
Lecture 7

• Introduction to convex optimization

○ Portfolio optimization revisited

○ Duality and distributed optimization

The first 11 slides are from https://www.stanford.edu/ boyd/cvxbook

Automatic Control LTH FRTN20 Market-driven Systems, Lecture 8



Least-squares

minimize ‖Ax − b‖2
2

solving least-squares problems

• analytical solution: x⋆ = (ATA)−1AT b

• reliable and efficient algorithms and software

• computation time proportional to n2k (A ∈ Rk×n); less if structured

• a mature technology

using least-squares

• least-squares problems are easy to recognize

• a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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Linear program (LP)

minimize cTx + d
subject to Gx ¹ h

Ax = b

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P
x⋆

−c

Convex optimization problems 4–17
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Linear programming

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . ,m

solving linear programs

• no analytical formula for solution

• reliable and efficient algorithms and software

• computation time proportional to n2m if m ≥ n; less with structure

• a mature technology

using linear programming

• not as easy to recognize as least-squares problems

• a few standard tricks used to convert problems into linear programs
(e.g., problems involving ℓ1- or ℓ∞-norms, piecewise-linear functions)
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Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• objective and constraint functions are convex:

fi(αx + βy) ≤ αfi(x) + βfi(y)

if α + β = 1, α ≥ 0, β ≥ 0

• includes least-squares problems and linear programs as special cases

Introduction 1–7
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solving convex optimization problems

• no analytical solution

• reliable and efficient algorithms

• computation time (roughly) proportional to max{n3, n2m,F}, where F
is cost of evaluating fi’s and their first and second derivatives

• almost a technology

using convex optimization

• often difficult to recognize

• many tricks for transforming problems into convex form

• surprisingly many problems can be solved via convex optimization

Introduction 1–8
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Brief history of convex optimization

theory (convex analysis): ca1900–1970

algorithms

• 1947: simplex algorithm for linear programming (Dantzig)

• 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . . )

• 1970s: ellipsoid method and other subgradient methods

• 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

• late 1980s–now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications

• before 1990: mostly in operations research; few in engineering

• since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, . . . ); new problem classes
(semidefinite and second-order cone programming, robust optimization)
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Examples on R

convex:

• affine: ax + b on R, for any a, b ∈ R

• exponential: eax, for any a ∈ R

• powers: xα on R++, for α ≥ 1 or α ≤ 0

• powers of absolute value: |x|p on R, for p ≥ 1

• negative entropy: x log x on R++

concave:

• affine: ax + b on R, for any a, b ∈ R

• powers: xα on R++, for 0 ≤ α ≤ 1

• logarithm: log x on R++

Convex functions 3–3
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Convex optimization problem

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aT
i x = bi, i = 1, . . . , p

• f0, f1, . . . , fm are convex; equality constraints are affine

• problem is quasiconvex if f0 is quasiconvex (and f1, . . . , fm convex)
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Quadratic program (QP)

minimize (1/2)xTPx + qTx + r
subject to Gx ¹ h

Ax = b

• P ∈ Sn
+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

P

x⋆

−∇f0(x
⋆)

Convex optimization problems 4–22
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Second-order cone programming

minimize fTx
subject to ‖Aix + bi‖2 ≤ cT

i x + di, i = 1, . . . ,m
Fx = g

(Ai ∈ Rni×n, F ∈ Rp×n)
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Semidefinite program (SDP)

minimize cTx
subject to x1F1 + x2F2 + · · · + xnFn + G ¹ 0

Ax = b

with Fi, G ∈ Sk

• inequality constraint is called linear matrix inequality (LMI)
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○ Introduction to convex optimization
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○ Duality and distributed optimization
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A Dynamic Portfolio of Assets

A portfolio of assets is modelled as







(xt+1)1
...

(xt+1)n






=







(rt+1)1
. . .

(rt+1)n













(xt)1 + (ut)1
...

