
FRTN20	 2016	

1	

Market-Driven	Systems	
Marknadsstyrda	System	

FRTN20	
Lecture	2:	Discrete	Produc@on	

1	2016	

Discrete	Produc@on	Processes	

General	Characteris@cs	of	discrete	produc@on	
processes:	

	
•  Discon@nuous	produc@on	of	product,		i.e.	

discrete	output.	
•  Discon@nuous	flow	of	material	(oLen	pieces	

and	parts).	
•  Assembly-oriented	produc@on.	
•  Staged	produc@on	through	work	cells	
•  Well	defined	produc@on	runs.	
•  The	product	is	most	oLen	”visible”.	
•  The	equipment	operates	in	on-off	manner.	

2	2016	



FRTN20	 2016	

2	

Discrete	Produc@on	Processes	
A	discrete	produc@on	process	is	the	assembly	of	piece	parts	into	

products.	The	product	is	a	discrete	en@ty.		
	

3	2016	

Discrete	Event	Systems	

Defini@on:	
A	Discrete	Event	System	(DES)	is	a	discrete-state,	
event-driven	system,	that	is,	its	state	evolu@on	
depends	en@rely	on	the	occurrence	of	asynchronous	
discrete	events	over	@me.	
	
Some@mes	the	name	Discrete	Event	Dynamic	System	
(DEDS)	is	used	to	emphasize	the	dynamic	nature	of	
DES.	

4	2016	



FRTN20	 2016	

3	

Discrete	Event	Systems	

1.  The	state	space	is	a	discrete	set	
2.  The	state	transi@on	mechanism	is	event-

driven	
3.  The	events	can	be	synchronized	by	a	clock,	

but	they	do	not	have	to	be	(i.e.,	the	system	
can	be	asynchronous)	

5	2016	

Con@nuous-Time	Systems	

6	2016	



FRTN20	 2016	

4	

Discrete-Event	Systems	

7	2016	

How	do	we	control	a	machine?	
	

Automa@on	of	the	discrete	opera@ons	(on-off)	is	largely	a	ma^er	
of	a	series	of	carefully	@med	on-off	steps.	The	equipment	
performing	the	opera@ons	operates	in	an	on-off	manner.	

Discrete	signals	
–  Control	parameters:	true	or	false	
–  Actuators:	on	or	off	

Interlocks	(”förreglingar”)	
–  Output	=	func@on(input)	
–  Boolean	algebra 		

	
		

8	2016	



FRTN20	 2016	

5	

George	Boole	(1815-1864)	
Boole	approached	logic	in	a	new	

way	reducing	it	to	a	simple	
algebra,	incorpora@ng	logic	
into	mathema@cs.		

He	also	worked	on	differen@al	
equa@ons,	the	calculus	of	
finite	differences	and	general	
methods	in	probability.	

	
An	inves6ga6on	into	the	Laws	of	

Thought,	on	Which	are	
founded	the	Mathema6cal	
Theories	of	Logic	and	
Probabili6es	(1854)	

9	2016	

Logic:	
Opera@ons	and	symbols	

10	2016	



FRTN20	 2016	

6	

Logic:	Rules	

Boolean	Algebra:	
	
	
	
Logical	Rules	
	

11	

Example:	1+a	=	1		and	0+a	=	a	
Example:	a+	(not	a)	=	a	and	a	*	(not	a)	=	0	

2016	

Logics:	Example	
Discrete	logics	can	also	be	used	for	other	types	of	applica@ons,	

e.g.,	alarms.	

Alarm	for	a	batchreactor:	
Give	an	alarm	if	the	temperature	in	the	
tank	is	too	high,	T,		and	the	cooling	is	
closed,	not-Q,	or	if	the	temperature	is	
high	and	the	inlet	valve	is	open,	V1.			

Truth	table:	

Logic:	

12	

y	=	T(notQ)(notV)	+	T(notQ)V	+	TQV	
y	=	T(notQ)(notV+V)	+	TQV	
y	=	T(notQ)	+	TQV	
y	=	T	((notQ)	+	QV)			

2016	



FRTN20	 2016	

7	

Electro-Mechanical	Relays	
The	basic	device	invented	for	control	of	discrete	produc@on	processes	

is	the	automa@c	switch	and	interconnected	sequences	of	automa@c	
switches.	

