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Learning Goals

After the course you should be able to

Formulate different control and decision situations as games and

apply game theoretical ideas

Calculate mixed strategies for small zero-sum games

Find Nash and Stackelberg equilibria for multiagent games

Describe Braess’ paradox, Cournot’s model of Duopoly, and basic

auction theory

Read literature containing game theoreretical concepts
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Game Theory - Where?
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Game Theory - Why?

Useful on many levels:

Analysis of production - customers - markets - competition

Distributed control on plant level

Distributed control of communication networks (examples: TCP rate

control, WCDMA power control)

Distributed scheduling of multicore computer systems

Robust Control

. . .
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Game Theory, or “Multiagent decision making”

Optimization theory:

Situation with ONE unit with CENTRALIZED information

Many courses at LTH.

Common theme in many of our other control courses.

What if “decision-making” is done by decentralized units, not having the

same optimization criteria, not having the same information?

=[ Game theory
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Game Theory

Distributed decision-making leads to situations where new

intuition and techniques are needed.

This lecture is intended as a short introduction to some of

the central concepts and results.

The hope is that it gives an interest for further study of this

fascinating subject.
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What is Game Theory?

Multi-person decision making

Underlying basic assumptions:

Decision makers pursue well-defined objectives (they are rational), and

take into account their knowledge or expectations of other

decision-maker’s behavior (they reason strategically)

(These assumptions are relaxed in evolutionary game theory)

Dynamic: the order in which decisions are made is important (otherwise

static)

Cooperative: Binding agreements can be made (otherwise

noncooperative)
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Motivating Example - Traffic Optimization

Assume A+ B = 4000 cars, each chosing quickest route

time via A: A/100+ 45 min.

time via B: B/100 + 45 min.

At equilibrium A = B = 2000 and travel time is 65 minutes
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Traffic Planning

A new fast road (0 min) between A and B is then built to shorten travel time.

Noone is now using the 45-min roads (since faster alternatives always

exist, taking at most 40 min)

Total travel time is now 40+40=80 minutes
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Braess’ Paradox

Introduction of the new road has increased travel time by 15 minutes

for everyone !

Is this against your intuition?

This is not only a mathematical curiosity. There are several indications that

the phenomenon occurs in real world, see references.

Called Braess’ paradox or “Cost of Anarchy”

Similar phenomenon can occur in other fields of applications, such as

electrical networks and mechanical constructions.
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Flow Control in Communication Networks

m distributed sources in a network want to send information through a

common bottleneck node.

Performance degrades when many send simultaneously, either because of

increased error probability or increased delay

The players have more or less accurate information about the state of the

network

All nodes are greedy, want the highest possible throughput

Is there a strategy, which all can agree on and which does not encourage

cheating, that maximizes total throughput in the network?
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Air-Traffic Control

Want to give flight references to n airplanes

Airplanes can not change heading or height momentarily; high safety

requirements

When giving references to one plane and calculating safety margins,

consider all other objects as hostile players trying to do their best to collide

with this plane

C. Tomlin, G. J. Pappas, and S. S. Sastry, "Conflict Resolution for Air Traffic

Management: A Case Study in Multi-Agent Hybrid Systems," IEEE Trans.

Automatic Control
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Robust Control

The part G of the system is known and the part ∆ is unknown.

Is it possible to find a controller K that stabilizes the system under all

perturbations ∆ that satisfy pp∆(r)pp2 ≤ pprpp2?

K

G

∆

z
r

y
w
v

u
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Optimal Laziness

A worker, hired for a fixed wage normalized to 0, can either shirk or work.

The cost for him to work is w. The gain for his boss if he works is �.

The boss can choose to inspect the worker at a cost of i. If the worker is

caught shirking he has to pay the fine f to the boss.

worker

boss

not inspect inspect

work -w,g -w,g-i

shirk 0,0 -f,f-i

How often should the worker shirk; how often should the boss inspect?
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Our first zero-sum game

Player X should pay Player Y an amount selected below

Player X (min)

Player Y (max)

col 1 col 2 col3 col4

row 1 1 1 -5 2

row 2 2 4 1 5

row 3 3 9 2 3

Version 1: X chooses row first, then Y chooses column. What choices

should rational X and Y make?

