

The Stage Cost	Risk Mitigation
$\ell(x_t, u_t) = \begin{cases} 1^T u_t + \psi(x_t, u_t) & \text{if } x_t + u_t \in \mathcal{C}_t \\ \infty & \text{otherwise} \end{cases}$ In words: Minimize investments $1^T u_t$ plus transaction costs $\psi(x_t, u_t)$, while keeping the portfolio within constraints $x_t + u_t \in \mathcal{C}_t$.	 Recall that we keep the portfolio within constraints x_t + u_t ∈ C_t The constraint set C_t can be chosen to mitigate risk: The quadratic constraint (x_t + u_t)^TΣ_{t+1}(x_t + u_t) < γ_t keep the variance of the portfolio value below γ_t. Negative lower bounds -γ_t ≤ x_t limit the room for risky short positions
ortfolio Optimization by Model Predictive Control	Lecture 9
$ \begin{array}{ll} \text{Minimize} & \sum_{\tau=t}^{T} \ell(z_{\tau}, v_{\tau}) \\ \text{subject to} & z_{\tau+1} = \bar{R}_{\tau+1}(z_{\tau} + v_{\tau}), \tau = t, \ldots, T-1 \\ & z_t = x_t. \end{array} $ The optimal sequence v_t^*, \ldots, v_{T-1}^* is a plan for future trades over the remaining trading horizon, under the (highly unrealistic) assumption that future returns will be equal to their mean values. Only v_t^* is used for trading. At time $t + 1$, a new problem is solved.	 Introduction to convex optimization Portfolio optimization revisited Duality and distributed optimization
Distributed Optimization	Linear Programming Example
 Large scale problems cannot be solved centralized. Computational complexity Memory constraints Communication constraints Use market mechanisms for distributed optimization! 	Product# of itemsProfit / itemGarden Furniture 1 x_1 c_1 Garden Furniture 2 x_2 c_2 Sled 1 x_3 c_3 Sled 2 x_4 c_4 Constraints for sub-division 1: $7x_1 + 10x_2 \le 100$ (Sawing) $16x_1 + 12x_2 \le 135$ (Assembling)Constraints for sub-division 2: $10x_3 + 9x_4 \le 70$ (Sawing) $6x_3 + 9x_4 \le 60$ (Assembling)Painting Constraint:
	$5x_1 + 3x_2 + 3x_3 + 2x_4 \le 45$ Numerical Results
Linear Programming Example Mathematical formulation: Maximize $c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$ subject to $7x_1 + 10x_2 \le 100$ $16x_1 + 12x_2 \le 135$ $10x_3 + 9x_4 \le 70$ $6x_3 + 9x_4 \le 60$ $5x_1 + 3x_2 + 3x_3 + 2x_4 \le 45$ $x \ge 0$	Optimal solution for Division 1 (left) and Division 2 (right). Common constraint active (i.e. equality holds).

Dual Variables

Numerical Results

Optimal dual variables and their respective constraints:

Dual variables are the marginal prices for resources:

If the capacity for a resource is increased by 1, the total profit is increased by the corresponding dual variable.

This gives insight to which resource to increase to gain most

 $\begin{array}{rll} & \mbox{Constraint} & \mbox{Dual variable} \\ & 7x_1 + 10x_2 \leq 100 & 1.04 \\ & 16x_1 + 12x_2 \leq 135 & 0 \\ & 10x_3 + 9x_4 \leq 70 & 0 \\ & 6x_3 + 9x_4 \leq 60 & 0.4 \\ & 5x_1 + 3x_2 + 3x_3 + 2x_4 \leq 45 & 3.2 \end{array}$

Optimal value: $p^* = c^T x^* = 272$

If common (painting) constraint capacity increased to 46, optimal value becomes 272+3.2=275.2

Company would gain most by increasing painting capacity

Linear Programming Duality cont'd

Tightest upper bound to p^* obtained by minimizing $g(\lambda)$:

$$d^* = \min_{\lambda \geq 0} g(\lambda) = \min_{\lambda \geq 0} \max_{x \geq 0} \left[c^T x + \lambda^T (b - Ax) \right]$$

Optimal value d^* for this min-max problem is attained by $x = x^*$ and $\lambda = \lambda^*$.

