
Department of

AUTOMATIC CONTROL

Network Dynamics (FRTN30)

Exam: June 2, 2018, 8 – 13

Points and grading

All answers must include a clear motivation. The total number of points is 21. The
maximum number of points for each problem is specified.

Preliminary grading system: A = total points in the exam, B = total points from
the four hand-in assignments

• A+B < 12 =⇒ grade U

• 12 ≤ A+B < 17 =⇒ grade 3

• 17 ≤ A+B < 21 =⇒ grade 4

• A+B ≥ 21 =⇒ grade 5

Accepted aid

Only lecture notes and a pocket calculator are allowed.

Results

The results are reported via LADOK by the 20th of June. To view your exam, please
contact the exam responsible Christian Rosdahl (christian.rosdahl@control.lth.se).

Hint: Many subproblems can be solved independently of each other: If
you get stuck on a subproblem, it might help to move on and go back to
it later.

Good luck!
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1. Consider the two unweighted graphs GA and GB in Figure 1.
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3
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4 5

Figure 1 The graphs for Problem 1.

a. Determine the number of connected components and draw the condensation
graph of both GA and GB. (1 p)

b. Determine the invariant probability vectors πA and πB of GA and GB, respec-
tively. (1 p)

Consider now a standard discrete-time random walk on GB.

c. Determine the expected return time in node 1 and the one in node 5. (1 p)

d. Determine the conditional expected hitting time on the set S = {1, 5} given
that the walk starts in node 2. (1 p)

e. Determine the conditional probability of hitting node 1 before node 5, given
that the walk starts in node 2. (1 p)

f. Consider the standard DeGroot opinion dynamics x(t + 1) = Px(t) on GB.
Determine the asymptotic opinion vector limt→+∞ x(t) when the initial opinion
vector is x(0) = (1, 3, 2, 4, 0). (1 p)

g. Determine the asymptotic opinion vector for the DeGroot opinion dynamics
with stubborn agents on GB, when the stubborn agents set is S = {2, 4} with
opinions x2 = −2 and x4 = +1. (1 p)

Solution

a. Graph GA has three connected components. Graph GB has one connected com-
ponent. The condensation graphs are shown in Figure 2.

b. For graph GA, we know that πA will only have support on the sink-nodes in
the condensation graph. Hence πA = [ 0 1 0 0 0 ]′. Graph GB is balanced,
so the πB vector will be proportional to out-degree vector w. Since all nodes
have out-degree 2, πB = [ 1/5 1/5 1/5 1/5 1/5 ]′.
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Figure 2 The condensations graphs for Problem 1.

c. The expected return time is given by

E1[T+
1 ] =

1

πB1
= 5 , E5[T+

5 ] =
1

πB5
= 5 .

d.
Ei[TS ] = 0 , i ∈ {1, 5}

E2[TS ] = 1 +
1

2
E3[TS ]

E3[TS ] = 1 +
1

2
E4[TS ]

E4[TS ] = 1

Solving the equation system yields E3[TS ] = 3
2 and E2[TS ] = 7

4 .

e.
Γ1,5 = 1 Γ5,5 = 0

Γ2,5 =
1

2
Γ1,5 +

1

2
Γ3,5

Γ3,5 =
1

2
Γ4,5 +

1

2
Γ5,5

Γ4,5 =
1

2
Γ1,5 +

1

2
Γ5,5

Solving the system of equations yields Γ4,5 = 1
2 , Γ3,5 = 1

4 and Γ2,5 = 5
8 .

f. Since the graph is aperiodic, the asymptotic opinion vector will converge to
x = α1, where

α =
∑
i

πBi xi(0) =
1

5
(1 + 3 + 2 + 4) = 2 .

g. We have

x5 =
1

2
x2 +

1

2
x4 = −1

2
,

x3 =
1

2
x5 +

1

2
x4 =

1

4
,

x1 =
1

2
x2 +

1

2
x3 = −7

8
.
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Figure 3 Link capacities for the traffic flows in Problem 2.

