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Learning Goals

After the course you should be able to

◮ Formulate different control and decision situations as

games and apply game theoretical ideas

◮ Calculate mixed strategies for small zero-sum games

◮ Find Nash and Stackelberg equilibria for multiagent games

◮ Describe Braess’ paradox, Cournot’s model of Duopoly,

and basic auction theory

◮ Read literature containing game theoreretical concepts

Game Theory - Where?

Game Theory - Why?

Useful on many levels:

◮ Analysis of production - customers - markets - competition

◮ Distributed control on plant level
◮ Distributed control of communication networks (examples:

TCP rate control, WCDMA power control)
◮ Distributed scheduling of multicore computer systems
◮ Robust Control
◮ . . .

Game Theory, or “Multiagent decision making”

Optimization theory:

Situation with ONE unit with CENTRALIZED information

Many courses at LTH.

Common theme in many of our other control courses.

What if “decision-making” is done by decentralized units, not

having the same optimization criteria, not having the same

information?

=[ Game theory

Game Theory

Distributed decision-making leads to situations

where new intuition and techniques are needed.

This lecture is intended as a short introduction to

some of the central concepts and results.

The hope is that it gives an interest for further

study of this fascinating subject.

What is Game Theory?

Multi-person decision making

Underlying basic assumptions:

Decision makers pursue well-defined objectives (they are

rational), and take into account their knowledge or expectations

of other decision-maker’s behavior (they reason strategically)

(These assumptions are relaxed in evolutionary game theory)

Dynamic: the order in which decisions are made is important

(otherwise static)

Cooperative: Binding agreements can be made (otherwise

noncooperative)
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Motivating Example - Traffic Optimization

Assume A+ B = 4000 cars, each chosing quickest route

time via A: A/100 + 45 min.

time via B: B/100 + 45 min.

At equilibrium A = B = 2000 and travel time is 65 minutes

Traffic Planning

A new fast road (0 min) between A and B is then built to

shorten travel time.

Noone is now using the 45-min roads (since faster alternatives

always exist, taking at most 40 min)

Total travel time is now 40+40=80 minutes

Braess’ Paradox

Introduction of the new road has increased travel time by

15 minutes for everyone !

Is this against your intuition?

This is not only a mathematical curiosity. There are several

indications that the phenomenon occurs in real world, see

references.

Called Braess’ paradox or “Cost of Anarchy”

Similar phenomenon can occur in other fields of applications,

such as electrical networks and mechanical constructions.

Flow Control in Communication Networks

m distributed sources in a network want to send information

through a common bottleneck node.

Performance degrades when many send simultaneously, either

because of increased error probability or increased delay

The players have more or less accurate information about the

state of the network

All nodes are greedy, want the highest possible throughput

Is there a strategy, which all can agree on and which does not

encourage cheating, that maximizes total throughput in the

network?

Air-Traffic Control

Want to give flight references to n airplanes

Airplanes can not change heading or height momentarily; high

safety requirements

When giving references to one plane and calculating safety

margins, consider all other objects as hostile players trying to

do their best to collide with this plane

C. Tomlin, G. J. Pappas, and S. S. Sastry, "Conflict Resolution for

Air Traffic Management: A Case Study in Multi-Agent Hybrid

Systems," IEEE Trans. Automatic Control

Robust Control

The part G of the system is known and the part ∆ is unknown.

Is it possible to find a controller K that stabilizes the system

under all perturbations ∆ that satisfy pp∆(r)pp2 ≤ pprpp2?

K

G

∆

z
r

y
w
v

u

Robust Control (H∞ theory)

Assume u,v and y are related via

ẋ = Ax + B1u+ B2v

z = C1x

y = C2x + Dv

Then the question can be answered by solving a differential

game with two players

u the controller

v nature

and a performance criterium

min
u
max
v

∫ ∞

0

(z2 + u2 − v2)dt

Optimal Laziness

A worker, hired for a fixed wage normalized to 0, can either

shirk or work. The cost for him to work is w. The gain for his

boss if he works is �.

