

Market-Driven Systems Lecture 6

Anders Rantzer

Dept. of Automatic Control Lund Institute of Technology

Lecture 6

- ► Linear Programming (LP)
- ▶ LP in production planning example
- ► Model Predictive Control
- A portfolio optimization problem

Lecture 7

- ▶ More general convex optimization
- ► Portfolio optimization revisited
- ► Duality and distributed optimization

Mini Problem

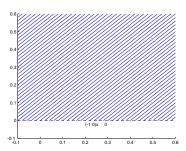
$$\begin{array}{ll} \text{Minimize} & -x_1-x_2\\ \text{subject to} & x_1+2x_2 \leq 1\\ & 2x_1+x_2 \leq 1\\ & x_1 \geq 0\\ & x_2 \geq 0 \end{array}$$

Equivalent matrix formulation:

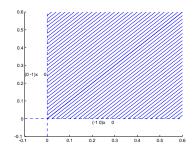
$$\begin{array}{ll} \text{Minimize} & \left(-1 & -1\right)x\\ \text{subject to} & \begin{pmatrix} 1 & 2\\ 2 & 1 \end{pmatrix}x \preceq \begin{pmatrix} 1\\ 1 \end{pmatrix}, x \succeq 0 \end{array}$$

where $x = (x_1 x_2)^T$

Mini Problem graphical solution



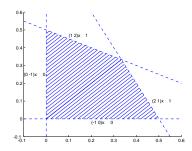
Mini Problem graphical solution



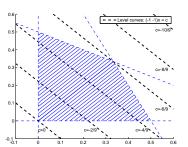
Mini Problem graphical solution



Mini Problem graphical solution



Mini Problem graphical solution



Linear Programming

General formulation:

Today's lecture

- ► Linear Programming (LP)
- ▶ LP in production planning example
 - ▶ Static systems
 - Dynamical systems
- ► Model Predictive Control
- ► A Portfolio Optimization Problem

Production planning example

Two products are produced:

- ► Garden furniture
- Sleds

Two main parts of production

- Sawing
- Assembling

Production planning example cont'd

Weekly production:

 x_1 : Garden furniture

 x_2 : Sleds

Product prices:

 p_1 : Garden furniture

 p_2 : Sleds

The objective is to maximize weekly profit:

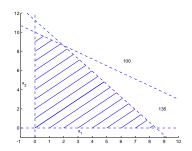
 $\max p_1 x_1 + p_2 x_2$

Subject to:

Sawing constraints: $7x_1 + 10x_2 \le 100$ Assembling constraints: $16x_1 + 12x_2 \le 135$

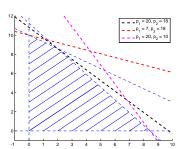
Production planning example cont'd

Sawing and assembling constraints:



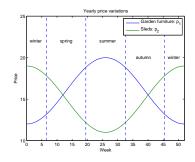
Production planning example cont'd

Level curves for optimal points obtained with different prices:



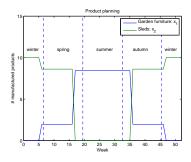
Production planning example cont'd

Seasonal variations in expected prices:



Production planning example cont'd

Optimal production for different seasons:



Today's lecture

- ► Linear Programming (LP)
- ▶ LP in production planning example
 - ► Static systems
 - Dynamical systems
- ► Model Predictive Control
- A portfolio optimization problem

Dynamic Production planning example

Hire extra personel to increase production:

Nominal learning (sawing):

$$x_3(t+1) = 0.7x_3(t) + 30u_3(t)$$

Nominal learning (assembling):

$$x_4(t+1) = 0.7x_4(t) + 40.5u_4(t)$$

where $u_3 \in [0,1], u_4 \in [0,1]$ is fraction of full time employment

 $x_3(t)$ and $x_4(t)$ quantifies increased capacity:

Sawing: $7x_1 + 10x_2 \le 100 + x_3(t)$ Assembling: $16x_1 + 12x_2 \le 135 + x_4(t)$

Mini problem

Assume that extra sawing personel is working full-time, i.e $u_3(t)=1,\,t=0,1,\dots$

If the initial sawing capacity of the extra labor is 0, i.e $x_3(0) = 0$, what is the sawing capacity after three weeks, i.e. $x_3(3)$?

