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Our Focus: Processor Efficiency
Make best use of multi-core 
architectures despite shared 

resources protected by spin locks
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Optimal ILP-based 
partitioning scheme for 
task sets with shared 

resources

Greedy Slacker:
simple and robust 

heuristic

Part IIPart I

Part III

Observation Contribution

Prior sharing-aware 
heuristics are 

complicated and brittle

Optimality matters!
with shared resources, 

potential wasted by 
prior heuristics
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constrained deadlines:

shared resources accessed in mutual 
exclusion

coordinating resource access: 
global: non-preemptable FIFO spinlocks
local: SRP (blocking equivalent to PCP)

Task Model
Ti : (ei, di, pi)

di  pi
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sporadic tasks: 

constrained deadlines:

shared resources accessed in mutual 
exclusion

coordinating resource access: 
global: non-preemptable FIFO spinlocks
local: SRP (blocking equivalent to PCP)

Task Model

[1] P. Gai, G. Lipari, and M. D. Natale, “Minimizing memory utilization of real-time task 
sets in single and multi-processor systems-on-a-chip,” in Proc. RTSS, 2001.

Ti : (ei, di, pi)

di  pi

Multiprocessor Stack Resource Policy [1]
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Exploring Wasted Potential

[1] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Coordinated task scheduling, 
allocation and synchronization on multiprocessors,” in Proc. RTSS, 2009.
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Exploring Wasted Potential

Potential 
left wasted!

How can we exploit this potential?
What’s the smallest platform we can use?
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periods in [3ms,33ms], 10% average task utilization
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Exploring Wasted Potential

How can we exploit this potential?
What’s the smallest platform we can use?

With shared resources,
optimal partitioning matters!

Potential 
left wasted!
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An Optimal ILP-based 
Partitioning Scheme
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What is an optimal partitioning scheme?
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If a valid partitioning
under a given analysis

exists,
a valid partitioning can be found.



Optimality
What is an optimal partitioning scheme?
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If a valid partitioning
under a given analysis

exists,
a valid partitioning can be found.

all tasks claimed schedulable by analysis
(= no task misses a deadline)



Optimality
What is an optimal partitioning scheme?
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We use the MSRP blocking analysis from 
Gai, Lipari, Di Natale (2001).

If a valid partitioning
under a given analysis

exists,
a valid partitioning can be found.



Basic ILP Model
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Integer Linear Programming model encodes 
for a fixed number of processors:

task assignment
priority assignment
constraints to enforce valid assignments



Basic ILP Model
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Integer Linear Programming model encodes 
for a fixed number of processors:

task assignment
priority assignment
constraints to enforce valid assignments

We need to encode the MSRP 
blocking analysis into the ILP!



Encoding Blocking in ILP

Ri = own execution +

34

interference

Classic fixed-priority response-time analysis

[1] S. Baruah and E. Bini, “Partitioned scheduling of sporadic task systems: An ILP 
based approach,” in Proc. DASIP, 2008.

[1]
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Blocking analysis from Gai et al.:
Encoding Blocking in ILP

Ri = own execution +

spinning +

+

35

interference

Blocking under classic MSRP 
analysis from Gai et al.
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depends on 
locality!

own local blocking

Blocking analysis from Gai et al.:
Encoding Blocking in ILP

Ri = own execution +

remote blocking +

+

interference

#higher-
prio jobs x( execution 

cost spinning+ )
40

variablesdepends on      ,  Ri
priority/locality!

How can we 
express blocking in 
purely linear terms?

Transform to multiplication 
of variables with constants!
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How long can     ‘s job spin?
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Details provided in the paper.
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Making 
ILP-based Partitioning Practical
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minimize number of 
processors

incorporate partial 
specifications

⇒ objective function 
unused in basic ILP

constrain existing 
helper variables⇒

In the real world, we also want to...

handle precedence 
constraints

one additional 
constraint per task⇒
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solving time grows with:
task set size
utilization
resource contention

ILP Solving Overhead
4 processors
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Only a
one-time cost 
for exploiting 
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Only a
one-time cost 
for exploiting 

wasted potential!

solving time grows with:
task set size
utilization
resource contention

4 processors
What can we do if we 

cannot afford 
ILP solving?
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A Simple  
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Partitioning Heuristic



Sharing-Aware Partitioning 
Heuristics
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Prior Sharing-Aware Heuristics:

LNR-heuristic [1]

Blocking-Aware Partitioning Algorithm 
(BPA) [2]

[1] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Coordinated task scheduling, 
allocation and synchronization on multiprocessors,” in Proc. RTSS, 2009.
[2] F. Nemati, T. Nolte, and M. Behnam, “Partitioning real-time systems on 
multiprocessors with shared resources,” in Proc. OPODIS, 2010.
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Assignment 
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Assignment 
Algorithm

l2l1

core 1 core 2

core 3core 4

T1T2 T3

T4

Can we do something simpler?

Splitting requires 
finding a good cut

High-Level View of
Sharing-Aware Partitioning Heuristics

This is not so easy...
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embarrassingly 
simple:

time until 
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disregard graph structure
greedily try to

  maximize minimum slack



Greedy Slacker
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if there is no      such that minimum slack     0:
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assign     to      s.t. minimum slack is maximized
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No cost functions!
Ignores graph structure!
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for each task     in order of increasing period:
for each processor     :

compute slack when     assigned to   
if there is no      such that minimum slack     0:

fail
else:

assign     to      s.t. minimum slack is maximized

Ti
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embarrassingly 
simple:

cr �

disregard graph structure
greedily try to

  maximize minimum slack
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Works with any 
blocking analysis.

No cost functions!
Ignores graph structure!

Can this possibly work?
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Experimental Setup
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Heuristics:
sharing-oblivious (bin-packing)
LNR-heuristic
BPA
Greedy Slacker

Configuration:
8 processors
4 shared resources
10% average task utilization
each resource accessed by 25% of tasks
100 samples
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Greedy slacker can 
partition more task sets 

than other heuristics
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Unstructured Resource Accesses

Why do prior sharing-aware 
heuristics perform poorly in 

this scenario?
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Unstructured Resource Accesses
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Unstructured Resource Accesses

No 
convenient structure 
that can be exploited 

by heuristics!

Why do prior sharing-aware 
heuristics perform poorly in 

this scenario?



T1 T2 T3 T4

l2l1 l3 l4

85

Structured Resource Accesses
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Structured Resource Accesses

Grouping of tasks and resources into 
functional components
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Structured Resource Accesses
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Greedy slacker works 
reasonably well

Structured Resource Accesses
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LNR-heuristic can 
exploit structure better 
than any other heuristic
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Structured Resource Accesses
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kernel objects) 

are shared among 
all tasks.
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BPA built to exploit 

structure
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Structured Resource Accesses 
with global resources

Grouping of tasks and resources 
into functional components, 

some resources access by all tasks
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Structured Resource Accesses 
with global resources
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Structured Resource Accesses 
with global resources

LNR-heuristic and BPA suffer from 
a single global resource
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Structured Resource Accesses 
with global resources
Greedy slacker can partition (slightly) more 

task sets than other heuristics
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Greedy Slacker
works well 

independent of 
resource access patterns!

96
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with global resources



Summary

Blocking due to spin locks in the MSRP 
can be expressed

with purely linear expressions
which allows using ILP techniques.

Optimal partitioning matters 
in the face of 

shared resources 
protected by spin locks.
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Summary

Fast and robust sharing-aware 
partitioning heuristic can be

embarrassingly simple.
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Thanks!
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