The boss can choose to inspect the worker at a cost of i. If the

worker is caught shirking he has to pay the fine f to the boss.

worker

boss

not inspect inspect

work -w,g -w,g-i

shirk 0,0 -f,f-i

How often should the worker shirk; how often should the boss

inspect?
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Our first zero-sum game

Player X should pay Player Y an amount selected below

Player X

Player Y

col 1 col 2 col3 col4

row 1 1 1 -5 2

row 2 2 4 1 5

row 3 3 9 2 3

Version 1: X chooses row first, then Y chooses column. What

choices should rational X and Y make?

Version 2: Y chooses column first, then X chooses row. What

choices should rational X and Y make?

If Axy gives the element on row x and col y, result is either

min
x
(max
y
Axy) or max

y
(min
x
Axy)

Which formula solves Version 1 and which Version 2?

Rock-Paper-scissor

Player X

Player Y

rock paper scissor

rock 0 1 -1

paper -1 0 1

scissor 1 -1 0

min
x
(max
y
Axy) = 1

max
y
(min
x
Axy) = −1

Two player zero sum games

One can easily prove (exercise) that

min
x
(max
y
Axy) ≥ max

y
(min
x
Axy)

This means that it is an advantage to know the other players

action before chosing own action.

What if neither player know’s the other’s action?

Lets solve an example before we describe the theory

The Lunch Problem

Two polite academics independently choose between two

nearby restaurants:

◮ QUICKY BAR where lunches take 20 minutes

◮ SLOWFOOD INN where lunch takes 50 minutes.

In case having chosen the same restaurant they spend lunch

together.

Academic Y likes the company of X and would like to spend the

maximum amount of lunch time together, whereas the opposite

applies to X, who would like to minimize lunch time with Y;

however being too polite to openly say so.

Find the optimal strategy for X, minimizing average lunch

time with Y !

Solution

Two player zero-sum game

Player X

Player Y

QUICKY SLOWFOOD

QUICKY 20 0

SLOWFOOD 0 50

By going to QUICKY all the time, 20 min can be guaranteed.

Any predictable deviations can be learned by Y and will then

increase common lunch time.

But can better than 20 min be achieved by X ?

Solution

What if X chooses QUICKY with probability q such that average

time spent at QUICKY and SLOWFOOD are equal, i.e.

20q = 50(1 − q) =[ q= 5/7

This gives in average 100/7 = 14.3 minutes spent at each

restaurant.

Common lunch time will now be in average 14.3 minutes

whatever strategy Y chooses.

This is the best strategy for X (assuming Y is rational).

Similarly, by using the same strategy, Y can always achieve

14.3 min whatever X does.

Two player zero sum games

Let the random strategies be described by the probability

vectors

x =


x1 . . . xn





T

and y=


y1 . . . yn





T

where x and y are probability vectors, i.e. xi ≥ 0 and
∑

i xi = 1.

Then the average outcome of the game is given by

xTAy
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Zero-sum games, main theorem

The fundamental result of zero sum games (von Neumann)

says that for any matrix A one has

min
x
(max
y
xTAy) = max

y
(min
x
xTAy)

This is defined as the value of the game described by the

matrix A

The value of the game can be calculated using Linear

Programming software, such as the command lp in matlab.

Useful Tool

http://www.hofstra.edu/~matscw/gametheory/games.html

has a Java-solver for zero-sum matrix games up to size 5$ 5.
(Note however that the row player is the maximizer there)

A Matlab-solver for zero-sum two player games

For Matlab ver 6.1, uses function

X=lp(f,A,b,VLB,VUB,X0,N)

which solves the linear programming problem:

min f’x subject to: Ax <= b, VLB <= x <= VUB

where the first N constraints defined

by A and b are equality constraints

function [value,x,y]=game(A)

[nx,ny]=size(A);

first we solve the primal for the minimizer x

bigA = [ones(1,nx) 0; A’ -ones(ny,1)];

bigb = [1;zeros(ny,1)];

f = [zeros(nx,1);1];

VLB = [zeros(nx,1);-inf];

VUB = [inf*ones(nx,1);inf];

sol = lp(f,bigA,bigb,VLB,VUB,[],1);

x=sol(1:nx,1);

valuex=sol(nx+1,1);

