution

This Paper

15

Optimal ILP-based
partitioning scheme for
task sets with shared

resources

Part IIPart I
Observation Contribution

Optimality matters!
with shared resources,

potential wasted by
prior heuristics

This Paper

16

Prior sharing-aware
heuristics are

complicated and brittle

Optimal ILP-based
partitioning scheme for
task sets with shared

resources

Part IIPart I
Observation Contribution

Optimality matters!
with shared resources,

potential wasted by
prior heuristics

This Paper

17

Optimal ILP-based
partitioning scheme for
task sets with shared

resources

Greedy Slacker:
simple and robust

heuristic

Part IIPart I

Part III

Observation Contribution

Prior sharing-aware
heuristics are

complicated and brittle

Optimality matters!
with shared resources,

potential wasted by
prior heuristics

sporadic tasks:

constrained deadlines:

shared resources accessed in mutual
exclusion

coordinating resource access:
global: non-preemptable FIFO spinlocks
local: SRP (blocking equivalent to PCP)

Task Model
Ti : (ei, di, pi)

di pi

18

sporadic tasks:

constrained deadlines:

shared resources accessed in mutual
exclusion

coordinating resource access:
global: non-preemptable FIFO spinlocks
local: SRP (blocking equivalent to PCP)

Task Model

[1] P. Gai, G. Lipari, and M. D. Natale, “Minimizing memory utilization of real-time task
sets in single and multi-processor systems-on-a-chip,” in Proc. RTSS, 2001.

Ti : (ei, di, pi)

di pi

Multiprocessor Stack Resource Policy [1]
19

Part I
How efficient are
prior heuristics?

Task Assignment with Heuristics

21

Assignment
Algorithm

T1 T2 T3 T4

l2l1

T2

T3 T4

l2l1

core 1 core 2

core 3core 4

T1

Task Assignment
Heuristic

Schedulability Experiments

task set size

less idle time
more contention

fra
ct

io
n

of
 s

ch
ed

ul
ab

le

ta
sk

 s
et

s

22

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 18 20 22 24 26 28 30

sc
h
e
d
u
la

b
le

tasks

optimal
LNR-heuristic

8 processors, 16 resources, critical section lengths in [1us,100us],
periods in [3ms,33ms], 10% average task utilization

23

Exploring Wasted Potential

[1] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Coordinated task scheduling,
allocation and synchronization on multiprocessors,” in Proc. RTSS, 2009.

[1]

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 18 20 22 24 26 28 30

sc
h
e
d
u
la

b
le

tasks

optimal
LNR-heuristic

24

Exploring Wasted Potential

Potential
left wasted!

8 processors, 16 resources, critical section lengths in [1us,100us],
periods in [3ms,33ms], 10% average task utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 18 20 22 24 26 28 30

sc
h
e
d
u
la

b
le

tasks

schedulable task sets
LNR-heuristic

25

Exploring Wasted Potential

Potential
left wasted!

How can we exploit this potential?
What’s the smallest platform we can use?

8 processors, 16 resources, critical section lengths in [1us,100us],
periods in [3ms,33ms], 10% average task utilization

8 processors, 16 resources, critical section lengths in [1us,100us],
periods in [3ms,33ms], average utilization per task 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 18 20 22 24 26 28 30

sc
h
e
d
u
la

b
le

tasks

schedulable task sets
LNR-heuristic

26

Exploring Wasted Potential

How can we exploit this potential?
What’s the smallest platform we can use?

With shared resources,
optimal partitioning matters!

Potential
left wasted!

Part II
An Optimal ILP-based
Partitioning Scheme

Optimal Task Assignment

28

Assignment
Algorithm

T1 T2 T3 T4

l2l1

T2

T3 T4

l2l1

core 1 core 2

core 3core 4

T1

optimal
ILP-based
assignment

Optimality
What is an optimal partitioning scheme?

29

If a valid partitioning
under a given analysis

exists,
a valid partitioning can be found.

Optimality
What is an optimal partitioning scheme?

30

If a valid partitioning
under a given analysis

exists,
a valid partitioning can be found.

all tasks claimed schedulable by analysis
(= no task misses a deadline)

Optimality
What is an optimal partitioning scheme?

31

We use the MSRP blocking analysis from
Gai, Lipari, Di Natale (2001).

If a valid partitioning
under a given analysis

exists,
a valid partitioning can be found.

Basic ILP Model

32

Integer Linear Programming model encodes
for a fixed number of processors:

task assignment
priority assignment
constraints to enforce valid assignments

Basic ILP Model

33

Integer Linear Programming model encodes
for a fixed number of processors:

task assignment
priority assignment
constraints to enforce valid assignments

We need to encode the MSRP
blocking analysis into the ILP!