2. Consider a traffic network with link capacities

C1 = 3, C2 = 7, C3 = 2, C4 = 5, C5 = 4

as shown in Figure 3.

a. What is the largest throughput of a feasible o-d flow? (1 p)

b. How should a total of 5 units of additional capacity be allocated to the links
in order to maximize the largest throughput of a feasible o-d flow? (1 p)

c. Now assume that the following delay functions are associated to the links

d1(x) = 2, d2(x) = 2 + x, d3(x) = 1, d4(x) = 4x, d5(x) = 1.

State the social optimum traffic assignment problem for unitary o-d flows (i.e.,
write down the cost function to be minimized and the constraints) and solve
it by finding the socially optimal flow vector f∗. (1 p)

d. Is any of the the following flow vectors

f1 = [ 2
5

3
5 0 2

5
3
5 ]′ , f2 = [ 3

5
2
5 0 3

5
2
5 ]′ ,

a Wardrop equilibrium? Motivate your answer. (1 p)

e. Determine the price of anarchy. (.5 p)

f. Determine a vector of tolls, ω∗, such that when added to the delays, the
Wardrop equilibrium coincides with the social optimum. (.5 p)

Solution

a. The four o-d cuts U1 = {o}, U2 = {o, a}, U3 = {o, b} and U4 = {o, a, b} have
capacities

CU1 = 10, CU2 = 14, CU3 = 7, and CU4 = 9.

According to the max-flow min-cut theorem, the maximum throughput from
node o to node d is the min-cut capacity, i.e., the minimum of the capacities
above. The maximum flow that can be sent from o to d is thus τ∗od = CU3 = 7.
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b. By adding 3 units of capacity to C5, the min-cut capacity is increased to 10,
since then CU3 = 10 and CU4 = 12. The new min-cut capacities are then
CU1 = 10 and CU3 = 10. By adding two units of capacity to C1, both these cut
capacities are increased to CU1 = CU3 = 12, while still not exceeding any of
the other cut capacities. Thus, we get

CU1 = CU3 = CU4 = 12, CU2 = 14,

resulting in min-cut capacity 12. The answer is thus that three capacity units
should be added to C5 and that two capacity units should be added to C1, so
that the new capacities become

C1 = 5, C2 = 7, C3 = 2, C4 = 5, C5 = 7.

c. The social optimum traffic assignment problem reads

minimizef
∑

e ce(fe) =
∑

e fede(fe) = 2f1 + (2 + f2)f2 + f3 + 4f2
4 + f5

subject to f ≥ 0 and Bf = λ− µ,

whereB is the node-link incidence matrix, f = (f1, f2, f3, f4, f5)′ is the vector of
link flows, λ = (1, 0, 0, 0, 0)′ is the exogenous inflow vector and µ = (0, 0, 0, 0, 1)′

is the exogenous outflow vector. This can be solved analytically by substituting
the link flow variables with the path flow variables, according to

f1 = z1 + z2, f2 = z3, f3 = z2, f4 = z1, f5 = z2 + z3.

The cost function then becomes

c = 2(z1 + z2) + (2 + z3)z3 + z2 + 4z2
1 + z2 + z3.

Furthermore, we know that the sum of the flows along all paths must be one,
since we have assumed a unit throughput. Therefore, the condition z1+z2+z3 =
1 can be used to eliminate the variable z3, which results in the cost

c = 2(z1 + z2) + (2 + 1− z1 − z2)(1− z1 − z2) + z2 + 4z2
1 + z2 + (1− z1 − z2)

= 2 + (1− z1 − z2)2 + z2 + 4z2
1 + 1− z1.

Requiring the gradient of c = c(z1, z2) to be zero gives

∂c

∂z1
= 2(z1 + z2 − 1) + 8z1 − 1 = 0,

∂c

∂z2
= 2(z1 + z2 − 1) + 1 = 0 ⇒{

10z1 + 2z2 = 3

2z1 + 2z2 = 1
⇔

{
z1 = 1/4

z2 = 1/4
.