A Matlab-solver for zero-sum two player games

then we solve the dual for the maximizer y

bigA = [ones(1,ny) 0; -A ones(nx,1)];

bigb = [1;zeros(nx,1)];

f = [zeros(ny,1);-1];

VLB = [zeros(ny,1);-inf];

VUB = [inf*ones(ny,1);inf];

sol = lp(f,bigA,bigb,VLB,VUB,[],1);

y=sol(1:ny,1);

value=sol(ny+1,1);

if abs(value-valuex)>1e-3 error(’bad LP solution’); end
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Static N-player Games of Complete Information

The Normal form of such a game consists of

◮ A finite set N of players

◮ for each i ∈ N a set Si of strategies available for player i

◮ for each player i ∈ N a payoff function ui on S = $i∈NSi,
which the players try to maximize

Will only discuss Noncooperative version, i.e. no binding

agreements can be made between players (such as

exchanging payoff after the game).

Example Prisoner’s Dilemma

Provides insight into the difficulty in maintaining cooperation.

Don’t Confess Confess

Don’t Confess −1,−1 −10, 0

Confess 0,−10 −7,−7

The first number is the payoff for the row player, the second

number the column player. Both players now tries to maximize.

Dominating strategy is “Confess”

Pure Nash Equilibrium

Game (S1, . . . ,SN ,u1, . . . ,uN)

Notation: If s = (s1, s2, . . . , sN) is a vector of (pure) strategies

then (s−i, a) denotes the (pure) strategy obtained from s by

replacing si with a

The (pure) strategies s∗ = (s∗1, . . . s
∗
N) constitute a Pure Nash

Equilibrium if si is a best-response for s−i for all i, i.e.

ui(s
∗
−i, si) ≤ ui(s

∗
−i, s

∗
i ) for all si ∈ Si

“There should be no incitement for one-player deviations”

The only Nash equilibrium in the Prisoner’s dilemma is

(Confess,Confess)

No pure Nash equilibria in the rock-paper-scissor game
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Exercise

What are the Pure Nash equilibria of

L C R

T 0,4 4,0 5,3

M 4,0 0,4 5,3

B 3,5 3,5 6,6

Example – Bach or Stravinsky?

Player 1

Player 2

Bach Stravinsky

Bach 2,1 0,0

Stravinsky 0,0 1,2

What are the pure Nash equilibria?

Mixed Strategies and Expected Outcome

Game {S1, . . . ,SN ;u1, . . . ,uN}

Suppose Si = {si1, . . . , siK}. Then a mixed strategy for player

i is a probability distribution pi = (pi1, . . . , piK ), where

0 ≤ pik, k = 1, . . . , K , and pi1 + ⋅ ⋅ ⋅+ piK = 1.

The expected outcome Ui of a game given a certain set of

mixed strategies pi, i = 1, . . . ,N is given by the expected value

of ui: (here illustrated for the case N = 2)

Ui :=
∑

j

∑

k

p1 jp2kui(s1 j , s2k), i = 1, 2

Mixed Nash Equilibrium

The probability vectors p∗
1, . . . , p

∗
N constitute a mixed Nash

Equilibrium if for all players i we have

Ui(p
∗
−i, pi) ≤ Ui(p

∗
−i, p

∗
i )

In words: the mixed strategy p∗
i should be a best response to

the other players’ mixed strategies.

(This is true iff all pure strategies si in “the support” of p∗
i yield

the same, optimal, value ui(p∗
−i, si)).

Existence Result

Theorem [Nash] Every static N-player game with complete

information has at least one mixed Nash equilibrium

Proof: uses fixed point theorem in mathematics

J.F. Nash. Equilibrium Points in n-Person Games. Proc.

National Academy of Sciences of the USA, 36:48-49, 1950

There can be several Nash equilibria. Each giving different

outcome vectors. Think of them as corresponding to “local

minima” in optimization.

Monopoly/Oligopoly/Perfect Market

Let’s look on a market situation with “producers” and

“consumers”.