(xt)n + (ut)n







or with vector notation xt+1 = Rt+1(xt + ut). Here

(xt)i is the is the value of asset i at time t

(rt+1)i is the vector of asset returns, from period t to period t+ 1
(ut)i is the is the value of trades in asset i at time t

Assume that rt for t = 1, 2, . . . are independent random (vector)

variables with known mean Ert = r̄t and covariance

E(rt − r̄t)(rt − r̄t)
T = Σt.

Notation: R̄t = ERt = diag(r̄t).
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A Portfolio Optimization Problem

Find a trading policy ut = φ t(xt) that solves the following

optimization problem:

Minimize E
∑T
t=0 {(xt,ut)

subject to

{

xt+1 = Rt+1(xt + ut)

ut = φ t(xt)
for t = 0, 1, . . . ,T − 1
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Notation

1 a column vector where every entry equals one.

1
T xt the total value of the portfolio before trading at time t

1
Tut the total cash put into the portfolio at time t,

excluding transaction costs

{(xt,ut) the total cost at time t, including transaction costs

discount factors, etc.

−{(xt,ut) the total revenue at time t

ut = φ t(xt) The trading policy φ t determines the trades ut
from the portfolio positions xt
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The Stage Cost

{(xt,ut) =

{

1
Tut +ψ (xt,ut) if xt + ut ∈ C t

∞ otherwise

In words:

Minimize investments 1Tut plus transaction costs ψ (xt,ut),
while keeping the portfolio within constraints xt + ut ∈ C t.
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Risk Mitigation

Recall that we keep the portfolio within constraints xt + ut ∈ C t.

The constraint set C t can be chosen to mitigate risk:

The quadratic constraint (xt + ut)
TΣt+1(xt + ut) < γ t keeps

the variance of the portfolio value below γ t.

Negative lower bounds −γ t ≤ xt limit the room for risky

short positions
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Portfolio Optimization by Model Predictive Control

Minimize
∑T

τ=t {(zτ ,vτ )

subject to zτ+1 = R̄τ+1(zτ + vτ ), τ = t, . . . ,T − 1
zt = xt.

The optimal sequence v∗
t , . . . ,v

∗
T−1 is a plan for future trades

over the remaining trading horizon, under the (highly

unrealistic) assumption that future returns will be equal to their

mean values. Only v∗
t is used for trading. At time t+ 1, a new

problem is solved.
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Distributed Optimization

Large scale problems cannot be solved centralized.

Computational complexity

Memory constraints

Communication constraints

Use market mechanisms for distributed optimization!
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Linear Programming Example

Product # of items Profit / item

Garden Furniture 1 x1 c1
Garden Furniture 2 x2 c2
Sled 1 x3 c3
Sled 2 x4 c4

Constraints for sub-division 1:

7x1 + 10x2 ≤ 100 (Sawing)

16x1 + 12x2 ≤ 135 (Assembling)

Constraints for sub-division 2:

10x3 + 9x4 ≤ 70 (Sawing)

6x3 + 9x4 ≤ 60 (Assembling)

Painting Constraint:

5x1 + 3x2 + 3x3 + 2x4 ≤ 45
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Linear Programming Example

Mathematical formulation:

Maximize c1x1 + c2x2 + c3x3 + c4x4

subject to 7x1 + 10x2 ≤ 100
16x1 + 12x2 ≤ 135
10x3 + 9x4 ≤ 70
6x3 + 9x4 ≤ 60
5x1 + 3x2 + 3x3 + 2x4 ≤ 45
x 4 0
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Numerical Results

Optimal solution for Division 1 (left) and Division 2 (right).

Common constraint active (i.e. equality holds).
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Dual Variables

Dual variables are the marginal prices for resources:

If the capacity for a resource is increased by 1, the total profit is

increased by the corresponding dual variable.

