Market-Driven Systems Lecture 6

Anders Rantzer

Dept. of Automatic Control Lund Institute of Technology

Lecture 6 and 7

Lecture 6

- Linear Programming (LP)
- LP in production planning example
- Model Predictive Control
- A portfolio optimization problem

Lecture 7

- More general convex optimization
- Portfolio optimization revisited
- Duality and distributed optimization

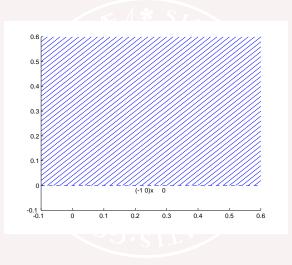
Mini Problem

$$\begin{array}{lll} \text{Minimize} & -x_1 - x_2\\ \text{subject to} & x_1 + 2x_2 \leq 1\\ & 2x_1 + x_2 \leq 1\\ & x_1 \geq 0\\ & x_2 \geq 0 \end{array}$$

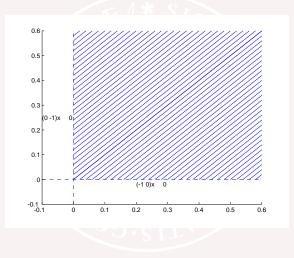
Equivalent matrix formulation:

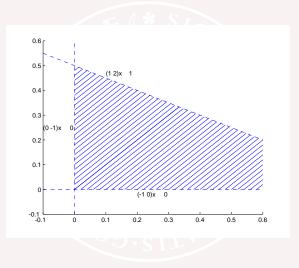
Minimize $\begin{pmatrix} -1 & -1 \end{pmatrix} x$ subject to $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} x \leq \begin{pmatrix} 1 \\ 1 \end{pmatrix}, x \geq 0$

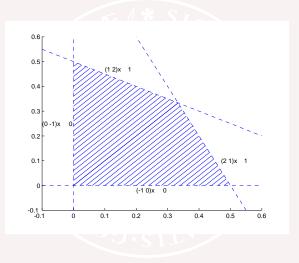
where $x = (x_1 x_2)^T$



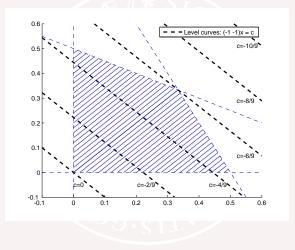
Anders Rantzer Market-Driven Systems Lecture 6







Anders Rantzer Market-Driven Systems Lecture 6



Anders Rantzer Market-Driven Systems Lecture 6

Linear Programming

General formulation: Minimize $c^T x$ subject to $Ax \leq b$ Hx = g

Today's lecture

- Linear Programming (LP)
- LP in production planning example
 - Static systems
 - Dynamical systems
- Model Predictive Control
- A Portfolio Optimization Problem

Production planning example

Two products are produced:

- Garden furniture
- Sleds

Two main parts of production

- Sawing
- Assembling

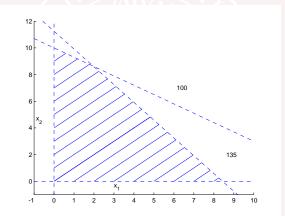
Weekly production: x_1 : Garden furniture x_2 : Sleds

Product prices: p_1 : Garden furniture p_2 : Sleds

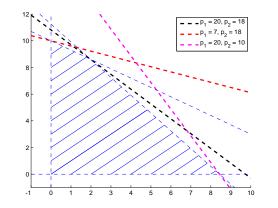
The objective is to maximize weekly profit: $\max p_1 x_1 + p_2 x_2$

Subject to: Sawing constraints: $7x_1 + 10x_2 \le 100$ Assembling constraints: $16x_1 + 12x_2 \le 135$

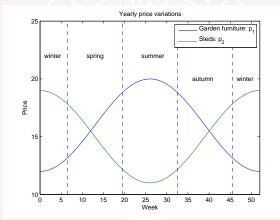
Sawing and assembling constraints:



Level curves for optimal points obtained with different prices:

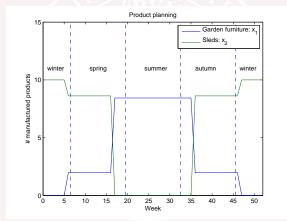


Seasonal variations in expected prices:



Anders Rantzer Market-Driven Systems Lecture 6

Optimal production for different seasons:



Today's lecture

- Linear Programming (LP)
- LP in production planning example
 - Static systems
 - Dynamical systems
- Model Predictive Control
- A portfolio optimization problem

Dynamic Production planning example

Hire extra personel to increase production:

Nominal learning (sawing):

$$x_3(t+1) = 0.7x_3(t) + 30u_3(t)$$

Nominal learning (assembling):

$$x_4(t+1) = 0.7x_4(t) + 40.5u_4(t)$$

where $u_3 \in [0, 1], u_4 \in [0, 1]$ is fraction of full time employment

 $x_3(t)$ and $x_4(t)$ quantifies increased capacity: Sawing: $7x_1 + 10x_2 \le 100 + x_3(t)$ Assembling: $16x_1 + 12x_2 \le 135 + x_4(t)$

Mini problem

Assume that extra sawing personel is working full-time, i.e $u_3(t) = 1, t = 0, 1, ...$

If the initial sawing capacity of the extra labor is 0, i.e $x_3(0) = 0$, what is the sawing capacity after three weeks, i.e. $x_3(3)$?

