
Lecture 7

Distributed Control Using
Price Mechanisms

For large scale production planning and other optimization problems, it is

essential to have methods for decomposition into smaller subproblems. This

is for several reasons. One is computational complexity. Solving several

subproblems in parallel makes it possible to solve the original problem

more quickly. Another reason is flexibility. If the problem data changes

somewhere it can be very costly and time-consuming to redo the entire

optimization of all variables. A decomposition into subproblems makes it

possible to account for new data in a simpler and more effective manner.

The main ideas will be explained in terms of an example:

Example 1. A company consists of two sub-divisions. One sub-division

manufactures garden furniture (by sawing and assembling), the other sub-
division manufactures sleds (also by sawing and assembling). Each division
manufactures two different kinds of their respective products. Both sub-

divisions send their products to a common painting station. The objective

is to maximize company income given the resources.

Product # of items Income / item

Garden Furniture 1 x1 c1

Garden Furniture 2 x2 c2

Sled 1 x3 c3

Sled 2 x4 c4

Constraints for furniture division:

7x1 + 10x2 ≤ 100 (Sawing)

16x1 + 12x2 ≤ 135 (Assembling)

Constraints for sled division:

10x3 + 9x4 ≤ 70 (Sawing)

6x3 + 9x4 ≤ 60 (Assembling)

Painting Constraint:

5x1 + 3x2 + 3x3 + 2x4 ≤ 45

1



Lecture 7. Distributed Control Using Price Mechanisms

Altogether, an optimal production plan for the two sub-divisions can be

found by solving the linear programming problem

Maximizex40 c1x1 + c2x2 + c3x3 + c4x4

subject to 7x1 + 10x2 ≤ 100

16x1 + 12x2 ≤ 135

10x3 + 9x4 ≤ 70

6x3 + 9x4 ≤ 60

5x1 + 3x2 + 3x3 + 2x4 ≤ 45

(7.1)

The production plans for the two sub-divisions are coupled through the

common painting station. To decompose the optimization problem, we will

replace the constraint on painting capacity by a price to payed for painting.

Hence, instead of (7.1) consider the optimization problem, where λ ≥ 0 is
the painting “price”.

Maximizex40 cT x +

cost for exceeding the painting capacity
︷ ︸︸ ︷

λ(45 − 5x1 − 3x2 − 3x3 − 2x4)

subject to 7x1 + 10x2 ≤ 100

16x1 + 12x2 ≤ 135

10x3 + 9x4 ≤ 70

6x3 + 9x4 ≤ 60

(7.2)

Notice that the maximum of (7.2) must be at least as big as that of (7.1).
This is because every solution to the inequalities in (7.1) gives a value
in (7.2) which is at least as big as the value in (7.1). In practice, this
means that if the painting price is set too low, the optimization will result

in a solution with a painting demand that exceeds the supply and which

is therefore not implementable. On the contrary, a painting price that is

too high will lead to smaller production volumes than desirable and the

painting facility gets underutilized. However, as will be seen later, there is

always value λ = λ∗ for which the maximum of (7.2) recovers the optimum
of (7.1).
An important aspect of the formulation with price variable is that there

is no longer any direct coupling between the two sub-divisions, so they can

each optimize their production separately:

Maximizex1,x2≥0 c1x1 + c2x2 − λ(5x1 + 3x2)

subject to 7x1 + 10x2 ≤ 100 (7.3)

16x1 + 12x2 ≤ 135

Maximizex3,x4≥0 c3x3 + c4x4 − λ(3x3 + 2x4)

subject to 10x3 + 9x4 ≤ 70 (7.4)

6x3 + 9x4 ≤ 60

When λ = λ∗, the optimal values x∗
1, . . . , x

∗
4 will satisfy the painting capacity

constraint 5x∗
1 + 3x

∗
2 + 3x

∗
3 + 2x

∗
4 ≤ 45. 2

2



Duality in Linear Programming

The example above illustrates how the introduction of prices can be used

to decompose an optimization problem into smaller ones. This principle is

very general. In fact, it is the basis for our entire economy. However, before

continuing the discussion of distributed optimization, we will recall the

main ideas of duality theory for linear programming, where price variables

appear in a natural way.

Duality in Linear Programming

Consider the following general linear programming problem.

p∗ = max cT x

subject to Ax 5 b, x 4 0

Introduce a vector of dual variables λ 4 0 (prices) for the constraints
Ax 5 b and define the corresponding dual function �(λ):

�(λ) = max
x40

[
cT x + λ

T(b− Ax)
]

The second term of the bracket is non-negative when Ax 5 b, so �(λ) ≥ p∗.

As in the example above, we hope to achieve equality for some “optimal”

price vector. For this, note that

�(λ) = λ
Tb+max

x40
(c− ATλ)T x =

{

λ
Tb if ATλ 4 c

∞ otherwise

Define

d∗ = min
λ40

�(λ) = min λ
Tb

subject to ATλ 4 c, λ 4 0

Notice the symmetry between the optimizations defining p∗ and d∗. As we

have have seen, it is always true that p∗ ≤ d∗. However, there is a theorem

proving that

p∗ = d∗

whenever the inequalities Ax 5 b, x 4 0 have a feasible solution. In par-
ticular, when a finite optimal value p∗ exists, there is an “optimal price

vector” λ∗ such that

p∗ = max
x40

[
cT x + (λ∗)T(b− Ax)

]

Hence, as in the example, once the price vector λ∗ is known all constraints

coupling different subsystems to each other can be dropped and each sub-

problem can be treated separately.

