
Market Driven Systems (FRTN20)

Game Theory. Exercise 9

Last updated: May 2010

1. Let x be the number of cars going from start toA and y the number of cars going
directly fromA to end. Consequently,x− y cars use the new road. Total travel time is

J(x,y) =
x2

100
+45(4000− x)+45y+

(4000− y)2

100
.

Minimizing with respect tox andy givesx∗ = 2250 andy∗ = 1750. The new travel
time per car is hence

1
4000

J(x∗,y∗)≈ 64.7,

i.e. a gain by 18 s, compared with the situation before the newroad and by 15.3 min-
utes compared to the situation with the road, but without centralized planning.

Comment: Improving a road, or building a new road, can never increase total travel
time if centralized planning is used. With decentralized planning it surpisingly can.

2. If we use the fact that
Axy ≥ min

x
Axy, ∀x,y

and maximize both sides with respect toy we get

max
y

Axy ≥ max
y

min
x

Axy, ∀x.

Since this holds for allx, it also holds for thex minimizing the left hand side, so

min
x

max
y

Axy ≥ max
y

min
x

Axy.

3. Let p :=P(X = black). The game fromY ’s perspective, knowingX ’s strategy becomes

Y
red black

-9(1-p)+5p = 14p-9 5(1-p)-p = -6p+5

This means thatY can choose between the two lines in the figure, and will choosethe
upper one. The optimal choice for the minimizerX is hence to use the valuep∗ = 0.7,
since this minimizes the value of the upper line. This will give an outcome of 0.8, and
the game hence favors the column player “I”.

Since we know minmax= maxmin the outcome will be the same analysed fromXs
perspective, knowingY strategy. But to verify this letq = P(Y = black). This reduces
the game to

X
red -9(1-q)+5q = 14q-9

black 5(1-q)-q = -6q+5

with optimal solution at 14q∗−9=−6q∗+5⇒ q∗ = 0.7, also giving outcome 0.8.
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4. The maximization overy is equivalent to selecting the maximal element in the vector
xT A. The second rowxT A ≤ α 11T upper bounds this maximal element byα . The
boundα is minimized overx (first row). The last two lines constrainx to be a valid
probability vector (positive elements, which sum up to 1).

5. Denote the strategiesr := p1(Bach) andq = p2(Bach).

For p2(Bach)< 1/3, player 1 prefers Stravinsky:r = 0.
For p2(Bach) = 1/3, player 1 is indifferent:r = [0,1].
For p2(Bach)> 1/3, player 1 prefers Bach:r = 1

The best response functionsr∗ = B1(q) andq∗ = B2(r) are shown in the figure. The
intersection(s) are the Nash equilibrium.

B1(q)

B2(r)

q = p2(Bach)

r = p1(Bach)

2/3

1/3

1

1

6.

a. Bach and Stravinsky (cf. lecture notes).

Player 1

Player 2
Bach Stravinsky

Bach 2,1 0,0

Stravinsky 0,0 1,2

b. Rock-paper-scissor (cf. the lecture notes).

Player 1

Player 2
rock paper scissor

rock 0 1 -1

paper -1 0 1

scissor 1 -1 0

c. Consider the game below.

Player 1

Player 2
l r

u 0,0 3,-1

d 0,0 1,1

Assume first that 1 starts. Choosingu will result in (0,0), while choosingd will result
in (1,1) (given that 2 is rational). Hence, if 1 starts, the outcome will be (1,1). If,
instead, 2 starts, the optimal strategies will be(l,u) or (l,d), both resulting in the
outcome(0,0).

Consequently, both 1 and 2 benefit from 1 being the leader.
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7. Denote byp = P(worker shirking) andq = P(boss inspecting). For the worker, the
game then reduces to

worker
work -w

shirk -fq

Similarly, for the boss the game reduces to

boss
not inspect inspect

g(1-p) g(1-p)+fp-i

The corresponding best response curves are shown in the figure below.

p

q

i
f

w
f

Bboss(p)

Bworker(q)

0
1

1

The Nash equilibrium occurs in the intersection

(p∗,q∗) = (
i
f
,
w
f
).

For the game instancew= 1, f = 5, i= 3,g= 1 this corresponds to the worker working
3/5 of the time and the boss inspecting 1/5 of the time. The expected outcomes are
then

Uworker=−w =−1

Uboss= g(1− p∗) =
2
5
.