Version 2: Y chooses column first, then X chooses row. What choices

should rational X and Y make?

If Axy gives the element on row x and col y, result is either

min
x
(max

y
Axy) or max

y
(min

x
Axy)

Which formula solves Version 1 and which Version 2?
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Rock-Paper-scissor

Player X

Player Y

rock paper scissor

rock 0 1 -1

paper -1 0 1

scissor 1 -1 0

min
x
(max

y
Axy) = 1

max
y
(min

x
Axy) = −1
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Two player zero sum games

One can easily prove (exercise) that

min
x
(max

y
Axy) ≥ max

y
(min

x
Axy)

This means that it is an advantage to know the other players action before

chosing own action.

What if neither player know’s the other’s action?

Lets solve an example before we describe the theory
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The Lunch Problem

Two polite academics independently choose between two nearby

restaurants:

QUICKY BAR where lunches take 20 minutes

SLOWFOOD INN where lunch takes 50 minutes.

In case having chosen the same restaurant they spend lunch together.

Academic Y likes the company of X and would like to spend the maximum

amount of lunch time together, whereas the opposite applies to X, who

would like to minimize lunch time with Y; however being too polite to openly

say so.

Find the optimal strategy for X, minimizing average lunch time with Y !
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Solution

Two player zero-sum game

Player X

Player Y

QUICKY SLOWFOOD

QUICKY 20 0

SLOWFOOD 0 50

By going to QUICKY all the time, 20 min can be guaranteed.

Any predictable deviations can be learned by Y and will then increase

common lunch time.

But can better than 20 min be achieved by X ?
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Solution

What if X chooses QUICKY with probability q such that average time spent

at QUICKY and SLOWFOOD are equal, i.e.

20q = 50(1− q) =[ q = 5/7

This gives in average 100/7 = 14.3 minutes spent at each restaurant.

Common lunch time will now be in average 14.3 minutes whatever

strategy Y chooses.

This is the best strategy for X (assuming Y is rational).

Similarly, by using the same strategy, Y can always achieve 14.3 min

whatever X does.
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Two player zero sum games

Let the random strategies be described by the probability vectors

x =


x1 . . . xn





T

and y =


y1 . . . yn





T

where x and y are probability vectors, i.e. xi ≥ 0 and
∑

i xi = 1.

Then the average outcome of the game is given by

xT Ay
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Zero-sum games, main theorem

The fundamental result of zero sum games (von Neumann) says that for

any matrix A one has

min
x
(max

y
xT Ay) = max

y
(min

x
xT Ay)

This is defined as the value of the game described by the matrix A

The value of the game can be calculated using Linear Programming

software, such as the command lp in matlab.
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Useful Tool

http://www.zweigmedia.com/RealWorld/gametheory/games.html

has an online solver for small zero-sum matrix games up to size 5$ 5.

(Note however that the row player is the maximizer there)
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A Matlab-solver for zero-sum two player games

For Matlab ver 6.1, uses function

X=lp(f,A,b,VLB,VUB,X0,N)

which solves the linear programming problem:

min f’x subject to: Ax <= b, VLB <= x <= VUB

where the first N constraints defined

by A and b are equality constraints

function [value,x,y]=game(A)

[nx,ny]=size(A);

first we solve the primal for the minimizer x

bigA = [ones(1,nx) 0; A’ -ones(ny,1)];

bigb = [1;zeros(ny,1)];

f = [zeros(nx,1);1];

VLB = [zeros(nx,1);-inf];

VUB = [inf*ones(nx,1);inf];

sol = lp(f,bigA,bigb,VLB,VUB,[],1);

x=sol(1:nx,1);

valuex=sol(nx+1,1);
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A Matlab-solver for zero-sum two player games

then we solve the dual for the maximizer y

bigA = [ones(1,ny) 0; -A ones(nx,1)];

bigb = [1;zeros(nx,1)];

f = [zeros(ny,1);-1];