	
	
	
	
	
	
	
	
	
Today,	the	automa@c	switches	are	replaced	by	computer	programs.	

This	technological	innova@on	took	place	in	the	1960s,	since	then	
discrete	systems	have	become	more	automated.	

13	2016	

Control	Relay	–	Not	Ac@vated	

14	2016	



FRTN20	 2016	

8	

Control	Relay	-	Ac@vated	

15	2016	

Logic	Control	

16	

AND	

OR	

2016	



FRTN20	 2016	

9	

Single	Cylinder	Stroke	#1	

17	2016	

Single	Cylinder	Stroke	#2	

18	2016	



FRTN20	 2016	

10	

Single	Cylinder	Stroke	#3	

19	2016	

Single	Cylinder	Stroke	#4	

20	2016	



FRTN20	 2016	

11	

Single	Cylinder	Stroke	#5	

21	2016	

Single	Cylinder	Stroke	#6	

22	2016	



FRTN20	 2016	

12	

Single	Cylinder	Stroke	#7	

23	2016	

Single	Cylinder	Stroke	#8	

24	2016	



FRTN20	 2016	

13	

Single	Cylinder	Stroke	#9	

25	2016	

Single	Cylinder	Stroke	#10	

26	2016	



FRTN20	 2016	

14	

Batch	Reactor	Example	revisited	
Using	ladder	diagrams	for	simple	interlocks	

Alarm	for	a	batchreactor:	
Give	an	alarm	if	the	temperature	in	the	
tank	is	too	high,	T,	and	the	cooling	is	
closed,	not-Q,	or	if	the	temperature	is	
too	high,	T,		and	the	inlet	valve	is	open,	
V1.			

Logic:	

T	

Q	

V	Q	

Alarm	(y)	

27	2016	

y	=	T(notQ)(notV)	+	T(notQ)V	+	TQV	
y	=	T(notQ)(notV+V)	+	TQV	
y	=	T(notQ)	+	TQV	
y	=	T	((notQ)	+	QV)			

Logics:	
Example	(discrete	produc@on	process)	
A	common	manufacturing	process:		
-  receive	an	object		
-  posi@on	the	object	
-  clamp	the	object	
-  “do	something”	to	(work	on)	the	object		
-  release	the	object	

28	2016	



FRTN20	 2016	

15	

Example:	Clamp/Work	Layout	

NOTE:	Example	from	University	of	Alabama	(www.me.au.edu)	 29	

Process:	
1.  Press	the	”START”	bu^on	
2.  Extend	the	clamp	cylinder	
3. When	the	clamp	cylinder	is	

fully	engaged,	start	extending	
the	work	cylinder	

4. When	the	work	has	finished,	
retract	the	work	cylinder	

5. When	the	work	cylinder	is	fully	
retracted,	retract	the	clamp	
cylinder	

2016	

Example:	Clamp/Work	Layout	

30	

Relay	Ladder	Logic	Nota@on	with	counter	
	
Each	relay	represents	a	state	variable	2016	



FRTN20	 2016	

16	

Logic	

•  Larger	in	volume	than	con@nuous	control		
•  Very	li^le	theore@cal	support	

–	verifica@on,	synthesis		
–	formal	methods	beginning	to	emerge		
–	s@ll	not	widespread	in	industry	

31	2016	

Relay/Ladder	Logic	

•  Very	user	unfriendly	way	of	programming	
logic	

•  S@ll	very	common	in	discrete	produc@on	
processes	
– E.g.	Tetra	Pak	

32	2016	



FRTN20	 2016	

17	

How	do	we	control	a	plant?	
	

Automa@on	of	the	discrete	opera@ons	(on-off)	is	largely	a	ma^er	
of	a	series	of	carefully	@med	on-off	steps.	

Discrete	signals	
–  Control	parameters:	true	or	false	
–  Actuators:	on	or	off	

Interlocks	(”förreglingar”)	
–  Output	=	func@on(input)	
–  Boolean	algebra 		

		

	
		

Sequence	nets:	
-  Dynamic	systems	

-  Output	=	f(input,state)	
-  Next_state	=	g(input,	state)	

-  Finite	State	machines,	Petri	Nets,			
Grafcet/SFC,	Grafchart	

	
33	2016	

Finite	State	Machines	
Formal	proper@es	->	Analysis	possible	in	certain	cases.	
	
Using	finite	state	machines	is	usually	a	good	way	to	structure	

code.	
	