Encoding Blocking in ILP

Ri = own execution +

34

interference

Classic fixed-priority response-time analysis

[1] S. Baruah and E. Bini, “Partitioned scheduling of sporadic task systems: An ILP
based approach,” in Proc. DASIP, 2008.

[1]

own local blocking

Blocking analysis from Gai et al.:
Encoding Blocking in ILP

Ri = own execution +

spinning +

+

35

interference

Blocking under classic MSRP
analysis from Gai et al.

own local blocking

Blocking analysis from Gai et al.:
Encoding Blocking in ILP

Ri = own execution +

spinning +

+

interference

#higher-
prio jobs x(execution

cost spinning+)
36

own local blocking

Blocking analysis from Gai et al.:
Encoding Blocking in ILP

Ri = own execution +

spinning +

+

interference

#higher-
prio jobs x(execution

cost spinning+)
37

depends on , depends on
locality!

Ri
priority/locality!

own local blocking

Blocking analysis from Gai et al.:
Encoding Blocking in ILP

Ri = own execution +

spinning +

+

interference

#higher-
prio jobs x(execution

cost spinning+)
38

variablesdepends on , depends on
locality!

Ri
priority/locality!

own local blocking

Blocking analysis from Gai et al.:
Encoding Blocking in ILP

Ri = own execution +

spinning +

+

interference

#higher-
prio jobs x(execution

cost spinning+)
39

variablesdepends on , depends on
locality!

Ri
priority/locality!

How can we
express blocking in
purely linear terms?

depends on
locality!

own local blocking

Blocking analysis from Gai et al.:
Encoding Blocking in ILP

Ri = own execution +

remote blocking +

+

interference

#higher-
prio jobs x(execution

cost spinning+)
40

variablesdepends on , Ri
priority/locality!

How can we
express blocking in
purely linear terms?

Transform to multiplication
of variables with constants!

Encoding Spinning in Linear Terms

41

How long can ‘s job spin?

T2

T3

T4

l2l1

core 1 core 2

core 3core 4

T1

T1

Encoding Spinning in Linear Terms

42

spinning =

T2

T3

T4

l2l1

core 1 core 2

core 3core 4

T1

Encoding Spinning in Linear Terms

43

T2

T3

T4

l2l1

core 1 core 2

core 3core 4

T1

spinning = +l1 l2waiting for waiting for

Encoding Spinning in Linear Terms

44

T2

T3

T4

l2l1

core 1 core 2

core 3core 4

spinning = +l1 l2

waiting for
core 4

+ +waiting for
core 2

waiting for
core 3=

waiting for waiting for

T1

Encoding Spinning in Linear Terms

45

T2

T3

T4

l2l1

core 1 core 2

core 3core 4

T1

spinning = +l1 l2

waiting for
core 4

+ +waiting for
core 2

waiting for
core 3=

waiting for waiting for

 ‘s
request
length

+
T2

+
 ‘s

request
length

 ‘s
request
length

T3 T4�

Encoding Spinning in Linear Terms

46

T2

T3

T4

l2l1

core 1 core 2

core 3core 4

spinning = +l1 l2

waiting for
core 4

+ +waiting for
core 2

waiting for
core 3=

waiting for waiting for

 ‘s
request
length

+
T2

+
 ‘s

request
length

 ‘s
request
length

T3 T4�

constants

T1

Encoding Spinning in Linear Terms

47

T2

T3

T4

l2l1

core 1 core 2

core 3core 4

spinning = +l1 l2

waiting for
core 4

+ +waiting for
core 2

waiting for
core 3=

waiting for waiting for

 ‘s
request
length

+
T2

+
 ‘s

request
length

 ‘s
request
length

T3 T4�

constants

T1

Details provided in the paper.

Making
ILP-based Partitioning Practical

48

minimize number of
processors ⇒ objective function

unused in basic ILP

In the real world, we also want to...

Making
ILP-based Partitioning Practical

49

minimize number of
processors

handle precedence
constraints

⇒ objective function
unused in basic ILP

one additional
constraint per task⇒

In the real world, we also want to...

Making
ILP-based Partitioning Practical

50

minimize number of
processors

incorporate partial
specifications

⇒ objective function
unused in basic ILP

constrain existing
helper variables⇒

In the real world, we also want to...

handle precedence
constraints

one additional
constraint per task⇒

ILP Solving Overhead

 0
 10
 20
 30
 40
 50
 60
 70
 80

 4 6 8 10 12 14 16 18 20

a
v
e
ra

g
e
 r

u
n
ti

m
e
 [

s]

tasks

utilization 2.0
utilization 2.5
utilization 3.0

51

4 processors

 0
 10
 20
 30
 40
 50
 60
 70
 80

 4 6 8 10 12 14 16 18 20

a
v
e
ra

g
e
 r

u
n
ti

m
e
 [

s]

tasks

utilization 2.0
utilization 2.5
utilization 3.0

52

solving time grows with:
task set size
utilization
resource contention

ILP Solving Overhead
4 processors

 0
 10
 20
 30
 40
 50
 60
 70
 80

 4 6 8 10 12 14 16 18 20

a
v
e
ra

g
e
 r

u
n
ti

m
e
 [

s]

tasks

utilization 2.0
utilization 2.5
utilization 3.0

53

4 processors

solving time grows with:
task set size
utilization
resource contention

Only a
one-time cost
for exploiting

wasted potential!