What is the stationary sawing capacity of the extra labor?

Mini problem - solution

Sawing capacity at time t = 3:

$$x_3(3) = 0.7x_3(2) + 30u_3(2) = 0.7(0.7x_3(1) + 30u_3(1)) + 30u_3(2)$$

= 0.7(0.7(0.7x_3(0) + 30u_3(0)) + 30u_3(1)) + 30u_3(2)
= (0.7² + 0.7 + 1)30 = 65.7

Stationary capacity is given by:

$$x_3 = 0.7x_3 + 30$$

which gives

$$x_3 = \frac{30}{1 - 0.7} = \frac{30}{0.3} = 100$$

The total sawing capacity is doubled after learning period

Dynamic Production planning example cont'd

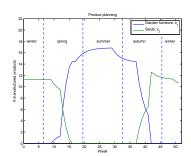
The weekly cost for extra personnel is p_3 and p_4 respectively This gives the following production planning problem that optimizes one year ahead production:

$$\begin{array}{ll} \max & p_1(t)x_1(t) + p_2(t)x_2(t) - p_3(t)u_3(t) - p_4(t)u_4(t) \\ \text{subject to} & x_3(t+1) = 0.7x_3(t) + 30u_3(t) \\ & x_4(t+1) = 0.7x_4(t) + 40.5u_4(t) \\ & 7x_1(t) + 10x_2(t) \leq 100 + x_3(t) \\ & 16x_1(t) + 12x_2(t) \leq 135 + x_4(t) \\ & 0 \leq u_3(t) \leq 1 \qquad 0 \leq u_4(t) \leq 1 \\ & x_3(0) = x_3^0 \qquad x_4(0) = x_4^0 \end{array}$$

for t=0,...,52 and x_3^0 and x_4^0 are the initial capacities for the extra personel

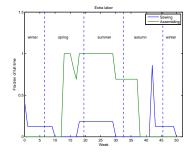
Dynamic Production planning example cont'd

Optimal production over 52 weeks with extra personel and product prices as before and $p_3=p_4=100$:



Dynamic Production planning example cont'd

Optimal extra labor:



Dynamic Production planning example - limitations

The following is not compensated for:

- ▶ Prices may not be equal to predicted prices
- ► Extra personel might be fast or slow learners
- ▶ Decreased capacity due to employee illness
- ▶ ..

Today's lecture

- ► Linear Programming (LP)
- ▶ LP in production planning example
- ► Model Predictive Control
- A portfolio optimization problem

At time t:

и

- 1. Measure the state x(t)
- 2. Use model to optimize input trajectory for $t + 1, \dots, t + N$

Model Predicitive Control (Receding Horizon Control)

- 3. Apply the optimization result u(t) to the system
- 4. After one sample, go to 1 to repeat the procedure

The History of MPC

- A.I. Propoi, Use of Linear Programming methods for synthesizing sampled-data automatic systems, 1963 Automation and Remote Control
- Used industrially since 1970s, see for example
 J. Richalet, Model predictive heuristic control application to industrial processes, Automatica, 1978.
- Many industrial products: DMC (Aspen Tech), IDCOM (Adersa), RMPCT (Honeywell), SMCA (Setpoint Inc), SMOC (Shell Global), 3dMPC (ABB), ...
- Strong theory development since about 1980 (linear) and 1990 (nonlinear)

MPC Example

Product planning example with model-reality mis-match:

Modeled employee learning:

$$x_3(t+1) = 0.7x_3(t) + 30u_3(t)$$

$$x_4(t+1) = 0.7x_4(t) + 40.5u_4(t)$$

Actual employee learning:

$$x_3(t+1) = 0.75x_3(t) + 30u_3(t) + v_3(t)$$

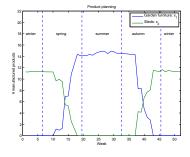
$$x_4(t+1) = 0.65x_4(t) + 40.5u_4(t) + v_4(t)$$

where $v_3(t)$ and $v_4(t)$ are uniformly distributed random numbers in $[-0.3x_3(t)\ 0]$ and $[-0.3x_4(t)\ 0]$ respectively

