Batch, cookies are made according to a recipe.

Discrete, discrete pieces are put together.

Continuous, paper is continuously coming out of the paper machine.
Continuous, electricity is continuously produced.

Batch, medicine is produced according to a recipe.

S e

Batch, beverages are produced according to a recipe.

See figure 1.

. Each inequality corresponds to a line in figure 2. The area in the bottom
left of the figure is the feasible area.

. The optimal value is always in one of the corners of the feasible area, i.e.

o (e (e (- C3) (-2

The values in the corners are vy : 0,v1 : 3,09 : 2,v3 : 3, meaning that e.g. vy
or vg is optimal.

Alternatively one can note that the boundary 3x; + x9 < 3 is included in
the feasible area, and thus the optimal value is 3 for any (x1,x2) on this
line in the first quadrant.

a) single-path, single product - only one predefined sequential path from
raw materials to the only product A

b) multi-path, multi-grade - three parallel branches without interaction
from raw materials to the two variants of product A

c) network, single product - interacting parallel branches only producing
product A

d) multi-path, multi-product - parallel branches without interaction, more
than one product

e) network, single product - interacting parallel branches only producing
product A

f) multi-path, multi-product - parallel branches without interaction, more
than one product
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Figure 1 Grafcet for solution preparation process.
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Figure 2 Feasible area.
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No solution

a. The area dependence matrix A, gives a representation of the site structure
and can be calculated from the flowchart of the product flow.

1000
010 0

Ay =
1110

010 1

The area-utility matrix A, gives a representation of which utilities are
required in each area. Considering that the utilities are ordered: electricity,
instrument air, and vacuum system; the area-utility matrix A, becomes:

11

A, =

N

01
10
0 0

The utility dependence matrix Uy defines the interdependence between the
different utilities. Considering the same ordering for the utilities as for A,,
then:

U, =

—
=
= o O

The utility operation matrix U describes which utilities have operated cor-
rectly at each sample point.

U =

—_ o
o H ©
—
=
N

b. The total revenue loss due to each utility can be calculated using:

Ji = diag(l— UL) - sign(AgAL)" (g™ - #p)nsts

1/6 11 3 2
= diag | 1/6 |sign |1 0 2 0| (@™ *p)nsts
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The utility that causes the greatest losses at the site is electricity.

Denote the number of rings and necklaces to produce x; and x5 respectively
and the utilization of bender 1 and 2 by x3 and x4 respectively.

The optimization problem is then

maximize 15x; + 103xy — 100 — 1x4
subject to x3 < 200
x4 < 400
4x1 + 21xg < x3 + x4
x>0

a. In this solution we consider the more general case where we have N com-
panies.

We have the profit function for company i: u; = g;(a—c—Q) where @ = >, g;.
We find the Nash Equilibrium by differentiating: g—glf =a—c—Q—q;=0
Summing these equations we get

0= Ya-c-q-gq

0 = Na—-c—-Q)-Q
(N+1)@ = N(a—c)
N
Using q; = ¢5 = ... = g}y we get the Nash Equilibrium ¢} = % = ﬁ(a —c).

Thus for N = 3 we have ¢} = ¢ = g5 = %(a —c).

b. The profit for company i is

U/—Cz
u; = ﬁ(a—c) (a—c— NLH(a —c)) = ﬁ(a —c) ((a—c)ﬁ) = —((N+1))2'

The total profit for all companies is ((]‘f]:rcl))zzN ,ie. (@ —c)?% and (a — )2
for N = 2 and N = 3 respectively. Thus the total profit is smaller in the

triopoly market.

a. The following table describes the strategies of Player 1 and Player 2:

Player 2
1 2
-2
Player 1 +3
+3 | 4




b. Analysing the game from the point of view of Player 1, suppose he calls
“one” 3/5ths of the time and “two” 2/5ths of the time at random. In this
case:

e If Player 2 calls “one”, Player 1 loses 2 SEK 3/5ths of the time and wins
3 SEK 2/5ths of the time, that is, on the average, he wins: —2(3/5) +
3(2/5) = 0 SEK (he breaks even in the long run).

e If Player 2 calls 'two’, Player 1 wins 3 SEK 3/5ths of the time and loses
4 SEK 2/5ths of the time, that is, on the average he wins: 3(3/5) —
4(2/5) =1/5 SEK.

Therefore if Player 1 mixes his choices in the given way, the game is even
every time Player 2 calls “one”, but Player 1 wins 1/5 SEK on the average
every time Player 2 calls “two”. In this way Player 1 is assured of at least
breaking even on the average no matter what Player 2 does.

({3

c. Considering “p” as the proportion of times that Player 1 calls “one”, the idea

is to choose “p” such that Player 1 wins the same amount on the average
whether Player 2 calls “one” or “two”. Then:

Player 2
1 2
1| -2 |+3

Player 1

(1p) 2|+3| 4

The payoff of Player 1 if Player 2 calls “one” is: —2p + 3(1 — p)
The payoff of Player 1 if Player 2 calls “two” is: 3p — 4(1 — p)
Therefore Player 1 should choose “p” so that:

—2p+3(1—p)=3p—4(1—-p)
p="17/12

Thus, Player 1 should call “one” with probability 7/12, and “two” with prob-
ability 5/12. Using this strategy Player 1 wins 1/12 SEK every time he
plays the game, no matter what Player 2 does.



