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Figure 1 The batch reactor.

1. Introduction

In this laboratory exercise you will implement a sequential control system for a batch

reactor process, see Figure 1. The control system will be implemented in the graphical

programming language Grafchart, an extension to Grafcet. The control system will

first be tested against a simulation and then evaluated against the real process.

The process to be controlled is a batch reactor, which is to be run in the following

way: First an amount of reactant A is added with the use of a pump. Then the reactor

is heated and an endothermic reaction starts, which turns A into the product B. When

the reaction is ready the reactor is emptied using another pump. Once the reactor is

empty it needs to be cleaned before the next batch can be made. In the laboratory

exercise water is used as both reactant, product, and for cleaning and an electric

cooler simulates the endothermic reaction.

Preparations

Before the laboratory exercise you should have read this manual and solved the

preparatory exercises. Make sure to study and understand the introduction to JGrafchart

in appendix A, prior to attending the lab.
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2. Getting started

Log in as lab_batch (no password required).

Open a terminal window and start JGrafchart with the command JGrafchart.

Rather than starting from scratch, open start.xml in JGrafchart, it contains some

definitions and structure. You should now have the same windows as in Figure 2.

If you close the simulation window you can restart it again from a terminal window

with ./labstart.

Finally, ensure that the process is connected to a 230 V socket and to the lab PC via

serial cable. There is a switch on the side of the process. Make sure it is switched on.

A LED at the front of the process is lit when the process is on. If the LED is green

everything is OK. If it is red, press the reset button on the side of the process.

3. Laboratory Equipment

The process consists of a small tank with an electrical heater. It has a number of

measurement and control signals, which are tied to variables in the Top workspace of

the JGrafchart application.

The electrical heater is controlled with the real variable PID.u. At the bottom of the

tank there is a cooler which is on when the Boolean variable Cool is 1. In addition

to cooling on demand, the cooler is also used to simulate the endotermic reaction.

An agitator in the tank makes sure there are no temperature gradients in the liquid.

The agitator is started using the Boolean variable Agitator. There is one pump for

filling and one for emptying the tank. They are controlled using the Boolean variables

InPump and OutPump respectively.

There are two real variables connected to sensors in the process. The Level variable

is in the range 0–1, corresponding to 0–10 V from the level sensor. A larger number

corresponds to higher water level. Temp is in the range 0–100, which corresponds to

0–100 ◦C.

The process has some interlocks built in, e.g. it is not possible to heat the tank if the

level is too low. In case something prohibited takes place the process sets Error to 1

and the LED on the front of the process turns red. If this happens, try to resolve the

cause and then press the reset button at the side of the process.

4. Modeling and Simulation

We will control two states in the batch reactor: the water level and the temperature of

the water.

4.1 Water Level Dynamics

Let us denote the water level as a function of time with h(t) in meters. Mass conser-

vation gives the differential equation

A
dh

dt
= qin −qout [m3/s]. (1)
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(a) JGrafchart with the Top workspace of the application showing.

(b) Plotter

(c) Tank animation

Figure 2 Windows of the graphical user interface.

3



Here qin [m
3/s] is the flow of water from the in-pump and qout [m

3/s] is the flow

from the out-pump. The tank cross-section area is A = 0.062
π m2. As the dynamics

are simple there will be no need for advanced control, simple on/off control of the

pumps will suffice. The pumps have a maximum capacity of 15 l/min, but this will

not be fully exploited. The water level measurement from the process is normalized,

h(t)/hmax, so that it becomes a number between 0 and 1 in JGrafchart.