What is the stationary sawing capacity of the extra labor?

Mini problem - solution

Sawing capacity at time t = 3:

$$\begin{aligned} x_3(3) &= 0.7x_3(2) + 30u_3(2) = 0.7(0.7x_3(1) + 30u_3(1)) + 30u_3(2) \\ &= 0.7(0.7(0.7x_3(0) + 30u_3(0)) + 30u_3(1)) + 30u_3(2) \\ &= (0.7^2 + 0.7 + 1)30 = 65.7 \end{aligned}$$

Stationary capacity is given by:

$$x_3 = 0.7x_3 + 30$$

which gives

$$x_3 = \frac{30}{1 - 0.7} = \frac{30}{0.3} = 100$$

The total sawing capacity is doubled after learning period

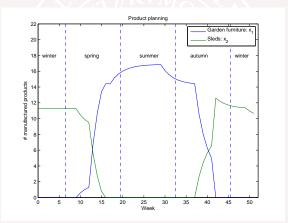
Dynamic Production planning example cont'd

The weekly cost for extra personnel is p_3 and p_4 respectively This gives the following production planning problem that optimizes one year ahead production:

 $p_1(t)x_1(t) + p_2(t)x_2(t) - p_3(t)u_3(t) - p_4(t)u_4(t)$ max subject to $x_3(t+1) = 0.7x_3(t) + 30u_3(t)$ $x_4(t+1) = 0.7x_4(t) + 40.5u_4(t)$ $7x_1(t) + 10x_2(t) \le 100 + x_3(t)$ $16x_1(t) + 12x_2(t) \le 135 + x_4(t)$ $0 \le u_3(t) \le 1$ $0 \le u_4(t) \le 1$ $x_3(0) = x_3^0$ $x_4(0) = x_4^0$ for t = 0, ..., 52 and x_3^0 and x_4^0 are the initial capacities for the extra personel

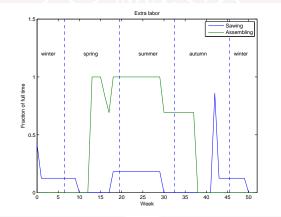
Dynamic Production planning example cont'd

Optimal production over 52 weeks with extra personel and product prices as before and $p_3 = p_4 = 100$:



Dynamic Production planning example cont'd

Optimal extra labor:



Dynamic Production planning example - limitations

The following is not compensated for:

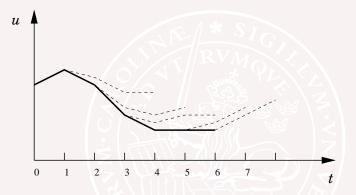
- Prices may not be equal to predicted prices
- Extra personel might be fast or slow learners
- Decreased capacity due to employee illness

Ο ...

Today's lecture

- Linear Programming (LP)
- LP in production planning example
- Model Predictive Control
- A portfolio optimization problem

Model Predicitive Control (Receding Horizon Control)



At time t:

- Measure the state x(t)
- 2 Use model to optimize input trajectory for $t + 1, \dots, t + N$
- O Apply the optimization result u(t) to the system
- After one sample, go to 1 to repeat the procedure

The History of MPC

- A.I. Propoi, Use of Linear Programming methods for synthesizing sampled-data automatic systems, 1963 Automation and Remote Control
- Used industrially since 1970s, see for example
 J. Richalet, Model predictive heuristic control application to industrial processes, Automatica, 1978.
- Many industrial products: DMC (Aspen Tech), IDCOM (Adersa), RMPCT (Honeywell), SMCA (Setpoint Inc), SMOC (Shell Global), 3dMPC (ABB), ...
- Strong theory development since about 1980 (linear) and 1990 (nonlinear)

MPC Example

Product planning example with model-reality mis-match: Modeled employee learning:

$$\begin{aligned} x_3(t+1) &= 0.7x_3(t) + 30u_3(t) \\ x_4(t+1) &= 0.7x_4(t) + 40.5u_4(t) \end{aligned}$$

Actual employee learning:

$$x_3(t+1) = 0.75x_3(t) + 30u_3(t) + v_3(t)$$

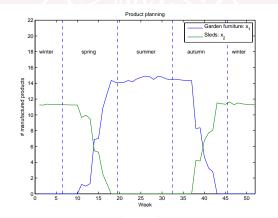
$$x_4(t+1) = 0.65x_4(t) + 40.5u_4(t) + v_4(t)$$

where $v_3(t)$ and $v_4(t)$ are uniformly distributed random numbers in $[-0.3x_3(t) 0]$ and $[-0.3x_4(t) 0]$ respectively