Using	state	machines	is	usually	a	good	way	to	visualize	a	

behaviour.	
	
Two	basic	types	of	finite	state	machines	
•  Mealy	machines	
•  Moore	machines			

34	2016	



FRTN20	 2016	

18	

Mealy	Machine	

Output	events	(ac@ons)	
associated	with	
input	events.	

35	2016	

Moore	Machine	

State	transi@ons	in	
response	to	input	
events	

	
	Output	events	(ac@ons)	
associated	with	states	

36	2016	



FRTN20	 2016	

19	

Mealy	and	Moore	Machines		
A	Mealy-machine	(leL)	and	the	corresponding	Moore-machine	

(right)	are	shown.	The	two	state	machines	have	two	inputs,	a	
and	b,	and	two	outputs,	z0	and	z1.		

37	2016	

Finite	State	machine	
Cruise	Control	

Cruise	controls	are	common	in	vehicle	
applica@ons.		

38	2016	



FRTN20	 2016	

20	

State	Machines	

Ordinary	state	machines	lack	structure.		
Extensions	needed	to	make	them	prac@cally	
useful	
– hierarchy		
– concurrency		
– history	(memory)	

39	2016	

Carl	Adam	Petri	(1926-2010)	
Carl	Adam	Petri	(born	July	12,	1926)	

is	a	German	mathema@cian	and	
computer	scien@st.		

Petri	Nets	were	invented	in	August	
1939	by	Carl	Adam	Petri	-	at	the	
age	of	13.		He	documented	the	
Petri	net	in	1962	as	part	of	his	
disserta@on.	It	significantly	
helped	define	the	modern	
studies	of	complex	systems	and	
workflow	management.	

			
Kommunika6on	mit	Automaten,	Carl	

Adam	Petri	(1962)	

40	2016	



FRTN20	 2016	

21	

Petri	Nets	
A	mathema@cal	and	graphical	modeling	method.		
Describe	systems	that	are:	
–  Concurrent		
	(several	computa@ons	are	execu@ng	simultaneously)		
–  asynchronous	or	synchronous	
	(not	coordinated	by	a	clock	vs	coordinated	by	a	clock)		
– Distributed	
	(several	computa@ons	that	run	autonomously	but	exchange	
infomra@on	to	reach	a	common	goal)		

–  nondeterminis@c	or	determinis@c	
	(the	output	is	not	vs	is	completely	given	by	the	input)	

41	2016	

Petri	Nets	

Can	be	used	at	all	stages	of	system	development:	
– modeling		
– analysis		
– simula@on/visualiza@on		
	(“playing	the	token	game”)		
– synthesis		
–  implementa@on	(Grafcet)	

42	2016	



FRTN20	 2016	

22	

Applica@on	Areas	

•  flexible	manufacturing	systems	
•  logical	controller	design		
•  communica@on	protocols		
•  distributed	systems		
•  mul@processor	memory	systems		
•  dataflow	compu@ng	systems		
•  fault	tolerant	systems	
•  …	

43	2016	

Introduc@on	

A	Petri	net	is	a	directed	bipar@te	graph	consis@ng	of	
places	P	and	transi@ons	T.	

Places	are	represented	by	circles.		
Transi@ons	are	represented	by	bars	(or	rectangles)		
Places	and	transi@ons	are	connected	by	arcs.	
In	a	marked	Petri	net	each	place	contains	a	cardinal	
(zero	or	posi@ve	integer)	number	of	tokens	of	marks.	

44	2016	



FRTN20	 2016	

23	

Example	

45	2016	

Firing	Rules	
1.  A	transi@on	t	is	enabled	if	each	input	place	contains	at	

least	one	token.	
2.  An	enabled	transi@on	may	or	may	not	fire.	
3.  Firing	an	enabled	transi@on	t	means	removing	one	token	

from	each	input	place	of	t	and	adding	one	token	to	each	
output	place	of	t.	

	
The	firing	of	a	transi@on	has	zero	dura@on.	
The	firing	of	a	sink	transi@on	(only	input	places)	only	

consumes	tokens.	
The	firing	of	a	source	transi@on	(only	output	places)	only	

produces	tokens.	