4.2 Water Temperature Dynamics

Let us denote the temperature with T (t) [◦C]. In our simple model we will assume

that the temperature is uniform throughout the tank. This is not completely true, but

we will use an agitator to make this assumption close to reality. The temperature

dynamics are modeled by energy balance, described below. The combined specific

heat of the water and the tank are represented by the constant c [J/kg
◦
C] and their

combined mass is denoted m [kg]. The heat conduction between the tank and the

room is modeled by k [W/◦C]. Further, there is a heat source qheat [W] and a heat

sink qcool [W]. The balance equation becomes

mc
dT

dt
= k · (Troom −T )+qheat −qcool(Troom −T ) [W]. (2)

The room temperature Troom is approximately 20◦C. Notice that if the heater and

cooling is off the water temperature T will tend to Troom, which makes sense. (2) is

only valid for temperatures below the boiling point and above the freezing point.

The cooling qcool(T ) is provided by a Peltier thermoelectric element. Its efficiency

depends on the temperature difference between the water and the room. It gets more

efficient as the temperature of the water increases. When the temperature difference

is zero, the cooling is about 40 W. In the working temperature range, the dependence

is well described by a linear relation. Apart from cooling upon request, the cooling is

also used to simulate the endothermic chemical reactions.

The heater can deliver a maximum of qheat = 150 W. It will be scaled according to

qheat = 150
u

100
[W],

where u is our control signal and is a dimensionless number between 0 and 100. u is

the output from the controller we will design in JGrafchart.

As seen in (2) there are many physical parameters to determine. However, for our

purpose there is no need to measure each single parameter. Instead, as we know the

structure of the model, we can fit the model to some experimental data and get a

reasonable result. Step response experiments yield

τ · Ṫ +T = κ1 +κ2 ·u [◦C] (3)

when the cooling is on, at normal room temperature, and the level is approximately

one cm over the agitator. The open-loop time constant τ is 1075 seconds. The other

constants are κ1 =−4.33◦C and κ2 = 1.74◦C.

4.3 Simulation

As the temperature dynamics of the real system are relatively slow with a time con-

stant of 1075 s, we will use a simulated model that runs ten times as fast during the

design phase of the controller. The animation window, see Figure 2(c), shows the

status of the simulated tank. It is also updated when running the real process.
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The heat control signal u and the temperature T are plotted in another window, see

Figure 2(b). In this window the nominal control signal v1 and the temperature ref-

erence Tref are also plotted. The plots should be used to evaluate the controller

performance. The plotting can be paused and resumed by clicking Pause and Con-

tinue in the Plotter, see Figure 2(b). The y-axis scale of the control signal plotter

can also be changed with the Toogle Zoom button.

JGrafchart communicates both with the real and the simulated process. If Simula-

tion in JGrafchart is 1 the simulated model, running ten times as fast as the real

process, is used. If Simulation is 0 the real world process is used. The necessary

time-scaling of parameters is done automatically.

5. Sequential Control

In this part of the laboratory exercise you will develop a sequence for controlling

the batch reactor. The sequence should be described as a Grafcet diagram and then

translated to JGrafchart. The sequence will be tested against the simulated process

and then evaluated against the real process.

Sequential Control of the Batch Reactor

The reactor is making batches over and over again. The making of one batch is out-

lined below. All buttons and variables live in the Top workspace, unless stated other-

wise.

1. The operator starts the batch by pressing the StartSequence button, which

sets the Boolean variable Start to 1.

Note: Start is automatically reset by the Logic workspace.

2. Once the start button has been pressed, the reactor should be filled using the

in-pump, which is running as long as the Boolean variable InPump is 1. The

filling should be stopped when the Boolean variable Sensor.Full (i.e. the

variable Full in the Sensor workspace) becomes 1.

3. As soon as the in-pump is stopped, the agitator should be started by setting

Agitator to 1 and the heating controller should be turned on by setting Con-

trol_On to 1. To simulate the endothermic reaction, cooling should be enabled

by setting Cool to 1.

4. Heating control and agitation should be stopped when the operator presses

the button StopHeating, which assigns the Boolean variable StopHeat the

value 1. It is the responsibility of the operator to wait until a desired temper-

ature is reached before pressing the button, and the endothermic reaction is

then assumed to have stopped. When heating and agitation have stopped, the

tank should automatically be emptied by means of the out-pump, controlled

by the Boolean variable OutPump. The out-pump should be turned off once

Sensor.Empty becomes 1.