ILP Solving Overhead

 0
 10
 20
 30
 40
 50
 60
 70
 80

 4 6 8 10 12 14 16 18 20

a
v
e
ra

g
e
 r

u
n
ti

m
e
 [

s]

tasks

utilization 2.0
utilization 2.5
utilization 3.0

ILP Solving

54

Only a
one-time cost
for exploiting

wasted potential!

solving time grows with:
task set size
utilization
resource contention

4 processors
What can we do if we

cannot afford
ILP solving?

Part III
A Simple

Sharing-Aware
Partitioning Heuristic

Sharing-Aware Partitioning
Heuristics

56

Prior Sharing-Aware Heuristics:

LNR-heuristic [1]

Blocking-Aware Partitioning Algorithm
(BPA) [2]

[1] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Coordinated task scheduling,
allocation and synchronization on multiprocessors,” in Proc. RTSS, 2009.
[2] F. Nemati, T. Nolte, and M. Behnam, “Partitioning real-time systems on
multiprocessors with shared resources,” in Proc. OPODIS, 2010.

57

Assignment
Algorithm

T1 T2 T3 T4

l2l1

l2l1

core 1 core 2

core 3core 4

identify connected
components
assign components
if not possible, split

cost functions

High-Level View of
Sharing-Aware Partitioning Heuristics

58

Assignment
Algorithm

T1 T2 T3 T4

l2l1

l2l1

core 1 core 2

core 3core 4

identify connected
components
assign components
if not possible, split

cost functions

High-Level View of
Sharing-Aware Partitioning Heuristics

59

Assignment
Algorithm

l2l1

core 1 core 2

core 3core 4
l2l1

T1 T2 T3 T4

identify connected
components
assign components
if not possible, split

cost functions

High-Level View of
Sharing-Aware Partitioning Heuristics

60

identify connected
components
assign components
if not possible, split

cost functions

High-Level View of
Sharing-Aware Partitioning Heuristics

61

Assignment
Algorithm

l2l1

core 1 core 2

core 3core 4
l2l1

T1 T2 T3 T4

identify connected
components
assign components
if not possible, split

cost functions

High-Level View of
Sharing-Aware Partitioning Heuristics

62

Assignment
Algorithm

l2l1

core 1 core 2

core 3core 4
l2l1

T1 T2 T3 T4

identify connected
components
assign components
if not possible, split

cost functions

High-Level View of
Sharing-Aware Partitioning Heuristics

63

Assignment
Algorithm

l2l1

core 1 core 2

core 3core 4
l2l1

T1 T2 T3 T4

identify connected
components
assign components
if not possible, split

cost functions

High-Level View of
Sharing-Aware Partitioning Heuristics

64

Assignment
Algorithm

l2l1

core 1 core 2

core 3core 4

T1 T2 T3 T4

identify connected
components
assign components
if not possible, split

cost functions

High-Level View of
Sharing-Aware Partitioning Heuristics

65

Assignment
Algorithm

l2l1

core 1 core 2

core 3core 4

T1 T2 T3 T4

identify connected
components
assign components
if not possible, split

cost functions

High-Level View of
Sharing-Aware Partitioning Heuristics

66

Assignment
Algorithm

l2l1

core 1 core 2

core 3core 4

T1T2 T3

T4

identify connected
components
assign components
if not possible, split

cost functions

High-Level View of
Sharing-Aware Partitioning Heuristics

identify connected
components
assign components
if not possible, split

cost functions

67

Assignment
Algorithm

l2l1

core 1 core 2

core 3core 4

T1T2 T3

T4

Splitting requires
finding a good cut

High-Level View of
Sharing-Aware Partitioning Heuristics

identify connected
components
assign components
if not possible, split

cost functions

68

Assignment
Algorithm

l2l1

core 1 core 2

core 3core 4

T1T2 T3

T4

Splitting requires
finding a good cut

This is not so easy...

High-Level View of
Sharing-Aware Partitioning Heuristics

identify connected
components
assign components
if not possible, split

cost functions

69

Assignment
Algorithm

l2l1

core 1 core 2

core 3core 4

T1T2 T3

T4

Can we do something simpler?

Splitting requires
finding a good cut

High-Level View of
Sharing-Aware Partitioning Heuristics

This is not so easy...