46	2016	



FRTN20	 2016	

24	

Example	

47	2016	

Petri	Net	variants	

Generalized	Petri	Nets:	
	Weights	associated	to	the	arcs	

Times	Petri	Nets	
	Times	associated	with	transi@ons	or	places	

High-Level	Petri	Nets:	
	Tokens	are	structured	data	types	(objects)	

Con@nuous	&	Hybrid	Petri	Nets:	
	The	markings	are	real	numbers	instead	of	integers.	Mixed	
con@nuous/discrete	systems	

48	2016	



FRTN20	 2016	

25	

Analysis	

Proper@es:	
•  Live:	No	transi@ons	can	become	unfireable.	
•  Deadlock-free:	Transi@ons	can	always	be	fired	
•  Bounded:	Finite	number	of	tokens	...	

49	2016	

Analysis	
Analysis	methods:	
•  Reachability	methods	–	exhaus@ve	enumera@on	of	all	

possible	markings	
•  Linear	algebra	methods	–	describe	the	dynamic	behaviour	as	

matrix	equa@ons	
•  Reduc@on	methods–	transforma@on	rules	that	reduce	the	net	

to	a	simpler	net	while	preserving	the	proper@es	of	interest	

50	2016	



FRTN20	 2016	

26	

Grafcet	
	

•  Extended	state	machine	formalism	for	
implementa@on	of	sequence	control	

•  Industrial	name:	Sequen@al	Func@on	Charts	(SFC)	
•  Defined	in	France	in	1977	as	a	formal	specifica@on	
and	realiza@on	method	for	logical	controllers	

•  Part	of	IEC	61131-3	(industry	standard	for	PLC	
controllers)	

51	2016	

Basic	Elements	

52	2016	



FRTN20	 2016	

27	

Control	Structures	

53	2016	

Control	Structures	

54	2016	



FRTN20	 2016	

28	

Legal	and		
Illegal	structures	

	

55	2016	

Seman@cs	
1.  The	ini@al	step(s)	is	ac@ve	when	the	func@on	chart	is	

ini@ated.	
2.  A	transi@on	is	fireable	if:	
–  all	steps	preceding	the	the	transi@on	are	ac@ve	(en-	abled).	
–  the	recep@vity	(transi@on	condi@on	and/or	event)	of	the	

transi@on	is	true.	
A	fireable	transi@on	must	be	fired.	

3.	 	All	the	steps	preceding	the	transi@on	are	deac@vated	and	
all	the	steps	following	the	transi@on	are	ac@vated	when	a	
transi@on	is	fired	

4.  All	fireable	transi@ons	are	fired	simultaneously	
5.	 	When	a	step	must	be	both	deac@vated	and	ac@vated	it	

remains	ac@vated	without	interrupt	

56	2016	



FRTN20	 2016	

29	

Firing	

57	2016	

Unreachable	Grafcet	

58	2016	



FRTN20	 2016	

30	

Unsafe	Grafcet	

……	

59	2016	

Example	
Specifika@ons:		
Verbal	descrip@on	
1.  Start	the	sequence	by	pushing	the	

bu^on	B	
2.  Open	valve	V1	in	order	to	fill	water	

up	to	level	L1	
3.  Heat	the	water	un@l	the	temperature	

hs	higher	than	T.	Hea@ng	can	start	as	
soon	as	there	are	water	above	level	
L0.	

4.  Empty	the	tank	by	open	valve	V2	
un@l	the	level	reaches	below	L0.	

5.  Close	the	valves	and	go	to	1)	and	
wait	for	a	new	start-command	

60	2016	



FRTN20	 2016	

31	

Example	

61	2016	

IEC	61131	
•  IEC	standard	for	programmable	controllers	(PLCs)	
•  Several	parts,	e.g.	
– 61131-3	Programming	languages	
– 61131-5	Communica@ons	
– 61131-6	Func@onal	safety	

•  Adopted	by	essen@ally	all	PLC	vendors	

62	2016	



FRTN20	 2016	

32	

IEC	61131-3	

•  Defines	5	PLC	programming	languages	
– Func@on	block	diagrams	(FBD)		
– Ladder	Diagrams	(LD)	
– Structrured	text	(ST)	
–  Instruc@on	list	(IL)	
– Sequen@al	func@on	chart	(SFC),	i.e.	Grafcet	

+	how	they	may	interact	
Currently	extended	with	object-orienta@on	

63	2016	

Func@on	block	diagrams	(FBD)	