VLB = [zeros(ny,1);-inf];

VUB = [inf*ones(ny,1);inf];

sol = lp(f,bigA,bigb,VLB,VUB,[],1);

y=sol(1:ny,1);

value=sol(ny+1,1);

if abs(value-valuex)>1e-3 error(’bad LP solution’); end
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Static N-player Games of Complete Information

The Normal form of such a game consists of

A finite set N of players

for each i ∈ N a set Si of strategies available for player i

for each player i ∈ N a payoff function ui on S = $i∈N Si, which

the players try to maximize

Will only discuss Noncooperative version, i.e. no binding agreements can

be made between players (such as exchanging payoff after the game).

Bo Bernhardsson Market Driven Systems - Game Theory



Example Prisoner’s Dilemma

Provides insight into the difficulty in maintaining cooperation.

Don’t Confess Confess

Don’t Confess −1,−1 −10, 0

Confess 0,−10 −7,−7

The first number is the payoff for the row player, the second number the

column player. Both players now tries to maximize.

Dominating strategy is “Confess”
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Pure Nash Equilibrium

Game (S1, . . . , SN , u1, . . . , uN)

Notation: If s = (s1, s2, . . . , sN) is a vector of (pure) strategies then

(s−i, a) denotes the (pure) strategy obtained from s by replacing si with a

The (pure) strategies s∗ = (s∗1 , . . . s∗N) constitute a Pure Nash

Equilibrium if si is a best-response for s−i for all i, i.e.

ui(s
∗

−i, si) ≤ ui(s
∗

−i, s∗i ) for all si ∈ Si

“There should be no incitement for one-player deviations”

The only Nash equilibrium in the Prisoner’s dilemma is (Confess,Confess)

No pure Nash equilibria in the rock-paper-scissor game

Bo Bernhardsson Market Driven Systems - Game Theory



Exercise

What are the Pure Nash equilibria of

L C R

T 0,4 4,0 5,3

M 4,0 0,4 5,3

B 3,5 3,5 6,6
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Example – Bach or Stravinsky?

Player 1

Player 2

Bach Stravinsky

Bach 2,1 0,0

Stravinsky 0,0 1,2

What are the pure Nash equilibria?
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Mixed Strategies and Expected Outcome

Game {S1, . . . , SN ; u1, . . . , uN}

Suppose Si = {si1, . . . , siK}. Then a mixed strategy for player i is a

probability distribution pi = (pi1, . . . , piK), where

0 ≤ pik, k = 1, . . . , K , and pi1 + · · ·+ piK = 1.

The expected outcome Ui of a game given a certain set of mixed

strategies pi, i = 1, . . . , N is given by the expected value of ui: (here

illustrated for the case N = 2)

Ui :=
∑

j

∑

k

p1 jp2kui(s1 j, s2k), i = 1, 2
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Mixed Nash Equilibrium

The probability vectors p∗

1 , . . . , p∗

N constitute a mixed Nash Equilibrium

if for all players i we have

Ui(p
∗

−i, pi) ≤ Ui(p
∗

−i, p∗

i )

In words: the mixed strategy p∗

i should be a best response to the other

players’ mixed strategies.

(This is true iff all pure strategies si in “the support” of p∗

i yield the same,

optimal, value ui(p
∗

−i, si)).
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Existence Result

Theorem [Nash] Every static N-player game with complete information

has at least one mixed Nash equilibrium

Proof: uses fixed point theorem in mathematics

J.F. Nash. Equilibrium Points in n-Person Games. Proc. National Academy

of Sciences of the USA, 36:48-49, 1950

There can be several Nash equilibria. Each giving different outcome

vectors. Think of them as corresponding to “local minima” in optimization.
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Monopoly/Oligopoly/Perfect Market

Let’s look on a market situation with “producers” and “consumers”.