An optimal pair (x∗,λ∗) is characterized by the following conditions,
called the Karush-Kuhn-Tucker (KKT) conditions.

Ax∗ 5 b ATλ∗ 4 c

λ∗ 4 0 x∗ 4 0

(Aix
∗ − bi)λ

∗
i = 0 (ATj λ∗ − cj)x

∗
j = 0 for all i, j

3



Lecture 7. Distributed Control Using Price Mechanisms

−1 0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

8

Figure 7.1 Optimal solution for Furniture Division (left) and Sled Division
(right). The common painting constraint is active (i.e. equality holds) but not vis-
ible in the diagrams.

Dual variables can be interpreted as marginal price for resources: If the

capacity for a resource is increased by ǫ, the total profit is increased by

ǫ times the corresponding dual variable. This gives insight about which

resource is most critical.

Let us now go back to the example and to see how the variables can be

interpreted.

Example 2. Each of the constraints in the optimization (7.1) has a corre-
sponding dual variable:

Constraint Dual variable

Sawing in furniture division 7x1 + 10x2 ≤ 100 1.04

Assembly in furniture division 16x1 + 12x2 ≤ 135 0

Sawing in sled division 10x3 + 9x4 ≤ 70 0

Assembly in sled division 6x3 + 9x4 ≤ 60 0.4

Painting 5x1 + 3x2 + 3x3 + 2x4 ≤ 45 3.2

The optimal value is p∗ = 272. The most critical capacity constraint is
painting. If the painting capacity is increased to 46, the optimal value will

become 272+ 3.2 = 275.2. 2

Optimization through Distributed Iterations

We are now ready to return to our example to see how the optimal produc-

tion planning can be found through distributed iterations.

Example 3. Let �1(λ) and �2(λ) be the maximal values of (7.3) and (7.4)
respectively. Given that the price for painting is λ , the furniture division

expects to deliver the income �1(λ) while the sled division expects to deliver
the income �2(λ). However, the payments for painting from the subdivisions
are internal payments collected by the headquarters, so the total expected

income for the company becomes

45λ + �1(λ) + �2(λ)

This is also equal to the maximal value of (7.2) and upper bound on the
optimal value p∗ of (7.1). If the painting price λ is too high, the painting

4



Optimization through Distributed Iterations

−1 0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

0

0.96

0.04

00

0.96

0.04

00

0.96

0.04

00

0.96

0.04

0

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

8

0.02

0.58

0.36

0.040.02

0.58

0.36

0.040.02

0.58

0.36

0.040.02

0.58

0.36

0.04

Figure 7.2 Iterates of x1, x2 for furniture division (left) and x3, x4 for sled divi-
sion (right) with their respective local constraints. Triangles show optimal solution
(which is not in a corner in division 2 due to the painting constraint). The numbers
show the fraction of iterates in that corner.

facility will be underutilized and the actual internal payments will be less

than the expected 45λ . On the other hand, if the painting price λ is too

low, the optimizations (7.3) and (7.4) will create a painting demand that
exceeds the capacity 45 and which is therefore infeasible.

The optimal painting price can be found by an iterative scheme. For a

given painting price, each of the sub-divisions compute their optimal pro-

duction volumes. If these production volumes lead to a painting demand

that exceeds the capacity, the painting price is raised before the next it-

eration. On the contrary, if the painting facility becomes underutilized,

the painting price is lowered before the next iteration. Mathematically the

price update scheme can be written as follows:

1. Initialize algorithm by λ0 = 0 and x0 = 0.

2. For fixed λ = λ k let the sub-divisions solve (7.3) and (7.4) respectively
to find the state vector xk.

3. Define λ k+1 = max(0,λ k −α k(45− 5xk1 + 3x
k
2 + 3x

k
3 + 2x

k
4))

4. Set k← k+ 1 and go to step 2.

An iteration of this scheme is illustrated in Figure 7.2. If instead of the

latest state iterate plot the average of the states found so far, we get Fig-

ure 7.3. 2

To summarize, we have introduced a scheme for decomposition of large

optimization problems using dual variables (prices). The scheme is often
called dual decomposition and is applicable also to other convex optimiza-

tion problems than linear programming. It is particularly suitable for prob-

lems where relatively few constraints involve all variables.

A simple proof of convergence for the scheme described in the example

is given in the note

• Subgradient Methods by Stephen Boyd and Almir Mutapcic. Notes for

EE364b, Stanford University, Winter 2006-07.

which is available from th course web page. Page 2-6 of this note should be

considered as a complement of these lecture notes.

5



Lecture 7. Distributed Control Using Price Mechanisms

−1 0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

1

2

3

4
5

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

8

12 3

4

5

6

7

8 9

10

Figure 7.3 If we plot the average of the states found so far, these converge toward

the optimal solution. The numbers correspond to iterate number.

6