5. The tank needs to be automatically Cleaned In Place (CIP) before the batch

sequence can be repeated. The CIP procedure consists in flushing and cooling

the tank: The tank should be filled until the variable Sensor.Full becomes 1.

Subsequently, the agitator is started and the cooler is activated by setting Cool

to 1. When temperature has dropped to 25◦C, agitation and cooling should stop.

Temperature measurements in units of ◦C are available through the variable
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Temp. Next, the out-pump empties the tank until Sensor.Empty becomes 1.

Finally, the out-pump is turned off. After this, execution should return to the

initial state, where the process waits until the operator presses the start button

anew.

Note: It might happen in simulation, as well as in the real process, that the temper-

ature is below 25◦C already at the beginning of the CIP step. If this is the case, the

CIP step will only involve flushing of the tank.

Preparation Exercise 5.1 Draw a Grafcet diagram (pen and paper), which de-

scribes the sequence above. Use a macro step to implement the CIP. ⋄

You need to make some adjustments to be able to use your sequence in JGrafchart.

Preparation Exercise 5.2 Translate your Grafcet sequence in Preparation Exer-

cise 5.1 to the programming language syntax of JGrafchart (still pen and paper). It

means that in this exercise you should write (draw) the exact code that is necessary

to run the control system. Use the exact names of the variables mentioned above.

See appendix A for details of the JGrafchart language. Use the provided skeleton, as

shown to the left in Figure 2(a).

Note: Variables in subworkspaces are accessible with the dot-notation, e.g. the vari-

able Full in the Sensor workspace is accessed with Sensor.Full. You can write

Sensor.Full in the body of the CIP macro step too since JGrafchart uses lexi-

cal scoping and automatically looks in the enclosing workspace if there is no local

match. ⋄

Programming and Simulation of the Control Sequence

Exercise 5.3 Implement a discrete level sensor in the Sensorworkspace. A workspace

is opened with Show/Hide Body in its context menu. The contents of the Sensor

workspace template, shown in Figure 3, should now be visible in a new window.

Your task is to program a JGrafchart sequence, setting the Boolean variables Full

and Empty, using the real variable Level. The Full variable should be set to 1 if

and only if Level >= 0.50 and Empty should be 1 if and only if Level <= 0.025.

Ignore HeatOK for now. ⋄

Exercise 5.4 Implement your sequence from Preparation Exercise 5.2. Test it in

simulation. Compile the program by selecting Compile from the Execute menu

(same as the monkey wrench in the toolbar). Start the simulation by selecting Exe-

cute from the same menu (or the sign with a right-arrow in the toolbar). Don’t forget

to press the StartSequence button to start one batch, and the StopHeating button

to start CIP.

Note: Execution is stopped by selecting Stop from the Execute menu.

Note: You have to stop, re-compile, and execute each time you make changes.

Note: The Boolean variable Simulation, found in the Top workspace, should be set

to 1, which is the default. If you have changed it, press the Sim_On button when your

program is running. ⋄
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Figure 3 Contents of the Sensor workspace template

Evaluation using the Real Process

When the sequence gives a satisfying result in simulation it is time to try it on the

real process.

Exercise 5.5 Make sure that the computer and the process are connected and

that the LED on the front of the process is green. Set the value of Simulation to

0 (by clicking the Sim_Off button during execution) to use the real process. You

might need to calibrate the level sensor, which you have implemented in the Sensor

workspace. The Empty level should correspond to no (or very little) water in the tank

and the Full level should correspond to the tank being roughly half full. Evaluate the

sequence on the real process. ⋄

6. Temperature Control

Until now, the temperature has been controlled by means of a Proportional (P) con-

troller with proportional gain K = 1000, making it behave like an on/off controller.