Greedy Slacker

70

embarrassingly
simple:

disregard graph structure
greedily try to

 maximize minimum slack

Greedy Slacker

71

embarrassingly
simple:

time until
deadline is missed

disregard graph structure
greedily try to

 maximize minimum slack

Greedy Slacker

for each task in order of increasing period:
for each processor :

compute slack when assigned to
if there is no such that minimum slack 0:

fail
else:

assign to s.t. minimum slack is maximized

Ti

ck
ck

Ti

Ti

cr

embarrassingly
simple:

cr �

72

disregard graph structure
greedily try to

 maximize minimum slack

Greedy Slacker

for each task in order of increasing period:
for each processor :

compute slack when assigned to
if there is no such that minimum slack 0:

fail
else:

assign to s.t. minimum slack is maximized

Ti

ck
ck

Ti

Ti

cr

embarrassingly
simple:

cr �

disregard graph structure
greedily try to

 maximize minimum slack

73

Works with any
blocking analysis.

No cost functions!
Ignores graph structure!

Greedy Slacker

for each task in order of increasing period:
for each processor :

compute slack when assigned to
if there is no such that minimum slack 0:

fail
else:

assign to s.t. minimum slack is maximized

Ti

ck
ck

Ti

Ti

cr

embarrassingly
simple:

cr �

disregard graph structure
greedily try to

 maximize minimum slack

74

Works with any
blocking analysis.

No cost functions!
Ignores graph structure!

Can this possibly work?

Experimental Setup

75

Heuristics:
sharing-oblivious (bin-packing)
LNR-heuristic
BPA
Greedy Slacker

Experimental Setup

76

Heuristics:
sharing-oblivious (bin-packing)
LNR-heuristic
BPA
Greedy Slacker

Configuration:
8 processors
4 shared resources
10% average task utilization
each resource accessed by 25% of tasks
100 samples

Resource Access Patterns

77

T1 T2 T3 T4

l2l1
Unstructured

Resource Access Patterns

78

T1 T2 T3 T4

l2l1

T1 T2 T3 T4

l2l1 l3 l4

Unstructured

Structured

Resource Access Patterns

79

T1 T2 T3 T4

l2l1

T1 T2 T3 T4

l2l1 l3 l4

l5

T1 T2 T3 T4

l2l1 l3 l4

Unstructured

Structured

Structured
with

global resources

Unstructured Resource Accesses

80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GS

Unstructured Resource Accesses

81

Greedy slacker can
partition more task sets

than other heuristics

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GS

82

Unstructured Resource Accesses

Why do prior sharing-aware
heuristics perform poorly in

this scenario?

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GS

83

Unstructured Resource Accesses

T1 T2 T3 T4

l2l1

Why do prior sharing-aware
heuristics perform poorly in

this scenario?

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GST1 T2 T3 T4

l2l1

84

Unstructured Resource Accesses

No
convenient structure
that can be exploited

by heuristics!

Why do prior sharing-aware
heuristics perform poorly in

this scenario?

T1 T2 T3 T4

l2l1 l3 l4

85

Structured Resource Accesses

T1 T2 T3 T4

l2l1 l3 l4

86

Structured Resource Accesses

Grouping of tasks and resources into
functional components

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GS

87

Structured Resource Accesses

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GS

88

Greedy slacker works
reasonably well

Structured Resource Accesses

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GS

89

LNR-heuristic can
exploit structure better
than any other heuristic

Structured Resource Accesses

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GS

LNR-heuristic and
BPA built to exploit

structure

T1 T2 T3 T4

l2l1 l3 l4

90

Structured Resource Accesses

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GS

In practice, some
resources (e.g.,
kernel objects)

are shared among
all tasks.

91

T1 T2 T3 T4

l2l1 l3 l4

Structured Resource Accesses

LNR-heuristic and
BPA built to exploit

structure

T1 T2 T3 T4

l2l1 l3 l4

l5

92

Structured Resource Accesses
with global resources

Grouping of tasks and resources
into functional components,

some resources access by all tasks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GS

93

Structured Resource Accesses
with global resources

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GS

94

Structured Resource Accesses
with global resources

LNR-heuristic and BPA suffer from
a single global resource

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GS

95

Structured Resource Accesses
with global resources
Greedy slacker can partition (slightly) more

task sets than other heuristics

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

tasks

sharing-oblivious
LNR-heuristic

BPA
GS

Greedy Slacker
works well

independent of
resource access patterns!

96

Structured Resource Accesses
with global resources

Summary

Blocking due to spin locks in the MSRP
can be expressed

with purely linear expressions
which allows using ILP techniques.

Optimal partitioning matters
in the face of

shared resources
protected by spin locks.

97

Summary

Fast and robust sharing-aware
partitioning heuristic can be

embarrassingly simple.

98

Thanks!

99