Monopoly - from Greek (mono) "alone/single" + (polein) "to sell"

Oligopoly - from Greek (oligoi) "few" + (polein) "to sell"
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Oligopoly

Model assumptions

Few producers, so actions of individual competitors must be

considered strategically

Very many consumers (continuum); will model their common

behavior with a demand vs price curve

High barriers for entrants, so one needs not consider new firms

arising the market

every actor has full information of other players production cost, the

price-demand curve, etc

Example: Q4 2008, Verizon, AT&T, Sprint Nextel, and T-Mobile together

control 89% of the US cellular phone market.
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Cournot Model of Duopoly

Let q1 and q2 denote the quantities produced by firms 1 and 2.

Will for simplicity assume linear price vs volume curve

Market clearing price P(q1, q2) = a− (q1 + q2)

Production cost Ci(qi) = cqi, i = 1, 2

Profit ui(q1, q2) = qi(a− q1 − q2) − cqi

Strategic choice: What quantities should be produced?

Note: There is a similar (Bertrand) model of Duopoly where the strategic

choices instead are the prices asked by the two firms.
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Monopoly/Duopoly/Perfect Market

Monopoly situation

Production q∗

m = (a− c)/2

Profit (a− c)2/4

Duopoly situation, unique Nash equilibrium

Production q∗

1 = q∗

2 = (a− c)/3

Total Profit 2(a− c)2/9

In a “perfect market” (for the buyer), production increases until price equals

production cost for the least efficient producer (for which profit can be very

small)

Production
∑

q∗

i = (a− c)

Total Profit 0
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Cournot Model of Duopoly

Note that both firms would prefer a situation where q1 = q2 = qm/2, i.e.

shared production at the monopoly rate.

This is however an unstable situation, since both firms then would profit

from deviating.

Would need binding agreements to be able to sustain the monopoly

situation.

Countries often have laws against such agreements (cartels).
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Stackelberg Games

Two actions should be taken: first one by the leader, then one by the

follower. The game is then over.

Let B2(a1) be the follower’s best response to action a1. Assume B2

always is a singleton. The stackelberg solution is the one obtained when

the leader solves

max
a1∈A1

u1(a1, B2(a1))
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Stackelberg

If this optimization problem has a unique solution, a∗1 then

(a∗1, B2(a
∗

1))

is called the backward-induction outcome or the Stackelberg solution

of the game.

No “noncredible threats” are taken into account. When the second stage

arrives, player 2 will respond in a way that is purely in his self-interest.

In zero-sum games it was better to be follower

Depending on the game, both roles can be favorable (exercise)
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Stackelberg Model of Cournot Duopoly

First Firm 1 chooses quantity q1, then Firm 2 solves

max
q2

q2(a− q1 − q2 − c) [ B2(q1) = (a− q1 − c)/2

So Firm 1 solves

max
q1

q1(a− q1 − B2(q1) − c) [ q∗

1 =
a− c

2
, q∗

2 =
a− c

4

Result: Firm 1 is better off, Firm 2 is worse off, total profit is lower.

Note that in nonzero-sum games a player can be worse of having more

information (or, more precisely, having it known to the other players that he

has more information)
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Graphical Solution
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Cournot game

Where are the Stackelberg solutions? The

Nash solution?

% plot Cournot game

a=2;c=1;

q1=0:0.01:1;q2=q1;

[Q1,Q2]=meshgrid(q1,q2);

u1=(a-Q1-Q2-c).*Q1;

u2=(a-Q1-Q2-c).*Q2;

R1=(a-q2-c)/2;

R2=(a-q1-c)/2;

l=0:0.025:0.4;

contour(Q1,Q2,u1,v,’b’);

hold on

contour(Q1,Q2,u2,v,’r’);

plot(q1,R2,’r’);

plot(R1,q2,’b’);

xlabel(’q1’);

ylabel(’q2’);

title(’Cournot game’)
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Incomplete Information

Uncertainty about the other players payoff (their “type”)

Players’ types are stochastic variables, (“drawn by nature”)

Player i knows her own type and assigns probabilities

p(t−i p ti)

to all the others.