Noting that z3 = 1− z1 − z2 = 1/2, the path flows can be substituted back in
order to yield the link flows

f1 =
1

2
, f2 =

1

2
, f3 =

1

4
, f4 =

1

4
, f5 =

3

4
.

d. According to the definition, a flow is a Wardrop equilibrium if the flow zi along
path zi is non-zero only if the delay along this path is smaller than or equal to
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the delay along all other paths. For the flow vector f2, we have delays along
the paths p1 = (o, a, d), p2 = (o, a, b, d) and p3 = (o, b, d) given by

delay(p1) = d1(f1) + d4(f4) = 2 + 4 · 3

5
=

22

5
,

delay(p2) = d1(f1) + d3(f3) + d5(f5) = 2 + 1 + 1 = 4,

delay(p3) = d2(f2) + d5(f5) = 2 +
2

5
+ 1 =

17

5
.

We can, for example, see that the delay on path p1 is larger than the delay on
path p2. For the flow vector to be a Wardrop equilibrium, this should imply that
z1 = f4 = 0, which is not the case. Thus, f2 cannot be a Wardrop equilibrium.
On the other hand, for the flow vector f1, we have delays along the paths given
by

delay(p1) = d1(f1) + d4(f4) = 2 + 4 · 2

5
=

18

5
,

delay(p2) = d1(f1) + d3(f3) + d5(f5) = 2 + 1 + 1 = 4,

delay(p3) = d2(f2) + d5(f5) = 2 +
3

5
+ 1 =

18

5
.

Here we see that the only paths which have non-zero flows are the ones with
shortest delay, i.e., p1 and p3. On the path p2, we have the path flow z2 = f3 = 0.
Thus, f1 is a Wardrop equilibrium.

e. The price of anarchy is the ratio between the average delay at the Wardrop
equilbrium and the average delay at the social optimum. In this case we have

PoA =
18/5

7/2
=

36

35
.

f. The Wardrop equilibrium will coincide with the social optimum if we to the
delay functions de(x) add tolls ω∗e that are given by

ω∗e = c′e(f
∗
e )− de(f∗e ) = f∗e d

′
e(f
∗
e ),

where f∗ is the flow vector that solves the social optimum traffic assignment
problem. Computing this gives

ω∗1 = 0, ω∗2 = f∗2 =
1

2
, ω∗3 = 0, ω∗4 = 4f∗4 = 1, ω∗5 = 0.
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3. Consider a strategic form game with player set {1, 2, 3}, action space A =
{−1,+1}, and utilities

u1(x) = x1x2 , u2(x) = x2(x1 + x3) , u3(x) = x3x2 .

a. Determine the best response functions B1(x2, x3), B2(x1, x3), and B3(x1, x2).
(.5 p)

b. Determine the set of Nash equilibria. (.5 p)

c. Draw the graph whose node set is the configuration space of the game and
whose links correspond to the possible transitions of the asynchronous best
response dynamics labeled by the corresponding rates. (.5 p)

d. Determine the conditional probability that the asynchronous best response
dynamics X(t) gets absorbed in configuration (1, 1, 1) given that it starts from
configuration (−1, 1,−1). (.5 p)

e. Is this a potential game? Motivate your answer. (.5 p)

f. For the noisy best response dynamics with noise parameter 1/η = 1, determine
the stationary probability π(1,1,1) to be in configuration (1, 1, 1). (.5 p)

Now consider a game with the same player set and action space and utilities

u1(x) = x1x2 , u2(x) = −x2(x1 + x3) , u3(x) = x3x2 .

g. Determine the best response functions B1(x2, x3), B2(x1, x3), and B3(x1, x2).
(.5 p)

h. Determine the set of Nash equilibria. (.5 p)

i. Is this a potential game? Motivate your answer. (.5 p)

j. For the asynchronous best response dynamics, determine the stationary prob-
ability π(1,1,1) to be in configuration (1, 1, 1). (.5 p)

Solution

a.