We will now investigate how control performance is affected by varying the pro-

portional gain of the P controller. Subsequently, the controller will be extended to a

Proportional Integrating (PI) controller in order to achieve better control performance

(in terms of tracking, disturbance rejection, and control signal activity).

P control

The P-controller is implemented in the P_Controllermacro step in the PIDworkspace,

see Figure 4 and Figure 5. Make sure you understand its implementation prior to pro-

ceeding.

The PID workspace also contains the PI_Controllermacro step and logic to direct

execution to either the P or the PI controller. The PI_Controller macro step will

be handled later.

Controller parameters and other variables related to the PID implementation are also

located in the PID workspace, e.g. K and Tref.
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Figure 4 Contents of the PID workspace

Figure 5 P controller for the P_Controller macro step

Exercise 6.1 Turn simulation back on. Study how the gain K of the P controller

influences the heating behavior. Use K = 4, 15, 200. Set the reference signal Tref

to 40 ◦C. Try to explain the observed behavior.

Note: There are no traces of the D-part in the PID workspace since we are not inter-

ested in derivative action. Why? ⋄

PI control

For processes working around a stationary point corresponding to non-zero input

signal, P control results in a stationary control error. This error can be decreased by
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increasing the proportional gain. However, this is done at the expense of stability

margins and noise suppression. An attractive alternative to increasing the gain is to

introduce an integrator in the controller.

A continuous time PI controller has the transfer function:

U(s) = K

(

1+
1

sTi

)

E(s)

where E(s) = Yr(s)−Y (s). The signals and constants are:

• U control signal

• Y process output

• Yr reference

• E control error

• K proportional gain

• Ti integral time

To be able to implement this controller in a computer, the integrating parts must

be replaced by a discrete time approximation. Here this is done by assuming con-

stant control error between sample points. This approximation results in the following

pseudo-code implementation (running once per sample period):

Ppart = K*(r-y)

v1 = Ppart + Ipart

if v1 <= umin:

u = umin

else if v1 >= umax:

u = umax

else:

u = v1

Ipart = I_Old+(K*h/Ti)*(r-y)

where h is the sample time.

In order to avoid integrator windup caused by actuator limitation the PI controller

is extended with so called tracking-based anti-windup. This requires the additional

constant:

• Tr tracking time constant

With anti-windup the code for the update of the I-part is now modified to

...

Ipart = I_Old+(K*h/Ti)*(r-y)+(h/Tr)*(u-v1)

The temperature controller will only start if the Boolean variable Control_On is 1,

and that the PI controller (as opposed to the P controller) is used if the Boolean vari-

able I_On is 1. To manipulate I_On, use the I-Part On and I-Part Off buttons.
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Exercise 6.4 Make sure that you understand the implementation of the PI con-

troller. Simulate the system with the PI controller. Use the parameters

K = 30

Ti = 100

Tr = 40

Study the behavior of the system. ⋄

Exercise 6.5 Run the entire batch sequence with the PI controller on the real pro-

cess. Use the same controller parameters as for the simulation. How reliable is the

model of the system used for simulation? ⋄

7. Grafcet with parallel branches

In the previous solution the heating controller was not started until the level had

reached the Full level. However, if one assumes that the reaction starts as soon as

the tank is beginning to be filled then the heat controller should be active also during

the filling. However, the physical process contains an interlock that shuts down the

process if the hearter is on when there is too little water in the tank. Hence, the heat

controller may not be turned on until the level has passed the HeatOK value.

The new sequence of the the batch now becomes

1. The operator starts the batch by pressing the StartSequence button.

2. Once the start button has been pressed, the reactor should be filled using the

in-pump.

3. When the level reaches the value Sensor.HeatOK the agitator should be started

and the heating controller should be turned on. The simulated endothermic re-

action should be started here (due to another interlock cooling cannot cannot

be with too little water either). The in-pump should still be running.