The probabilities p(t) are “common knowledge”.
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Example Incomplete Information

Example: Cournot Duopoly Game, where production cost c for firm 2 is

either high c = cH or low c = cL. Assume c2 = cH with probability θ

q∗

2(cH) = arg maxq2
(a− q∗

1 − q2 − cH)q2

q∗

2(cL) = arg maxq2
(a− q∗

1 − q2 − cL)q2

Firm 1 anticipates q∗

2(cH) with prob. θ and solves

q∗

1 = arg maxq1
θ(a− q1 − q∗

2(cH) − c)q1 + (1− θ)(a− q1 − q∗

2(cL) − c)q1
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Cournot Duopoly under Asymmetric Information

Solution is

q∗

2(cH) =
a− 2cH + c

3
+

1− θ

6
(cH − cL)

q∗

2(cL) =
a− 2cL + c

3
−

θ

6
(cH − cL)

q∗

1 =
a− 2c+ θ cH + (1− θ)cL

3

Compare with solution in perfect information

q∗

i =
a− 2ci + c j

3
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Cournot Duopoly

Best responses and Nash equilibrium when c1 = 1,

cH = cL = c2 = 0.75
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Cournot game

Compare with previuos figure where c1 = c2 = 1.

What has happened with the production rates? The price ?
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Implementation Theory – Mechanism Design

Rather than fix a game and look for the set of outcomes given by some

solution concept, one fixes a set of outcomes and look for a game that

yields that set of outcomes as equilibria.

Favorable outcomes could e.g. mean maximizing

profit for seller or buyer

society benifit

market efficiency

fairness

Also called “inverse game theory”
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Example

You are an almighty judge who wants to assign a valuable object to either

player 1 or 2.

Valuations: The valuations vL < vH are known, but unknown which

player has the higher valuation.

Goal: Assign the object to the player with the highest valuation.

You have the right to administer fines, but you prefer an outcome where no

fines are used.

You must make your decision rules public in advance and then follow them

Can this problem be solved ?
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Solution

Ask player 1 of his evaluation:

If vL assign object to player 2.

Otherwise ask player 2 of her evaluation.

If vL assign to player 1,

otherwise assign to player 2, but administer fines (ε, (vH + vL)/2).

This will force truth-telling of both players (assuming of course they are

rational).
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Example: Bilateral Trade

Individual S owns an indivisible object and considers to sell this to

prospective buyer B.

The object is worth s to S and b to B.

The valuations are private information. But known (after normalization) to

lie in [0, 1].

If the object is sold at price p then the utilities are changed with

for S: p− s

for B: b− p

What kind of mechanism could they use to trade?
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Example: Bilateral Trade

Suppose the individuals drawn from population with valuations randomly

located with uniform density on the unit square

Both players have an incentive to lie about their type when the price is

negotiated.

Mechanism to optimize total utility: Is there a way to achieve that the object

is sold if b> s and not if b< s?
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Example: Bilateral Trade

One possibility is that S makes a take-it-or-leave it offer ps(s) to B. Trade

then occurs if b > ps(s)

Another that B makes such an offer pb(b) to S. Trade occurs if s < pb(b)
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Example: Bilateral trade

A third possibility would be Double Auction: Both parties announce a

price and if pB > pS trade occurs (for example at (pB + pS)/2).

The double auction has an affine Nash Equilibrium where

pS = max(2s/3+ 1/4, s)

pB = min(2b/3 + 1/12, b)

If s < 3/4 seller asks for more than true valuation s

If b> 1/4, buyer bids below true valuation b
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Example: Bilateral trade
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Trade occurs when b> s+ 1/4 (dashed)
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Example: Bilateral trade

None of the mechanisms suggested leads to trade for the entire region

s < b, hence they are not optimally socially efficient.

Does a more efficient mechanism exist?

Answer: No !

The impossibility was established by Laffont and Maskin 1979.

In fact, the double auction mechanism described above maximises the

potential total gains from trade. No better design exists !

Bo Bernhardsson Market Driven Systems - Game Theory



Valuations

Agents have different valuations

Private versus common values

Values often not perfectly known: secret / random / interdependent

Risk-neutral vs risk-averse

Example of model: Buyer i gains vi − p if he wins object, otherwise 0,

where vi is his valuation and p the payment.