This gives insight to which resource to increase to gain most
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Numerical Results

Optimal dual variables and their respective constraints:

Constraint Dual variable

7x1 + 10x2 ≤ 100 1.04

16x1 + 12x2 ≤ 135 0

10x3 + 9x4 ≤ 70 0

6x3 + 9x4 ≤ 60 0.4

5x1 + 3x2 + 3x3 + 2x4 ≤ 45 3.2

Optimal value: p∗ = cT x∗ = 272

If common (painting) constraint capacity increased to 46,

optimal value becomes 272+ 3.2 = 275.2

Company would gain most by increasing painting capacity
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Linear Programming Duality

max
x

cT x = min
λ

bTλ

with Ax 5 b with ATλ 4 c
x 4 0 λ 4 0
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Optimality Conditions

x∗ is primal optimal if and only if there exists λ∗ such that

Ax∗ 5 b ATλ∗ 4 c

λ∗ 4 0 x∗ 4 0

(Aix
∗ − bi)λ

∗
i = 0 (ATj λ∗ − cj)x

∗
j = 0

These conditions are called the KKT-conditions for this

LP-problem
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Distribution of LP Example

Solve the LP example

Maximize c1x1 + c2x2 + c3x3 + c4x4

subject to 7x1 + 10x2 ≤ 100
16x1 + 12x2 ≤ 135
10x3 + 9x4 ≤ 70
6x3 + 9x4 ≤ 60
5x1 + 3x2 + 3x3 + 2x4 ≤ 45
x 4 0

in a distributed fashion using the dual problem

Automatic Control LTH FRTN20 Market-driven Systems, Lecture 8



Distribution of LP Example cont’d

Dual problem when constraint with all variables is “dualized”:

min
λ≥0
max
x40

cT x + λ(45− 5x1 + 3x2 + 3x3 + 2x4)

subject to 7x1 + 10x2 ≤ 100
16x1 + 12x2 ≤ 135
10x3 + 9x4 ≤ 70
6x3 + 9x4 ≤ 60

For fixed λ = λ̄ , the inner maximization can be decomposed to

two sub-problems (one for each sub-division) P1 and P2:

P1 :











max
x1≥0,x2≥0

c1x1 + c2x2 − λ̄(5x1 + 3x2)

s. t. 7x1 + 10x2 ≤ 100
16x1 + 12x2 ≤ 135

P2 :











max
x3≥0,x4≥0

c3x3 + c4x4 − λ̄(3x3 + 2x4)

s. t. 10x3 + 9x4 ≤ 70
6x3 + 9x4 ≤ 60
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Distributed Optimization Algorithm

1 Initialize algorithm by λ (0) = 0 and x(0) = 0.

2 For fixed λ = λ (k) let the sub-divisions solve their

respective optimization problems to find the state vector

x(k).

3 Define

λ (k+1) = max(0,λ (k)−α (k)(45−5x
(k)
1 +3x

(k)
2 +3x

(k)
3 +2x

(k)
4 ))

4 Set k← k+ 1 and go to step 2.

Convergence to optimal value and convergence in dual

variables guaranteed with this algorithm, if the step size λ k is

appropriately chosen

Convergence in primal variables guaranteed if objective strictly

concave
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Comments on Distributed Optimization

Decomposition scheme is called dual decomposition

Dual decomposition most useful for large problems with

few constraints involving all variables

many local constraints

Applicable to other types of optimization problems as well

(such as quadratic problems)

Automatic Control LTH FRTN20 Market-driven Systems, Lecture 8



Numerical Results

Primal variable iterates (x) for division 1 (left) and division 2

(right) with their respective local constraints. Triangles show

optimal solution (which is not in a corner in division 2 due to the

constraint with all variables). The numbers show the fraction of

iterates in that corner.
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Numerical Results

Same as previous slide where a certain convex combination of

the solutions is plotted. These converge to the primal optimal

solution. The numbers correspond to iterate number.
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Lecture 6 and 7

Lecture 6

Linear Programming (LP)

LP in production planning example

Model Predictive Control

A portfolio optimization problem

Lecture 7

Introduction to convex optimization

Portfolio optimization revisited

Duality and distributed optimization
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