Monopoly - from Greek (mono) "alone/single" + (polein) "to sell"

Oligopoly - from Greek (oligoi) "few" + (polein) "to sell"

Oligopoly

Model assumptions

◮ Few producers, so actions of individual competitors must

be considered strategically

◮ Very many consumers (continuum); will model their

common behavior with a demand vs price curve

◮ High barriers for entrants, so one needs not consider new

firms arising the market

◮ every actor has full information of other players production

cost, the price-demand curve, etc

Example: Q4 2008, Verizon, AT&T, Sprint Nextel, and T-Mobile

together control 89% of the US cellular phone market.

Cournot Model of Duopoly

Let q1 and q2 denote the quantities produced by firms 1 and 2.

Will for simplicity assume linear price vs volume curve

Market clearing price P(q1, q2) = a− (q1 + q2)

Production cost Ci(qi) = cqi, i = 1, 2

Profit ui(q1, q2) = qi(a− q1 − q2) − cqi

Strategic choice: What quantities should be produced?

Note: There is a similar (Bertrand) model of Duopoly where the

strategic choices instead are the prices asked by the two firms.
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Monopoly/Duopoly/Perfect Market

Monopoly situation

Production q∗
m = (a− c)/2

Profit (a− c)2/4

Duopoly situation, unique Nash equilibrium

Production q∗
1 = q

∗
2 = (a− c)/3

Total Profit 2(a− c)2/9

In a “perfect market” (for the buyer), production increases until

price equals production cost for the least efficient producer (for

which profit can be very small)

Production
∑

q∗
i = (a− c)

Total Profit 0

Cournot Model of Duopoly

Note that both firms would prefer a situation where

q1 = q2 = qm/2, i.e. shared production at the monopoly rate.

This is however an unstable situation, since both firms then

would profit from deviating.

Would need binding agreements to be able to sustain the

monopoly situation.

Countries often has law agains such agreements (cartels).

Stackelberg Games

Two actions should be taken: first one by the leader, then one

by the follower. The game is then over.

Let B2(a1) be the follower’s best response to action a1.

Assume B2 always is a singleton. The stackelberg solution is

the one obtained when the leader solves

max
a1∈A1

u1(a1, B2(a1))

Stackelberg

If this optimization problem has a unique solution, a∗
1 then

(a∗
1, B2(a

∗
1))

is called the backward-induction outcome or the

Stackelberg solution of the game.

No “noncredible threats” are taken into account. When the

second stage arrives, player 2 will respond in a way that is

purely in his self-interest.

In zero-sum games it was better to be follower

Depending on the game, both roles can be favorable (exercise)

Stackelberg Model of Cournot Duopoly

First Firm 1 chooses quantity q1, then Firm 2 solves

max
q2
q2(a− q1 − q2 − c) [ B2(q1) = (a− q1 − c)/2

So Firm 1 solves

max
q1
q1(a− q1 − B2(q1) − c) [ q∗

1 =
a− c

2
, q∗

2 =
a− c

4

Result: Firm 1 is better off, Firm 2 is worse off, total profit is

lower.

Note that in nonzero-sum games a player can be worse of

having more information (or, more precisely, having it known to

the other players that he has more information)

Graphical Solution
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q1

q
2

Cournot game

Where are the Stackelberg solu-

tions? The Nash solution?

% plot Cournot game

a=2;c=1;

q1=0:0.01:1;q2=q1;

[Q1,Q2]=meshgrid(q1,q2);

u1=(a-Q1-Q2-c).*Q1;

u2=(a-Q1-Q2-c).*Q2;

R1=(a-q2-c)/2;

R2=(a-q1-c)/2;

l=0:0.025:0.4;

contour(Q1,Q2,u1,v,’b’);

hold on

contour(Q1,Q2,u2,v,’r’);

plot(q1,R2,’r’);

plot(R1,q2,’b’);

xlabel(’q1’);

ylabel(’q2’);

title(’Cournot game’)

Incomplete Information

Uncertainty about the other players payoff (their “type”)

Players’ types are stochastic variables, (“drawn by nature”)

Player i knows her own type and assigns probabilities

p(t−i p ti)

to all the others.

The probabilities p(t) are “common knowledge”.