A risk-neutral buyer maximises Prob(win) · (vi − E(ppwin))

A risk-neutral seller maximizes E(p)
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Revelation Principle

Theory shows that type-game design (under very general assumptions)

can be restricted to direct mechanisms:

1. The players simultaneously make (possibly dishonest) claims about

their types. Player i can claim to be any type τi, no matter what true type

ti he is

2. Given claims τ1, . . . ,τN a result, a pdf over the set of outcomes, is

chosen

A direct mechanism in which truth-telling, τi(ti) = ti, is a Nash

equilibrium is called incentive-compatible.
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The Revelation Principle

Gibbard, Green and Laffont, Dasgupta, Myerson

Theorem Any (Bayesian) Nash Equilibrium of any (Bayesian) type game

can be represented by an incentive-compatible mechanism.

Proof: Not very difficult

Makes it easier to construct game mechanisms, or prove that they do no

exists, since restriction can be made to mechanisms where truth-telling is

optimal.
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Auction Theory

Simple protocols for one-to-many negotiations

Here: One seller, many buyers, single item to be sold

Many versions

English Ascending

Dutch Descending

First-price sealed-bid

Second-price sealed-bid (Vickrey)
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Valuations

Private: Inherent different between bidders, such as people bidding for an

item for personal use without thinking about reselling

Common value: Item has a single true value, winning it would be equally

valuable for all, although how rewarding is partly uncertain to bidders at

auction time, such as bidding for oil or spectrum rights.

During bidding, actors are trying to guess the true value with different

pieces of incomplete information. Might gain information and revise

estimate from

how many remain in the bidding

how aggressively others bid
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Auction Design

Auction

determines the buyer (highest valuer?)

determines the price

gets the item sold

Seller usually sets the rules, and can choose between different

mechanisms, either to maximize purchase prize, or optimize more

complicated function of outcome, such as social effectivness, fairness etc

(government)

open or closed bids?

revise bids?

share any information affecting bidders values?

etc
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Open English

Best strategy for bidder i in private value case: Remain in the bidding until

the bid gets above your own, perfectly known, valuation vi.

This is a dominant strategy, which disappears with sealed bids or with

more complicated common value information structures

In general the winner pays less than its worth to him.

Not good for auctioneer !

Note: No value for a bidder to know other bidders valuations !
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Sealed first price

Requires more thought. Must balance

risk of bidding much higher than 2nd highest

risk of losing profitable opportunity buy bidding below at least one

bidder

risk of bidding more than the item turns out to be worth (if valuation

unknown)

With one round sealed bid first price, the bidders should bid lower than

their true valuatoins (“shade their bids”), but how much?

Note: If other players valuations were known, one would never need

considering bidding above 2nd highest valuation, so valuation information

can now help.
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Shading in sealed-bid first price auctions

Example:

Assume a risk-neutral bidder BoB knows that everybody’s evaluations lie in

the interval[0, 1], with uniform independent distributions. What should he

bid in a first-price auction?

Answer:
n− 1

n
· BoB’s own valuation

where n is the total number of bidders (everybody bidding so is a Nash

equilibrium)

Note: As the number of bidders becomes larger, the bids tend closer to the

true valuations.
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The Winner’s Curse for uncertain valuations

Example: Five people are invited to bid for a suitcase of money.

Cant look inside the suitcase, but each given a private estimate of X , the

actual amount

It is publicly known that estimates are

X − 2, X − 1, X, X + 1, X + 2

What do you bid if you get an estimate of 37?
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The Winner’s Curse for uncertain valuations

If you knew all five estimates, you could infer the value. But you only know

that X could be between 35 and 39.

You know that 37 is on average correct, so you might e.g. choose to bid 36

“to earn 1 in average if you win”. This reasoning is however incorrect:

If all bid their estimates minus 1, the winner is the person with the highest

estimate X + 2, who will bid X + 1, to make a loss of 1: the Winner’s

Curse

Expect that you overestimated the (common) value when you win the

auction.

Dont use the mean E(value), use E(value p auction is won)
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Sealed 2nd price

BoB, an aged and wise parent, wishes to sell his used car to one of his

(perfectly rational) many children.