8.

a. The expected outcome for the boss is now always decreased by inspecting, in fact

Uboss(p,q) = g(1− p)(1−q)+ (g− i)(1− p)q− ipq =−iq−gp+g

which is maximized byq∗ = 0. The situation for the worker is unchanged, and from
the best response curve we see that his best response will bep∗ = 1, i.e. shirking.
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b. The boss declares his strategy, defined byq, whereupon the worker choosesp. The
Stackelberg strategy of the boss is then

q∗ = argmax
q

Uboss(q,Bworker(q)) = argmax
q

(g−gBworker(q)− iq).

From the figure we can see that the best response from the worker is

p∗ = Bworker(q) =











1 , q < w
f

[0,1] , q = w
f

0 , q > w
f

The best response function forq=w/ f is the entire interval, which complicates things
somewhat. However by using anyq > w/ f one will achieve the responsep∗ = 0. This
means that the any inspection rate abovew/ f will induce work being the optimal
response.

The outcome for the boss will then beg− iq which can be made arbitrarly close to

g− iq∗ = g− iw/ f > 0

Due to the fact that the boss needs to declare his inspection rate in advance, an equilib-
rium has arisen in (work, inspectw/ f ). Note that this situation is more advantageous
for the boss than the outcome 0.

9.

a. The probability density function of each random variableXi ∈ X = {X1, . . . ,Xn} is
fXi(x) = 1 and their distribution functions are given by

FXi(x) = Prob(Xi ≤ x) =
∫ x

0
fXi(t)dt = x.

LetYk be the kth largest element inX . I.e.,Y1 is the largest, and so on. The distribution
function forY1 is easily calculated using the observeration thatY1 < x means that all
n variables are belowx. The probability for this is

FY1(x) =
n

∏
i=1

FXi(x) = xn,

and the density function for theY1 can then be calculated fromfY1 =
dFY1
dx = nxn−1.

The distribution function forYk is

FYk(x) = Prob(Yk ≤ x) = P(at most k-1 values are abovex)

Splitting the event “at most k values above x” into the disjoint events “at most k-1
values above x ” and “exactly k values above x” we see that

FYk+1(x) = FYk(x)+

(

n
k

)

xn−k(1− x)k.

This recursion gives all distribution functions and density functions, for example

fY2 =
dFY2

dx
=

d
dx

(xn +nxn−1(1− x)) = n(n−1)xn−2(1− x)
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b. We seek

mk = E(YK) =

∫ 1

0
x fYk(x)dx =

∫ 1

0
x

d
dx

FYk(x)dx

where the last equaility is a consequence of the fundamentaltheorem of calculus.
Combining this with the recursive expression forYk+1 yields

mk+1 = mk +

(

n
k

)

∫ 1

0
x

d
dx

(

xn−k(1− x)k
)

dx

where (by partial integration)

∫ 1

0
x

d
dx

(

xn−k(1− x)k
)

dx =−
k!(n− k)!
(n+1)!

.

Hence

mk+1 = mk −
n!

k!(n− k)!
·

k!(n− k)!
(n+1)!

= mk −
1

n+1
.

It is straight forward to compute

m1 =
∫ 1

0
x

d
dx

xndx = n
∫ 1

0
xndx =

n
n+1

[xn+1]10 =
n

n+1

which yields the general result

mk = 1−
k

n+1
.

10. To confirm that it is a Nash equilibrium, we assume everyone isbidding (n− 1)/n
times their valuation and show that it is not beneficial for a single bidder to deviate
from this strategy.

The revenue of a bidder with valuationV and bidX is

U(X) = (V −X) ·P(X > all other bids) = (V −X) ·P

(

n
n−1

X > all other valuations

)

= (V −X)

(

n
n−1

X

)n−1

, if X < (n−1)/n, else(V −X)

The function is maximized when

0=
dU(X∗)

dX
⇒ X∗ =

n−1
n

V

which shows that the the claim in the problem text is true.

From the definition it is straight forward to find the probability of winning the auction

Pi(Vi) =V n−1
i .

A result from the lecture gives the expected payoffSi through

dSi

dVi
=V n

i ⇒ Si(Vi) =
V n

i

n
.
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