Further we have that $p^* = c^T x^* = d^*$. This equality is referred to as *strong duality*

This min-max problem is used later to distribute the optimization Dual optimal values and d^* can be obtained by solving

 $\begin{array}{ll} \min_{\lambda} & b^T \lambda \\ \text{subject to} & A^T \lambda \succeq c, \lambda \succeq 0 \end{array}$

Note symmetry to primal problem

Optimality Conditions

 x^* is primal optimal if and only if there exists λ^* such that

$$\begin{array}{ll} Ax^* \preceq b & A^T\lambda^* \succeq c \\ \lambda^* \succeq 0 & x^* \succeq 0 \\ (A_ix^* - b_i)\lambda_i^* = 0 & (A_j^T\lambda^* - c_j)x_j^* = 0 \end{array}$$

These conditions are called the KKT-conditions for this LP-problem

Distribution of LP Example

Solve the LP example

 $\begin{array}{lll} \text{Maximize} & c_1x_1+c_2x_2+c_3x_3+c_4x_4 \\ \text{subject to} & 7x_1+10x_2 \leq 100 \\ & 16x_1+12x_2 \leq 135 \\ & 10x_3+9x_4 \leq 70 \\ & 6x_3+9x_4 \leq 60 \\ & 5x_1+3x_2+3x_3+2x_4 \leq 45 \\ & x \geq 0 \end{array}$

in a distributed fashion using the dual problem

Distribution of LP Example cont'd

Dual problem when constraint with all variables is "dualized":

 $\begin{array}{ll} \min_{\lambda \geq 0} \max_{x \geq 0} & c^T x + \lambda (45 - 5x_1 + 3x_2 + 3x_3 + 2x_4) \\ \text{subject to} & 7x_1 + 10x_2 \leq 100 \\ & 16x_1 + 12x_2 \leq 135 \\ & 10x_3 + 9x_4 \leq 70 \\ & 6x_3 + 9x_4 \leq 60 \end{array}$

For fixed $\lambda = \overline{\lambda}$, the inner maximization can be decomposed to two sub-problems (one for each sub-division) P_1 and P_2 :

 $P1: \left\{ \begin{array}{ll} \max_{\substack{x_1 \ge 0, x_2 \ge 0}} & c_1 x_1 + c_2 x_2 - \tilde{\lambda} (5x_1 + 3x_2) \\ \text{s. t.} & 7x_1 + 10x_2 \le 100 \\ & 16x_1 + 12x_2 \le 135 \\ \end{array} \right. \\ P2: \left\{ \begin{array}{ll} \max_{\substack{x_3 \ge 0, x_4 \ge 0}} & c_3 x_3 + c_4 x_4 - \tilde{\lambda} (3x_3 + 2x_4) \\ \text{s. t.} & 10x_3 + 9x_4 \le 70 \\ & 6x_3 + 9x_4 \le 60 \end{array} \right.$

Linear Programming Duality

Linear Program:

$$p^* = \begin{cases} \max_{x} c^T x \\ \text{subject to} \quad Ax \leq b, x \geq 0 \end{cases}$$

where $p^* = c^T x^*$ is the optimal value attained by x^* .

For the constraints $Ax \leq b$, introduce dual variables $\lambda \geq 0$ and construct the corresponding dual function $g(\lambda)$:

$$g(\lambda) = \max_{x \geq 0} \left[c^T x + \lambda^T (b - Ax) \right]$$

The second term in the bracket is non-negative when $Ax \preceq b$. Hence $g(\lambda) \geq p^*$.

Linear Programming Duality

max $c^T x$

with $Ax \leq b$ $x \geq 0$ $= \min_{\lambda} b^T \lambda$

with $A^T \lambda \succeq c$

 $\lambda \succeq 0$

Distribution Example cont'd

With fixed $x = \bar{x}$ head-quarters can update the dual variable λ to decrease the value of the outer minimization problem:

$$\bar{\lambda}^+ = \bar{\lambda} - \alpha (45 - 5\bar{x}_1 + 3\bar{x}_2 + 3\bar{x}_3 + 2\bar{x}_4)$$

where α is the step-size, which is chosen so that $\bar{\lambda}^+ \geq 0$ is maintained.