•  Graphical	data-flow	
language	

•  Interconnects		
func@on	blocks	

•  Cp.	Simulink	

64	2016	



FRTN20	 2016	

33	

Ladder	Diagrams	

•  Ladder	logic	extended	
with	func@on	blocks	

65	2016	

Structured	Text	

•  Block-structured	high-level	
programming	language	
inspired	
by	Pascal	

•  Itera@on	loops	(WHILE,	
REPEAT)	

•  Condi@onal	branches	(IF,	
CASE)	

•  Func@ons	

66	2016	



FRTN20	 2016	

34	

Instruc@on	List		

•  Low-level	textual	assembly-like	
language	

•  Stack-machine	oriented	

67	2016	

Sequen@al	Func@on	Charts	

•  Grafcet	

68	2016	



FRTN20	 2016	

35	

JGrafchart	
JGrafchart	is	a	Grafcet/SFC	editor	and	execu@on	environment	developed	at	

the	Department	of	Automa@c	Control,	Lund	Ins@tute	of	Technology.	

69	2016	

JGrafchart	
JGrafchart	is	a	Grafcet/SFC	editor	and	execu@on	environment	developed	at	

the	Department	of	Automa@c	Control,	Lund	Ins@tute	of	Technology.	
	
JGrafchart	supports	the	following	language	elements:		

–  workspace	objects	
–  Steps	
–  ini@al	steps	
–  transi@ons	
–  parallel	splits	and	parallel	joins	
–  macro	steps	
–  excep@on	transi@ons	

In	addi@on	there	is	support	for:		
–  digital	inputs	and	digital	outputs	
–  analog	inputs	and	analog	outputs	
–  socket	inputs	and	socket	outputs	
–  internal	variables	(real,	boolean,	string,	and	integer)	
–  ac@on	bu^ons	and	free	text	for	comments.	

	 70	2016	



FRTN20	 2016	

36	

JGrafchart	
JGrafchart	is	a	Grafcet/SFC	editor	and	execu@on	environment	developed	at	

the	Department	of	Automa@c	Control,	Lund	Ins@tute	of	Technology.	
	
JGrafchart	will	be	used	in		
Laboratory	Exercise	1.	
	
A	richer	descrip@on	of	JGrafchart	
	is	contained	within	Laboratory	Exercise	1.			

71	2016	

Physical	Model	of	an	Enterprise	

ENTERPRISE	

SITE	

AREA	

PROCESS	
CELL	

UNIT	

PRODUCTION 
UNIT	

PRODUCTION 
LINE	

WORK	
CELL	

Lower	level		
equipment	used	

in	batch		
operations	

Lower	level		
equipment	used	
in	repetitive	or	
discrete	operations	

Lower	level		
equipment	used	
in	continuous	
operations	

STORAGE	
ZONE	

STORAGE	
UNIT	

Lower	level		
equipment	used	
in	inventory	
operations	

UNIT	

Work		
centers	

Work		
units	

Discrete	
Produc@on	
Processes	

72	2016	



FRTN20	 2016	

37	

Func@onal	Model	of	an	Enterprise	

73	

Level	3	

Manufacturing		
Opera@ons	Management	

Dispatching Production, Detailed Production 
Scheduling, Reliability Assurance, ... 

3	-	 	Work	flow	/	recipe	control	to	produce	the	desired	
end	products.	Maintaining	records	and	op@mizing	
the	produc@on	process.		

	
Time	Frame	

	ShiLs,	hours,	minutes,	seconds	

Level	4	
Business	Planning		

&	Logis@cs	
Plant Production Scheduling, 
Operational Management, etc	

4	-	 	Establishing	the	basic	plant	schedule	-	produc@on,	
material	use,	delivery,	and	shipping.	Determining	
inventory	levels.		

	
Time	Frame	

	Months,	weeks,	days,	shiLs		

Level	1	

Level	2	

Discrete	
Control	

1	-	 	Sensing	the	produc@on	process,	manipula@ng	the	
produc@on	process	

2	-	 	Monitoring,	supervisory	control	and	automated	
control	of	the	produc@on	process	

Level	0	 0	-	 	The	physical	produc@on	process	

Con@nuous	
Control	

	

Batch	
Control	

	

Level	5	
Company	Management	

5	-	 	Receive	sales	orders,	assure	shipping	and	customer	
rela@ons.		

Time	Frame	
	Years,	Months	

2016	

2016	 74	