4. The filling should be stopped when the Boolean variable Sensor.Full is true.

5. When the tank is full the heating control and agitation can be stopped when the

operator presses the button StopHeating, which assigns the Boolean variable

StopHeat the value 1. It is the responsibility of the operator to wait until a

desired temperature is reached, before pressing the button. If the tank is not

full, pressing StopHeat should have no effect. When heating and agitation

have stopped, the tank should automatically be emptied by means of the out-

pump, controlled by the Boolean variable OutPump. The out-pump should be

turned off once Sensor.Empty becomes 1.

6. The tank is Cleaned In Place.
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Exercise 7.1 Modify the Grafcet sequence according to the new specification. Use

the parallel split and join constructs. You also need to modify the Sensor workspace to

implement the discrete HeatOK sensor. HeatOK should be true whenever Level >=

0.28. Start by testing using the simulator and then run it on the physical process. The

level for HeatOK might need to be calibrated, it should correspond to approximately

2 cm above the agitator blades.

Exercise 7.2 Modify the solution so that it supports running a sequence of batches.

The number of batches should be determined by a parameter that you need to create.

In order to have a better structured solution you should embed the sequence for a

single batch into a Macro Step.

Exercise 7.3 Extend the solution so that it is possible to abort the production by

clicking the Abort button which sets Abort to 1. Implement this using an exception

transition. Make sure that the tank is emptied, the agitation and cooling is turned off,

and that the heating controller is switched off after an exception has occurred.

8. Conclusions

During the laboratory exercise we have developed a small control program for a batch

reactor. The program contains both a sequential part and a PI controller for temper-

ature control. This mix of control loops and logic is very common and can be found

in all from highly complex industrial processes to electric domestic appliances such

as laundry machines.
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A. Introduction to JGrafchart

JGrafchart is a freeware function chart editor and execution environment developed

at the department.

In this lab only a subset of all elements in JGrafchart are available and only what you

might need to know to do the lab is described in this appendix.

A.1 Example

To get an idea of what a JGrafchart application might look like consider a timed lamp

which should be on for two minutes after the button has been pressed.

Figure 6 JGrafchart with the example application opened. The palette is to the left, the list

of compilation messages is at the top, and the application itself is to the right.

A JGrafchart application for this may look like in Figure 6. The Boolean variable

lamp control the lamp and the Boolean variable button reads if the button is pressed.

The steps off and on correspond to the lamp’s off and on state. The execution will

start in the initial step, i.e., off. We switch from off to on when button is true

(1), and from on to off when on has been active for more than 120 seconds. The

action associated with off (S lamp = 0;) sets lamp to false (0) when the step is

activated. Similarly the action associated with on sets lamp to true (1) when that step

is activated.

A.2 Programming in JGrafchart

Programming in JGrafchart is done by drag-and-drop from the palette to a workspace.

The palette contains steps, transitions, variables, and lots of other elements. It is pos-

sible to select, delete, copy, cut, and paste objects in the standard fashion. Function

chart objects (objects in the FC palette tab) are connected by click-dragging the stubs.

The rules of Grafcet apply, for example a step cannot be connected to a step.

A.3 Compilation

Before an application can be executed it must be compiled. This is done with Com-

pile in the Execute menu or in the toolbar. Compilation errors are indicated by red
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text color of the condition expression/step actions. Error messages are written to the

messages list.

Two types of problems may arise during compilation, namely syntactic errors and

semantic errors.

For example, the condition expression y OR z would generate a syntactic error since

two consecutive variables, here y and OR, is not allowed. What the programmer prob-

ably meant here was y | z.

Semantic errors means that the syntax is correct but what you are trying to do is not

possible. One example is trying to assign to an input. Another example is if name

lookup fails, for example if there is no variable named y in the previous example.

A.4 Execution

JGrafchart applications are executed periodically. Every period (scan cycle) the fol-

lowing operations are performed:

1. Read digital and analog inputs.

2. Determine which transitions that will fire and mark these.

3. Fire all marked transitions, meaning first deactivating the preceding steps (ex-

ecuting their exit actions) and then activating the succeeding steps (executing

their enter actions).