The product prices $p_1(t)$ and $p_2(t)$ are additively affected by uniformly distributed random noise in [-1 1]

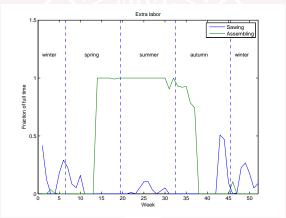
MPC Example - Results

Weekly production when extra labor decided using MPC:



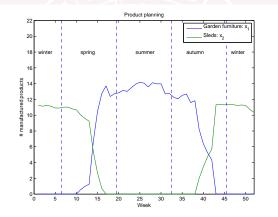
MPC Example - Results

Extra personel (decided using MPC):



MPC Example - Comparison

Production with extra labor as in dynamic production planning example (i.e. no feedback):



Profit over one year is 8.6% higher with MPC-feedback

Anders Rantzer Market-Driven Systems Lecture 6

MPC — Pros and Cons

Pros:

- Good constraint handling
- Easily understandable tuning knobs (e.g. cost function)
- Usually gives good performance in practice
- Handles complex systems well

Cons:

- Calculation times
- System model needed
- Historically lack of theoretical understanding of the closed loop system

Today's lecture

- Linear Programming (LP)
- LP in production planning example
- Model Predictive Control
- A portfolio optimization problem

A Dynamic Portfolio of Assets

A portfolio of assets is modelled as

$$\begin{bmatrix} (x_{t+1})_1 \\ \vdots \\ (x_{t+1})_n \end{bmatrix} = \begin{bmatrix} (r_{t+1})_1 & & \\ & \ddots & \\ & & (r_{t+1})_n \end{bmatrix} \begin{bmatrix} (x_t)_1 + (u_t)_1 \\ \vdots \\ (x_t)_n + (u_t)_n \end{bmatrix}$$

or with vector notation $x_{t+1} = R_{t+1}(x_t + u_t)$. Here

 $\begin{array}{ll} (x_t)_i & \text{ is the is the value of asset } i \text{ at time } t \\ (r_{t+1})_i & \text{ is the vector of asset returns, from period } t \text{ to period } t+1 \\ (u_t)_i & \text{ is the is the value of trades in asset } i \text{ at time } t \end{array}$

Assume that r_t for t = 1, 2, ... are independent random (vector) variables with known mean $\mathbf{E}r_t = \bar{r}_t$ and covariance $\mathbf{E}(r_t - \bar{r}_t)(r_t - \bar{r}_t)^T = \Sigma_t$.

Notation: $\bar{R}_t = \mathbf{E}R_t = \operatorname{diag}(\bar{r}_t)$.

Expressions of interest

1 a column vector where every entry equals one. $\mathbf{1}^T x_t$ the total value of the portfolio before trading at time t $\mathbf{1}^T u_t$ the total cash put into the portfolio at time t, excluding transaction costs $\ell(x_t, u_t)$ the total cost at time t, including transaction costs discount factors, etc. the total revenue at time t $-\ell(x_t, u_t)$ $u_t = \phi_t(x_t)$ The trading policy ϕ_t determines the trades u_t from the portfolio positions x_t

A Portfolio Optimization Problem

Find a trading policy $u_t = \phi_t(x_t)$ that solves the following optimization problem:

Minimize
$$\mathbf{E} \sum_{t=0}^{T} \ell(x_t, u_t)$$

subject to
$$\begin{cases} x_{t+1} = R_{t+1}(x_t + u_t) \\ u_t = \phi_t(x_t) \end{cases}$$
 for $t = 0, 1, \dots, T-1$

A Portfolio Optimization Problem

In other words, we seek the trading policy ϕ_t that maximizes the total expected revenue.

Maximize
$$-\mathbf{E} \sum_{t=0}^{T} \ell(x_t, u_t)$$

subject to
$$\begin{cases} x_{t+1} = R_{t+1}(x_t + u_t) \\ u_t = \phi_t(x_t) \end{cases}$$
 for $t = 0, 1, \dots, T-1$

Mini-problem

What would Model Predictive Control mean for the portfolio optimization problem?

Portfolio Optimization by Model Predictive Control

Minimize
$$\sum_{\tau=t}^{T} \ell(z_{\tau}, v_{\tau})$$

subject to $z_{\tau+1} = \bar{R}_{\tau+1}(z_{\tau} + v_{\tau}), \quad \tau = t, \dots, T-1$
 $z_t = x_t.$

The optimal sequence v_t^*, \ldots, v_{T-1}^* is a plan for future trades over the remaining trading horizon, under the (highly unrealistic) assumption that future returns will be equal to their mean values. Only v_t^* is used for trading. At time t + 1, a new problem is solved.

Lecture 6 and 7

- Linear Programming (LP)
- LP in production planning example
- Model Predictive Control
- A portfolio optimization problem
- More general convex optimization
- Portfolio optimization revisited
- Duality and distributed optimization