Motivation, the dual objective with $\overline{\lambda}$ is

$$g(\bar{\lambda}) = p^T \bar{x} + \bar{\lambda} (45 - 5\bar{x}_1 + 3\bar{x}_2 + 3\bar{x}_3 + 2\bar{x}_4)$$

and with $\bar{\lambda}^+$:

$$\begin{split} g(\bar{\lambda}^+) &= p^T \bar{x} + \bar{\lambda}^+ (45 - 5\bar{x}_1 + 3\bar{x}_2 + 3\bar{x}_3 + 2\bar{x}_4) = \\ &= p^T \bar{x} + \bar{\lambda} (45 - 5\bar{x}_1 + 3\bar{x}_2 + 3\bar{x}_3 + 2\bar{x}_4) - \\ &- \alpha (45 - 5\bar{x}_1 + 3\bar{x}_2 + 3\bar{x}_3 + 2\bar{x}_4)^2 \leq g(\bar{\lambda}) \end{split}$$

A Convergence Theorem

Suppose $\|\lambda^{(1)} - \lambda^*\| \le R$ and consider the iteration

 $\lambda^{(k+1)} = \lambda^{(k)} - \alpha_k g^{(k)}$

where $g^{(k)}$ satisfies the "subgradient" inequality

$$f(\lambda^*) \ge f(\lambda^{(k)}) + (g^{(k)})^T (\lambda^* - \lambda^{(k)})$$
 for all $\lambda^{(k)}$

and f satisfies the Lipschitz condition

$$|f(u) - f(v)| \le G ||u - v|| \qquad \text{for all } u, v$$

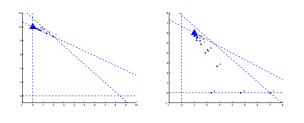
Define $f_{\text{best}}^{(k)} = \min\{f(\lambda^{(1)}), ..., f(\lambda^{(k)})\}$. Then

$$f_{\mathsf{best}}^{(k)} - f(\lambda^*) \le \frac{R^2 + G^2 \sum_{i=1}^k \alpha_i}{2 \sum_{i=1}^k \alpha_i}$$

In particular $f_{\text{best}}^{(k)} \to f(\lambda^*)$ as $k \to \infty$ if $\alpha_k = \frac{1}{k}$.

Numerical Results

Same as previous slide where a certain convex combination of the solutions is plotted. These converge to the primal optimal solution. The numbers correspond to iterate number.



Lecture 8 and 9

Lecture 8

- Linear Programming (LP)
- LP in production planning example
- Model Predictive Control
- A portfolio optimization problem

Lecture 9

- Introduction to convex optimization
- Portfolio optimization revisited
- Duality and distributed optimization

Distributed Optimization Algorithm

- 1. Initialize algorithm by $\lambda^{(0)} = 0$ and $x^{(0)} = 0$.
- For fixed λ = λ^(k) let the sub-divisions solve their respective optimization problems to find the state vector x^(k).
 Define

$$\lambda^{(k+1)} = \max(0, \lambda^{(k)} - \alpha^{(k)} (45 - 5x_1^{(k)} + 3x_2^{(k)} + 3x_3^{(k)} + 2x_4^{(k)}))$$

Set
$$k \leftarrow k + 1$$
 and go to step 2.

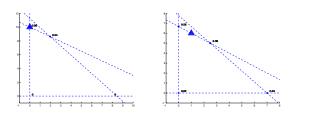
4

Convergence to optimal value and convergence in dual variables guaranteed with this algorithm, if the step size λ^k is appropriately chosen

Convergence in primal variables guaranteed if objective strictly concave

Numerical Results

Primal variable iterates (x) for division 1 (left) and division 2 (right) with their respective local constraints. Triangles show optimal solution (which is not in a corner in division 2 due to the constraint with all variables). The numbers show the fraction of iterates in that corner.



Comments on Distributed Optimization

- Decomposition scheme is called dual decomposition
- Dual decomposition most useful for large problems with
 few constraints involving all variables
 - many local constraints
- Applicable to other types of optimization problems as well (such as quadratic problems)