4. Update step timers (accessed through <stepName>.t or <stepName>.s), exe-

cute periodic actions, and prepare normal action updates.

5. Update variables subject to normal actions.

A.5 Expressions

The expression syntax is similar to Java. One important difference is that the literals

0 and 1 are used both for the Boolean values true and false and for the integer values

0 and 1. It is the context that decides the interpretation.

Supported operators are: +, -, *, /, ! (negation), & (and), | (or), == (equals), != (not

equals), <, >, <=, >=.

Expressions may contain name references to variables. JGrafchart uses lexical scop-

ing based on workspaces. For example, a variable named Y on workspace W1 is dif-

ferent from a variable named Y on workspace W2. References between workspaces

are expressed using dot-notation. For example, a step action in a step on workspace

W1 can refer to the variable Y on workspace W2 with W2.Y.

The expression <stepName>.x returns 1 if the step is active and 0 otherwise. The

expression <stepName>.t returns the number of scan cycles since the step was last

activated, or 0 if it is not active. The expression <stepName>.s returns the time in

seconds since the step was last activated, or 0 if it is not active.

A.6 Actions

Associated with each step is a set of actions.

Four different action types are supported:

• Enter action (Stored action): The action is executed once when the step be-

comes active.

S <action>;
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• Periodic action: The action is executed periodically, once every scan cycle,

while the step is active.

P <action>;

• Exit action: The action is executed once immediately before the step is de-

activated.

X <action>;

• Abort action: The action is executed once when the step is aborted due to the

firing of an exception transition.

A <action>;

• Normal action (Level action): Associates the truth-value of a Boolean variable

with the activation status of the step. The variable becomes 1 when the step is

activated and 0 when the step is deactivated.

N <Boolean variable>;

where <action> is either an assignment or a call:

• Assignment: <variable> = <expression>

• Call: <method>()

Note: An action always ends with a semi-colon.

A.7 Conditions

Associated with each transition is a condition which is simply a Boolean expression.

A.8 Grafcet Elements

In this section a selection of Grafchart elements are described.

Steps The step name is shown on the left hand side and step actions are shown to

the right if the Action Block is visible.

Step actions are entered as text in the dialog that is opened with Edit in the step’s

context menu.

Initial Steps Initial steps are steps that are actived when the execution of the func-

tion chart starts.

Transitions Transitions are associated with conditions or events that should be true

in order for the function chart to change state, see Figure 7.

Parallel Split/Join Parallel Split is used to split the execution into two parallel

paths and Parallel Join is used to join two parallel execution paths.

Macro Steps A macro step represents a hierarchical abstraction and contains its

own (sub-)workspace, see Figure 8. The subworkspace is opened/closed with Show/Hide

Body in the macro step’s context menu. The first step in the macro step is represented

by a special enter step. Similarly the final step of the macro step is represented by

a special exit step. The enter step and the exit step are otherwise ordinary steps and

may for example have actions.
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Figure 7 Transition

Figure 8 Macro step M2 and its subworkspace containing the enter step S1, the exit step S2,

and a transition.

Exception Transitions An exception transition can be connected to the left side of

a macro step (the one to the left) and is used to abort the macro step. It has priority

over ordinary transitions.

Variables Variables have a value and a name and there is a variable type for each

of the primitive data types: real, Boolean, integer, and string.

Action Buttons An action button performs actions when clicked during execution.

Workspace Object A Workspace Object contains a subworkspace and is typically

used to structure the application.

Text Text objects are commonly used as comments.

A.9 Documentation

For more detailed information use the documentation for JGrafchart which can be

opened with Online Help in the Help menu. The documentation for an object can

also be consulted interactively with the Object Help feature on it, i.e. the speech

bubble with an i in the toolbar or Object Help in the Help menu.
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