Example Incomplete Information

Example: Cournot Duopoly Game, where production cost c for

firm 2 is either high c = cH or low c = cL. Assume c2 = cH with

probability θ

q∗
2(cH ) = arg maxq2(a− q

∗
1 − q2 − cH)q2

q∗
2(cL) = arg maxq2(a− q

∗
1 − q2 − cL)q2

Firm 1 anticipates q∗
2(cH ) with prob. θ and solves

q∗
1 = arg maxq1θ(a− q1 − q

∗
2(cH) − c)q1 + (1− θ)(a− q1 − q

∗
2(cL) − c)q1
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Cournot Duopoly under Asymmetric Information

Solution is

q∗
2(cH) =

a− 2cH + c

3
+
1− θ

6
(cH − cL)

q∗
2(cL) =

a− 2cL + c

3
−

θ

6
(cH − cL)

q∗
1 =

a− 2c+ θ cH + (1− θ )cL
3

Compare with solution in perfect information

q∗
i =
a− 2ci + cj

3

Cournot Duopoly

Best responses and Nash equilibrium when c1 = 1,
cH = cL = c2 = 0.75
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Cournot game

Compare with previuos figure where c1 = c2 = 1.

What has happened with the production rates? The price ?

Market-driven Systems - Game Theory

Contents

◮ Motivation - Some Game Theory Situations

◮ Theory of Two Player Zero-Sum Games

◮ Multiplayer Nash and Stackelberg Equilibria

◮ Mechanism Design

◮ Auctions

Implementation Theory – Mechanism Design

Rather than fix a game and look for the set of outcomes given

by some solution concept, one fixes a set of outcomes and look

for a game that yields that set of outcomes as equilibria.

Favorable outcomes could e.g. mean maximizing

◮ profit for seller or buyer

◮ society benifit

◮ market efficiency

◮ fairness

Also called “inverse game theory”

Example

You are an almighty judge who wants to assign a valuable

object to either player 1 or 2.

Valuations: The valuations vL < vH are known, but unknown

which player has the higher valuation.

Goal: Assign the object to the player with the highest valuation.

You have the right to administer fines, but you prefer an

outcome where no fines are used.

You must make your decision rules public in advance and then

follow them

Can this problem be solved ?

Solution

Ask player 1 of his evaluation:

◮ If vL assign object to player 2.

Otherwise ask player 2 of her evaluation.

◮ If vL assign to player 1,

◮ otherwise assign to player 2, but administer fines

(ǫ, (vH + vL)/2).

This will force truth-telling of both players (assuming of course

they are rational).

Example: Bilateral Trade

Individual S owns an indivisible object and considers to sell this

to prospective buyer B.

The object is worth s to S and b to B.

The valuations are private information. But known (after

normalization) to lie in [0, 1].

If the object is sold at price p then the utilities are changed with

◮ for S: p− s

◮ for B: b− p

What kind of mechanism could they use to trade?

Example: Bilateral Trade

Suppose the individuals drawn from population with valuations

randomly located with uniform density on the unit square

Both players have an incentive to lie about their type when the

price is negotiated.

Mechanism to optimize total utility: Is there a way to achieve

that the object is sold if b > s and not if b < s?
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Example: Bilateral Trade

One possibility is that S makes a take-it-or-leave it offer ps(s) to

B. Trade then occurs if b > ps(s)

Another that B makes such an offer pb(b) to S. Trade occurs if

s < pb(b)
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Example: Bilateral trade

A third possibility would be Double Auction: Both parties

announce a price and if pB > pS trade occurs (for example at

(pB + pS)/2).

The double auction has an affine Nash Equilibrium where

pS = max(2s/3+ 1/4, s)

pB = min(2b/3+ 1/12, b)

If s < 3/4 seller asks for more than true valuation s

If b > 1/4, buyer bids below true valuation b

Example: Bilateral trade
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TRADE HERE

Trade occurs when b > s+ 1/4 (dashed)

Example: Bilateral trade

None of the mechanisms suggested leads to trade for the entire

region s < b, hence they are not optimally socially efficient.

Does a more efficient mechanism exist?

Answer: No !

The impossibility was established by Laffont and Maskin 1979.

In fact, the double auction mechanism described above

maximises the potential total gains from trade. No better design

exists !

Valuations

Agents have different valuations

Private versus common values

Values often not perfectly known: secret / random /

interdependent

Risk-neutral vs risk-averse

Example of model: Buyer i gains vi − p if he wins object,

otherwise 0, where vi is his valuation and p the payment.