B1(x2, x3) = B3(x1, x2) = x2 , B2(x1, x3) =


−1 if x1 = x3 = −1

{−1,+1} if x1 = −x3

+1 if x1 = x3 = +1 .

b. At a Nash equilibrium, players 1 and 3 both copy the action of player 2. In
turn player 2 plays the action that both player 1 and 3 play. Hence, there are
two Nash equilibria, the configurations (−1,−1,−1) and (+1,+1,+1).
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c.

−−− − +−

+−−

−− +

+− +

+ +−

− + +

+ + +

1/2

1/2

1/2

1/2

1

1

1

11

1 1

1

1

1

d. Because of symmetries, the absorbing probabilities satisfy

α = Γ
(+,+,+)
(−,+,−) = 1−Γ

(+,+,+)
(+,−,+) β = Γ

(+,+,+)
(+,−,−) = Γ

(+,+,+)
(−,−,+) = 1−Γ

(+,+,+)
(+,+,−) = 1−Γ

(+,+,+)
(−,+,+) .

Conditioning on the first step when starting from configurations (+,−,−) and
(−,+,−), respectively, we get

β =
1

3
(1− β) , α =

2

3
(1− β) .

Then, β = 1/4 and α = 1/2. Hence the probability that, when starting from

configuration (−,+,−), the system gets absorbed in (+,+,+) is Γ
(+,+,+)
(−,+,−) =

α = 1/2.

e. This is a network coordination game on a simple line graph with 3 nodes, hence
it is a potential game with potential function

Φ(x1, x2, x3) = |x1 + x2|+ |x2 + x3|

coinciding with twice the number of undirected links connecting nodes with the
same action. Another potential function is given by Φ(x1, x2, x3) = x2(x1 +x3).

f.

π(1,1,1) =
eΦ(1,1,1)∑

x e
Φ(x)

=
e4

2e4 + 4e2 + 2
=

1

2(1 + e−2)2

g.

B1(x2, x3) = B3(x1, x2) = x2 , B2(x1, x3) =


−1 if x1 = x3 = +1

{−1,+1} if x1 = −x3

+1 if x1 = x3 = −1 .

h. At a Nash equilibrium, players 1 and 3 both should copy the action of player
2, while player 2 should play the opposite of the action that both player 1 and
3 play. Hence, there are no Nash equilibria.

i. The game is not a potential one because it admits no Nash equilibria.
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j.

−−− − +−

+−−

−− +

+− +

+ +−

− + +

+ + +

1/2

1/2

1/2

1/2

1

1

1

11

1 1

1

1

1

Because of symmetries, the stationary probabilities satisfy

a = π(+,+,+) = π(−,−,−) , b = π(+,−,+) = π(−,+,−) ,

c = π(−,+,+) = π(+,+,−) = π(−,−,+) = π(+,−,−) .

Observe that the maximum degree is ω∗ = 2. Then, mass conservation for the
Q chain in nodes (−,−,−), (−,+,−), and (+,−,−), respectively, give us

a =
1

2
a+

1

2
c+

1

2
c , b =

1

2
a , c =

1

4
c+

1

4
c+

1

2
b ,

i.e., c = b = 1
2a and from 4c + 2a + 2b = 1 we get a = 1/5 and b = c = 1/10.

Hence,

π(+,+,+) =
1

5
.
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t = 0 t = 1 t = 2

Figure 4 The first two generations of the Galton-Watson process for Problem 4.

4. Consider a Galton-Watson branching process with offspring distribution

p0 = 0.2, p1 = 0.3, p2 = 0.5, pk = 0 , k ≥ 3 .

a. Determine the extinction probability. (1 p)

Now, assume that, up to the second generation, the graph generated by such
branching process looks like the one in Figure 4. Conditioned on this event,

b. what is the conditional probability of survival for the branching process?
(.5 p)

c. what is the conditional probability that the diameter of the graph generated
thereafter by the branching process will be at least 5? (.5 p)

Solution

a. The probability that the branching process extinguishes is given by

p0 + p1θ + p2θ
2 = θ ,

which can be rewritten as

0.2− 0.7θ + 0.5θ2 = 0

or
0.4− 1.4θ + θ2 = 0 .

