
Lecture 10 and 11

Lecture 10

• Linear Programming (LP)

• LP in production planning example

• Model Predictive Control

• A portfolio optimization problem

Lecture 11

• Introduction to convex optimization

• Convex optimization modeling

• A model predictive control example

• Duality
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Mini Problem

Minimize −x1 − x2
subject to x1 + 2x2 ≤ 1

2x1 + x2 ≤ 1
x1 ≥ 0
x2 ≥ 0

Equivalent matrix formulation:

Minimize [−1 − 1]x

subject to

[
1 2
2 1

]
x �

[
1
1

]
, x ≥ 0

where x = [x1 x2]T
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Mini Problem graphical solution
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Mini Problem graphical solution
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Mini Problem graphical solution
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Mini Problem graphical solution
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Mini Problem graphical solution
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Level curves: (−1 −1)x = c
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Linear Programming

General formulation:

Minimize cTx
subject to Ax ≤ b

Hx = g
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Today’s lecture

• Linear Programming (LP)

• LP in production planning example
• Static systems
• Dynamical systems

• Model Predictive Control

• A Portfolio Optimization Problem
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Production planning example

Two products are produced:

• Garden furniture

• Sleds

Two main parts of production

• Sawing

• Assembling
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Production planning example cont’d

Weekly production:
x1 : Garden furniture
x2 : Sleds

Product prices:
p1 : Garden furniture
p2 : Sleds

The objective is to maximize weekly profit:
max p1x1 + p2x2

Subject to:
Sawing constraints: 7x1 + 10x2 ≤ 100
Assembling constraints: 16x1 + 12x2 ≤ 135
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Production planning example cont’d

Sawing and assembling constraints:
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Production planning example cont’d

Level curves for optimal points obtained with different prices:
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Production planning example cont’d

Seasonal variations in expected prices:
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Production planning example cont’d

Optimal production for different seasons:
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Today’s lecture

• Linear Programming (LP)

• LP in production planning example
• Static systems
• Dynamical systems

• Model Predictive Control

• A portfolio optimization problem

16



Dynamic Production planning example

Hire extra personel to increase production:

Nominal learning (sawing):

x3(t+ 1) = 0.7x3(t) + 30u3(t)

Nominal learning (assembling):

x4(t+ 1) = 0.7x4(t) + 40.5u4(t)

where u3 ∈ [0, 1], u4 ∈ [0, 1] is fraction of full time employment

x3(t) and x4(t) quantifies increased capacity:

Sawing: 7x1 + 10x2 ≤ 100 + x3(t)
Assembling: 16x1 + 12x2 ≤ 135 + x4(t)
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Mini problem

Assume that extra sawing personel is working full-time, i.e u3(t) = 1,
t = 0, 1, . . .

If the initial sawing capacity of the extra labor is 0, i.e x3(0) = 0,
what is the sawing capacity after three weeks, i.e. x3(3)?

What is the stationary sawing capacity of the extra labor?
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Mini problem - solution

Sawing capacity at time t = 3:

x3(3) = 0.7x3(2) + 30u3(2) = 0.7(0.7x3(1) + 30u3(1)) + 30u3(2)

= 0.7(0.7(0.7x3(0) + 30u3(0)) + 30u3(1)) + 30u3(2)

= (0.72 + 0.7 + 1)30 = 65.7

Stationary capacity is given by:

x3 = 0.7x3 + 30

which gives

x3 =
30

1− 0.7
=

30

0.3
= 100

The total sawing capacity is doubled after learning period
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Dynamic Production planning example cont’d

The weekly cost for extra personnel is p3 and p4 respectively

This gives the following production planning problem that optimizes
one year ahead production:

max p1(t)x1(t) + p2(t)x2(t)− p3(t)u3(t)− p4(t)u4(t)

subject to x3(t+ 1) = 0.7x3(t) + 30u3(t)
x4(t+ 1) = 0.7x4(t) + 40.5u4(t)

7x1(t) + 10x2(t) ≤ 100 + x3(t)
16x1(t) + 12x2(t) ≤ 135 + x4(t)
0 ≤ u3(t) ≤ 1 0 ≤ u4(t) ≤ 1
x3(0) = x03 x4(0) = x04

for t = 0, ..., 52 and x03 and x04 are the initial capacities for the extra
personel
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Dynamic Production planning example cont’d

Optimal production over 52 weeks with extra personel and product
prices as before and p3 = p4 = 100:
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Dynamic Production planning example cont’d

Optimal extra labor:
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Dynamic Production planning example - limitations

The following is not compensated for:

• Prices may not be equal to predicted prices

• Extra personel might be fast or slow learners

• Decreased capacity due to employee illness

• . . .
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Today’s lecture

• Linear Programming (LP)

• LP in production planning example

• Model Predictive Control

• A portfolio optimization problem
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Model Predicitive Control (Receding Horizon Control)

7

x

t
0 1 2 3 4 5 6

At time t:

1. Measure the state x(t)

2. Use model to optimize input trajectory for t+ 1, . . . , t+N

3. Apply the optimization result u(t) to the system

4. After one sample, go to 1 to repeat the procedure
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The History of MPC

• A.I. Propoi, Use of Linear Programming methods for
synthesizing sampled-data automatic systems, 1963
Automation and Remote Control

• Used industrially since 1970s, see for example
J. Richalet, Model predictive heuristic control — application to
industrial processes, Automatica, 1978.