A risk-neutral buyer maximises Prob(win) ⋅ (vi − E(ppwin))

A risk-neutral seller maximizes E(p)

Revelation Principle

Theory shows that type-game design (under very general

assumptions) can be restricted to direct mechanisms:

1. The players simultaneously make (possibly dishonest)

claims about their types. Player i can claim to be any type τ i,

no matter what true type ti he is

2. Given claims τ1, . . . ,τN a result, a pdf over the set of

outcomes, is chosen

A direct mechanism in which truth-telling, τ i(ti) = ti, is a Nash

equilibrium is called incentive-compatible.

The Revelation Principle

Gibbard, Green and Laffont, Dasgupta, Myerson

Theorem Any (Bayesian) Nash Equilibrium of any (Bayesian)

type game can be represented by an incentive-compatible

mechanism.

Proof: Not very difficult

Makes it easier to construct game mechanisms, or prove that

they do no exists, since restriction can be made to mechanisms

where truth-telling is optimal.
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Auction Theory

Simple protocols for one-to-many negotiations

Here: One seller, many buyers, single item to be sold

Many versions

◮ English Ascending

◮ Dutch Descending

◮ First-price sealed-bid

◮ Second-price sealed-bid (Vickrey)

Valuations

Private: Inherent different between bidders, such as people

bidding for an item for personal use without thinking about

reselling

Common value: Item has a single true value, winning it would

be equally valuable for all, although how rewarding is partly

uncertain to bidders at auction time, such as bidding for oil or

spectrum rights.

During bidding, actors are trying to guess the true value with

different pieces of incomplete information. Might gain

information and revise estimate from

◮ how many remain in the bidding

◮ how aggressively others bid

Auction Design

Auction

◮ determines the buyer (highest valuer?)

◮ determines the price

◮ gets the item sold

Seller usually sets the rules, and can choose between different

mechanisms, either to maximize purchase prize, or optimize

more complicated function of outcome, such as social

effectivness, fairness etc (government)

◮ open or closed bids?

◮ revise bids?

◮ share any information affecting bidders values?

◮ etc

Open English

Best strategy for bidder i in private value case: Remain in the

bidding until the bid gets above your own, perfectly known,

valuation vi.

This is a dominant strategy, which disappears with sealed bids

or with more complicated common value information structures

In general the winner pays less than its worth to him.

Not good for auctioneer !

Note: No value for a bidder to know other bidders valuations !

Sealed first price

Requires more thought. Must balance

◮ risk of bidding much higher than 2nd highest

◮ risk of losing profitable opportunity buy bidding below at

least one bidder

◮ risk of bidding more than the item turns out to be worth (if

valuation unknown)

With one round sealed bid first price, the bidders should bid

lower than their true valuatoins (“shade their bids”), but how

much?

Note: If other players valuations were known, one would never

need considering bidding above 2nd highest valuation, so

valuation information can now help.

Shading in sealed-bid first price auctions

Example:

Assume a risk-neutral bidder BoB knows that everybody’s

evaluations lie in the interval[0, 1], with uniform independent

distributions. What should he bid in a first-price auction?

Answer:
n− 1

n
⋅ BoB’s own valuation

where n is the total number of bidders (everybody bidding so is

a Nash equilibrium)

Note: As the number of bidders becomes larger, the bids tend

closer to the true valuations.

The Winner’s Curse for uncertain valuations

Example: Five people are invited to bid for a suitcase of money.

Cant look inside the suitcase, but each given a private estimate

of X , the actual amount

It is publicly known that estimates are

X − 2, X − 1, X , X + 1, X + 2

What do you bid if you get an estimate of 37?

The Winner’s Curse for uncertain valuations

If you knew all five estimates, you could infer the value. But you

only know that X could be between 35 and 39.

You know that 37 is on average correct, so you might e.g.

choose to bid 36 “to earn 1 in average if you win”. This

reasoning is however incorrect:

If all bid their estimates minus 1, the winner is the person with

the highest estimate X + 2, who will bid X + 1, to make a loss

of 1: the Winner’s Curse

Expect that you overestimated the (common) value when you

win the auction.