This equation has two roots, θ1 = 0.4 and θ2 = 1, hence the probably that
each branch will extinguish is 0.4.

b. The conditional probability that all three branches will extinguish is 0.43 =
0.064 and hence the conditional probability of survival is 1− 0.064 = 0.936.

c. If the graph should get a diameter of at least 5, at least one of the leaves must
get a child. The probably that none of the leaves gets a child is p3

0, so the
probability that the diameter of the graph will be at least 5 is 1− p3

0 = 0.992.
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1 2 3 4 5 6

Figure 5 The graph for Problem 5.

5. Consider the SIR epidemics on a simple line graph with six nodes as in Fig-
ure 5. The state Xi(t) of each node belongs to the set {0, 1, 2}, where 0 stands
for susceptible, 1 stands for infected, and 2 for recovered. Let the interaction
frequency parameter be β = 1, the recovery rate be unitary, and let the initial
configuration be X(0) = (1, 0, 0, 0, 0, 0), i.e., node 1 is infected and all other
nodes are susceptible.

a. What are the absorbing configurations that are reachable from the given X(0)?
(.5 p)

b. What is the probability that node 2 gets infected before node 1 recovers?
(.5 p)

c. What is the probability that all six nodes eventually are recovered? (.5 p)

d. What is the probability that the final number of recovered nodes is 4? (.5 p)

Solution

a. Since all infected nodes eventually will get recovered, the transition 1 → 2
will eventually happen given that the node is in state 1. Thus, an absorbing
configuration cannot contain any node in state 1. Moreover, if none of the
nodes are in state 1 (infected), none of the nodes will change its state further.
Therefore, all nodes must be in state 0 or 2 in an absorbing configuration.
The first node is initially infected, so it must be recovered (in state 2) in the
absorbing configuration. Furthermore, for a node to be recovered, it must have
been infected by a neighbor, which means that at least one neighbor must be
recovered (in state 2) for each recovered node in an absorbing state. All possible
absorbing states are thereby X = (2, 0, 0, 0, 0, 0), X = (2, 2, 0, 0, 0, 0), X =
(2, 2, 2, 0, 0, 0),X = (2, 2, 2, 2, 0, 0),X = (2, 2, 2, 2, 2, 0) andX = (2, 2, 2, 2, 2, 2).

b. Node 1 will get recovered when a rate-1 Poisson clock ticks. Node 2 will get
infected if another independent rate-1 Poisson clock ticks before node 1 has
recovered. Thus, we have two independent rate-1 Poisson clocks and if the first
one ticks before the second one, node 2 gets infected, while if the second one
ticks before the first one, node 2 does not get infected. Since the Poisson clocks
are equivalent and independent, this implies that the probability for each of
the two outcomes must be 1/2.

c. That a node eventually is recovered is equivalent with that it at some point
gets infected. We know from the previous subproblem that node 2 gets infected
with probability 1/2. Given that this has happened, repeating the same rea-
soning as in the previous subproblem (but with nodes 3 and 2 instead of 2
and 1), gives the conditional probability 1/2 that node 3 gets infected. The
probability that nodes 2 and 3 get infected (and thus eventually recovered) is
thus (1/2)2. Repeating the same reasoning for the following nodes gives that
all six nodes eventually get infected and thus eventually get recovered with
probability (1/2)5.
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d. For the final number of recovered nodes to be 4, it must hold that the first four
nodes get infected and that node 4 recovers before node 5 has been infected. The
probability that node 4 gets infected is (1/2)3. Given that this has happened,
the conditional probability that node 5 does not get infected before node 4
has recovered is 1/2. Thus, the total probability for these events to happen is
(1/2)4.
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