The product prices $p_1(t)$ and $p_2(t)$ are additively affected by uniformly distributed random noise in $[-1\ 1]$

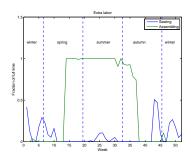
MPC Example - Results

Weekly production when extra labor decided using MPC:



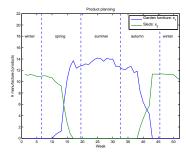
MPC Example - Results

Extra personel (decided using MPC):



MPC Example - Comparison

Production with extra labor as in dynamic production planning example (i.e. no feedback):



Profit over one year is 8.6% higher with MPC-feedback

MPC — Pros and Cons

Pros:

- ► Good constraint handling
- ► Easily understandable tuning knobs (e.g. cost function)
- ▶ Usually gives good performance in practice
- ► Handles complex systems well

Cons:

- ► Calculation times
- System model needed
- Historically lack of theoretical understanding of the closed loop system

Today's lecture

- ► Linear Programming (LP)
- ▶ LP in production planning example
- ► Model Predictive Control
- ► A portfolio optimization problem

A Dynamic Portfolio of Assets

A portfolio of assets is modelled as

$$\begin{bmatrix} (x_{t+1})_1 \\ \vdots \\ (x_{t+1})_n \end{bmatrix} = \begin{bmatrix} (r_{t+1})_1 & & \\ & \ddots & \\ & & (r_{t+1})_n \end{bmatrix} \begin{bmatrix} (x_t)_1 + (u_t)_1 \\ \vdots \\ (x_t)_n + (u_t)_n \end{bmatrix}$$

or with vector notation $x_{t+1} = R_{t+1}(x_t + u_t)$. Here

 $(x_t)_i$ is the is the value of asset i at time t

 $(r_{t+1})_i$ is the vector of asset returns, from period t to period t+1

 $(u_t)_i$ is the is the value of trades in asset i at time t

Assume that r_t for $t=1,2,\ldots$ are independent random (vector) variables with known mean $\mathbf{E} r_t = \bar{r}_t$ and covariance

 $\mathbf{E}(r_t - \bar{r}_t)(r_t - \bar{r}_t)^T = \Sigma_t.$

Notation: $\bar{R}_t = \mathbf{E}R_t = \operatorname{diag}(\bar{r}_t)$.

Expressions of interest

1 a column vector where every entry equals one.

 $\mathbf{1}^T x_t$ the total value of the portfolio before trading at time t

 $\mathbf{1}^T u_t$ the total cash put into the portfolio at time t,

excluding transaction costs

 $\ell(x_t, u_t)$ the total cost at time t, including transaction costs

discount factors, etc.

 $-\ell(x_t,u_t)$ the total revenue at time t

 $u_t = \phi_t(x_t)$ The trading policy ϕ_t determines the trades u_t

from the portfolio positions x_t

A Portfolio Optimization Problem

Find a trading policy $u_t = \phi_t(x_t)$ that solves the following optimization problem:

Minimize $\mathbf{E} \sum_{t=0}^{T} \ell(x_t, u_t)$

subject to $egin{cases} x_{t+1} = R_{t+1}(x_t + u_t) \ u_t = \phi_t(x_t) \end{cases}$ for $t = 0, 1, \ldots, T-1$

A Portfolio Optimization Problem

In other words, we seek the trading policy ϕ_t that maximizes the total expected revenue.

Maximize
$$-\mathbf{E} \sum_{t=0}^{T} \ell(x_t, u_t)$$

subject to
$$\begin{cases} x_{t+1} = R_{t+1}(x_t + u_t) & \text{ for } t = 0, 1, \dots, T-1 \\ u_t = \phi_t(x_t) & \end{cases}$$

Mini-problem

What would Model Predictive Control mean for the portfolio optimization problem?

Lecture 6 and 7

- ► Linear Programming (LP)
- ▶ LP in production planning example
- ► Model Predictive Control
- A portfolio optimization problem
- ► More general convex optimization
- Portfolio optimization revisited
- ► Duality and distributed optimization