Dont use the mean E(value), use E(value p auction is won)
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Sealed 2nd price

BoB, an aged and wise parent, wishes to sell his used car to

one of his (perfectly rational) many children.

His only concern is to make sure the child valuing it the most

gets it, the price is secondary to him. But the children might be

dishonest, each having an incentive to exaggerate the car’s

worth to him/her.

BoB would prefer that no information such as valuations or bids

be exchanged between the children.

Can this be solved?

Sealed 2nd price

BoB devises the following scheme:

◮ asks each child to tell him confidentially (sealed-bid) their

value vi, (value is 0 if child doesnt get the car, dont care

who gets it then).

◮ promises to give the car to the one with the highest value

◮ that person must pay the 2nd highest bidder’s valuation

Will this scheme (Vickery), make honesty the best strategy?

Vickery

Answer: Yes, honesty, i.e. bidding one’s true valuation, will

be a weakly dominant strategy to all other strategies:

Overbidding: No improvement, the only times it changes the

outcome, you lose out (think)

Underbidding: No improvement, the only time it changes things,

you lose out (dito)

Outcome will be the same as in English auction. But achieved

in one round, with sealed bids !

Comparison

Natural question from seller’s point of view: Which auction type

gives the highest revenue?

Open, sealed-bid 1st price, sealed-bid 2nd price?

Example: As above with n bidders with evaluations randomly

drawn uniform in [0, 1]. Auction outcome is expected value of

open: 2nd highest valuation

Sealded bid 1st price: n−1
n ⋅ highest valuation (shading)

Sealed bid 2nd price: 2nd highest valuation (truth-telling)

All of these have the same expected value: n−1
n+1 (exercise)

What a coincidence! Or . . .

The Revenue Equivalence Theorem

No it wasn’t! The most fundamental result in auction theory is

(Myerson 1981, Riley and Samuelsson 1981):

Revenue Equivalence Theorem

Assume each of a given number of risk-neutral potential buyers

have privately known valuations v in [v,v] indepently drawn

from a common strictly inreasing atom-less distribution ( i.e. pdf

has 0 < f (v) < ∞).

Then any auction mechanism in which

◮ the object goes to the buyer with highest valuation

◮ a bidder with valuation v gets zero expected surplus.

yields the same expected revenue for the auctioneer

Proof Sketch

Let Si(v) be the expected surplus bidder i obtains in equilibrium

from participating in the auction. Let Pi(v) be her probability of

receiving the object in equilibrium.

Si(v) = vPi(v) − E(pay(v))

Since for all ṽ

Si(v) ≥ Si(ṽ) + (v− ṽ)Pi(ṽ)

(in equilibrium: using strategy for ṽ instead of v does not

improve outcome)

Using this with ṽ slightly below and above v and using that Pi(v)
is continuous, one can deduce that

dSi

dv
= Pi(v)

Proof Sketch

This gives

Si(v) = Si(v) +

∫ v

v

Pi(w)dw

Any two mechanisms with the same “not-interested” surpluses

Si(v) and the same Pi(⋅), as will be the case when the object is

given to the highest valuation, will hence lead to the same

surplus versus valuation functions, Si(v).

Hence also, from

Si(v) = vPi(v) − E(pay(v)),

to the same expected pay(v). QED.

Exceptions to Revenue-equivalence

Note that the Revenue-equivalence theorem applies to a rather

idealised situation. There are many exceptions:

◮ For valuations that are not independent

◮ Collusion (group of bidders cooperate to keep price down):

none of the schemes above are collusion proof

◮ Goods might be divisable, e.g. contain several parts where

valuations on parts differ between bidders.

◮ . . .
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Additional Game Theory Reading

Control department home page (Education - Doctorate)

contains a PhD course in Game Theory

Wikipedia:

◮ Game Theory

◮ Braess’ paradox:

◮ Oligopoly

◮ Cournot

◮ Auction Theory

◮ Mechanism Design

Mechanism Design Theory - Scientific background on

Economic Prize 2007, Royal Swedish Academy of Sciences

(Google it).

Additional Game Theory Reading

Osborne-Rubinstein, A Course in Game Theory