His only concern is to make sure the child valuing it the most gets it, the

price is secondary to him. But the children might be dishonest, each

having an incentive to exaggerate the car’s worth to him/her.

BoB would prefer that no information such as valuations or bids be

exchanged between the children.

Can this be solved?
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Sealed 2nd price

BoB devises the following scheme:

asks each child to tell him confidentially (sealed-bid) their value vi,

(value is 0 if child doesnt get the car, dont care who gets it then).

promises to give the car to the one with the highest value

that person must pay the 2nd highest bidder’s valuation

Will this scheme (Vickery), make honesty the best strategy?

Bo Bernhardsson Market Driven Systems - Game Theory



Vickery

Answer: Yes, honesty, i.e. bidding one’s true valuation, will be a

weakly dominant strategy to all other strategies:

Overbidding: No improvement, the only times it changes the outcome, you

lose out (think)

Underbidding: No improvement, the only time it changes things, you lose

out (dito)

Outcome will be the same as in English auction. But achieved in one

round, with sealed bids !
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Comparison

Natural question from seller’s point of view: Which auction type gives the

highest revenue?

Open, sealed-bid 1st price, sealed-bid 2nd price?

Example: As above with n bidders with evaluations randomly drawn

uniform in [0, 1]. Auction outcome is expected value of

open: 2nd highest valuation

Sealded bid 1st price: n−1
n

· highest valuation (shading)

Sealed bid 2nd price: 2nd highest valuation (truth-telling)

All of these have the same expected value: n−1
n+1

(exercise)

What a coincidence! Or . . .
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The Revenue Equivalence Theorem

No it wasn’t! The most fundamental result in auction theory is (Myerson

1981, Riley and Samuelsson 1981):

Revenue Equivalence Theorem

Assume each of a given number of risk-neutral potential buyers have

privately known valuations v in [v, v] indepently drawn from a common

strictly inreasing atom-less distribution ( i.e. pdf has 0 < f (v) < ∞).

Then any auction mechanism in which

the object goes to the buyer with highest valuation

a bidder with valuation v gets zero expected surplus.

yields the same expected revenue for the auctioneer
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Proof Sketch

Let Si(v) be the expected surplus bidder i obtains in equilibrium from

participating in the auction. Let Pi(v) be her probability of receiving the

object in equilibrium.

Si(v) = vPi(v) − E(pay(v))

Since for all ṽ

Si(v) ≥ Si(ṽ) + (v− ṽ)Pi(ṽ)

(in equilibrium: using strategy for ṽ instead of v does not improve outcome)

Using this with ṽ slightly below and above v and using that Pi(v) is

continuous, one can deduce that

dSi

dv
= Pi(v)
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Proof Sketch

This gives

Si(v) = Si(v) +

∫v

v

Pi(w)dw

Any two mechanisms with the same “not-interested” surpluses Si(v) and

the same Pi(·), as will be the case when the object is given to the highest

valuation, will hence lead to the same surplus versus valuation functions,

Si(v).

Hence also, from

Si(v) = vPi(v) − E(pay(v)),

to the same expected pay(v). QED.

Bo Bernhardsson Market Driven Systems - Game Theory



Exceptions to Revenue-equivalence

Note that the Revenue-equivalence theorem applies to a rather idealised

situation. There are many exceptions:

For valuations that are not independent

Collusion (group of bidders cooperate to keep price down): none of

the schemes above are collusion proof

Goods might be divisable, e.g. contain several parts where valuations

on parts differ between bidders.

. . .
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Additional Game Theory Reading

Control department home page (Education - Doctorate) contains a PhD

course in Game Theory

Wikipedia:

Game Theory

Braess’ paradox:

Oligopoly

Cournot

Auction Theory

Mechanism Design

Mechanism Design Theory - Scientific background on Economic Prize

2007, Royal Swedish Academy of Sciences (Google it).

Bo Bernhardsson Market Driven Systems - Game Theory



Additional Game Theory Reading

Osborne-Rubinstein, A Course in Game Theory
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