• Many industrial products: DMC (Aspen Tech), IDCOM (Adersa),
RMPCT (Honeywell), SMCA (Setpoint Inc), SMOC (Shell
Global), 3dMPC (ABB), . . .

• Strong theory development since about 1980 (linear) and 1990
(nonlinear)
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MPC Example

Product planning example with model-reality mis-match:

Modeled employee learning:

x3(t+ 1) = 0.7x3(t) + 30u3(t)

x4(t+ 1) = 0.7x4(t) + 40.5u4(t)

Actual employee learning:

x3(t+ 1) = 0.75x3(t) + 30u3(t) + v3(t)

x4(t+ 1) = 0.65x4(t) + 40.5u4(t) + v4(t)

where v3(t) and v4(t) are uniformly distributed random numbers in
[−0.3x3(t) 0] and [−0.3x4(t) 0] respectively

The product prices p1(t) and p2(t) are additively affected by uniformly
distributed random noise in [−1 1]
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MPC Example - Results

Weekly production when extra labor decided using MPC:
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MPC Example - Results

Extra personel (decided using MPC):
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MPC Example - Comparison

Production with extra labor as in dynamic production planning
example (i.e. no feedback):
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Profit over one year is 8.6% higher with MPC-feedback
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MPC — Pros and Cons

Pros:

• Good constraint handling

• Easily understandable tuning knobs (e.g. cost function)

• Usually gives good performance in practice

• Handles complex systems well

Cons:

• Calculation times

• System model needed

• Historically lack of theoretical understanding of the closed loop
system
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Today’s lecture

• Linear Programming (LP)

• LP in production planning example

• Model Predictive Control

• A portfolio optimization problem
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A Dynamic Portfolio of Assets

A portfolio of assets is modelled as(xt+1)1
...

(xt+1)n

 =

(rt+1)1
. . .

(rt+1)n


(xt)1 + (ut)1

...
(xt)n + (ut)n


or with vector notation xt+1 = Rt+1(xt + ut). Here

(xt)i is the is the value of asset i at time t
(rt+1)i is the vector of asset returns, from period t to period t + 1
(ut)i is the is the value of trades in asset i at time t

Assume that rt for t = 1, 2, . . . are independent random (vector) variables
with known mean Ert = r̄t and covariance E(rt − r̄t)(rt − r̄t)

T = Σt.

Notation: R̄t = ERt = diag(r̄t).
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Expressions of interest

1 a column vector where every entry equals one.

1Txt the total value of the portfolio before trading at time t

1Tut the total cash put into the portfolio at time t,
excluding transaction costs

`(xt, ut) the total cost at time t, including transaction costs
discount factors, etc.

−`(xt, ut) the total revenue at time t

ut = φt(xt) The trading policy φt determines the trades ut
from the portfolio positions xt
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A Portfolio Optimization Problem

Find a trading policy ut = φt(xt) that solves the following
optimization problem:

Minimize E
∑T
t=0 `(xt, ut)

subject to

{
xt+1 = Rt+1(xt + ut)

ut = φt(xt)
for t = 0, 1, . . . , T − 1
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A Portfolio Optimization Problem

In other words, we seek the trading policy φt that maximizes the total
expected revenue.

Maximize −E
∑T
t=0 `(xt, ut)

subject to

{
xt+1 = Rt+1(xt + ut)

ut = φt(xt)
for t = 0, 1, . . . , T − 1
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Mini-problem

What would Model Predictive Control mean for the portfolio
optimization problem?
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Portfolio Optimization by Model Predictive Control

Minimize
∑T
τ=t `(zτ , vτ )

subject to zτ+1 = R̄τ+1(zτ + vτ ), τ = t, . . . , T − 1
zt = xt.

The optimal sequence v∗t , . . . , v
∗
T−1 is a plan for future trades over the

remaining trading horizon, under the (highly unrealistic) assumption
that future returns will be equal to their mean values. Only v∗t is used
for trading. At time t+ 1, a new problem is solved.
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Lecture 10 and 11

Lecture 10

• Linear Programming (LP)

• LP in production planning example

• Model Predictive Control

• A portfolio optimization problem

Lecture 11

• Introduction to convex optimization

• Convex optimization modeling

• A model predictive control example

• Duality
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