
Lecture 5

Linear Programming and
Model Predictive Control

Linear programming and convex optimization are widely used tools in con-

trol engineering and production planning. In lecture 7 and 8 we will learn

some of the basic ideas, mainly through the study of examples. First we

will recall how linear programming is used for production planning in a

static situation, then we will apply the same idea in presence of dynamics.

Finally, Model Predictive Control is introduced as a method to control the

dynamic effects.

A linear programming (LP) problem is an optimization problem of the
following form:

Minimize cT x

subject to Ax 5 b

Hx = �

Here b, c,� and x are vectors, while A and G are matrices. The product
cT x is a scalar number and the inequality Ax 5 b means that every entry
of the vector b is at least as big as the corresponding entry in Ax.

Example 1 The linear programming problem

Minimize −x1 − x2

subject to x1 + 2x2 ≤ 1

2x1 + x2 ≤ 1

x1 ≥ 0

x2 ≥ 0

has the equivalent matrix formulation

Minimize (−1 −1 ) x

subject to
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Lecture 5. Linear Programming and Model Predictive Control
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Figure 5.1 The production volumes x1 for garden furniture and x2 for sleds

independently satisfy x1 ≥ 0 and x2 ≥ 0. The sawing capacity constraint is

7x1 + 10x2 ≤ 100 while the assembling capacity constraint is 16x1 + 12x2 ≤ 135

We will now use a more extensive example to explain the use of linear

programming in production planning.

Example 2 Consider a production facility where two products are pro-

duced, garden furniture and sleds. The production volume x1 for garden

furniture and the volume x2 for sleds, sold at the prices p1 and p2 respec-

tively, generates the total income p1x1 + p2x2.

The production of both products involves two main steps sawing and

assembling. Limitations in the sawing capacity gives rise to the constraint

7x1 + 10x2 ≤ 100 (Sawing)

while the corresponding constraint in assembling capacity is

16x1 + 12x2 ≤ 135 (Assembling)

Given the prices p1 and p2, an optimal production allocation can be found

by solving the LP problem

Maximize p1x1 + p2x2

subject to 7x1 + 10x2 ≤ 100

16x1 + 12x2 ≤ 135

x1 ≥ 0

x2 ≥ 0
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Figure 5.2 Three different market price cases are considered. The first (p1 =
20, p2 = 18) results in an optimal allocation where both sawing and assembling
capacity are fully utilized. For the second (p1 = 7, p2 = 18), the optimal allocation
is to only produce sleds, leaving some assembling capacity unused, while for the

third (p1 = 20, p2 = 10), the optimal allocation is to only produce garden furniture.

Case 1, p1 = 20, p2 = 18: In this case, sleds and furniture have a
similar price, so optimality is achieved for the allocation where both sawing

and assembling capacity are fully utilized.

Case 2, p1 = 7, p2 = 18: When sleds can be sold at considerably
higher price than garden furniture, the optimal production allocation is to

only produce sleds, in spite of the fact that the assembling capacity then

becomes underutilized.

Case 3, p1 = 20, p2 = 10:When garden furniture is considerably higher
valued, the optimal production allocation is to only produce furniture, in

spite of the fact that the sawing capacity becomes underutilized.

Taking into account that prices varies with the season, we also get an

optimal production allocation that varies over the year. See Figure 5.3.
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Figure 5.3 The prices of sleds and garden furniture vary over the year as shown

in the left diagram. As a result, also the optimal product allocation changes. The

right plot shows how the solution to the linear program varies. In the summer, only

garden furniture is produced and in the winter only sleds. Both in the spring and

in the autumn, there is a period when both items are produced in parallel.
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Lecture 5. Linear Programming and Model Predictive Control

So far, we were assuming that production allocations can be changed

instantaneously and that transition costs can be neglected. We will now

extend the study to take transition dynamics into account, first for our

example, then for a more general case.

Example 3 Suppose that we want to extend the production capacity by

hiring extra personnel. The extra capacity will not be fully available from

day one. Instead we assume the following transition dynamics:

x3(t+ 1) = 0.7x3(t) + 30u3(t) (learning dynamics for sawing)

x4(t+ 1) = 0.7x4(t) + 40.5u4(t) (learning dynamics for assembling)

where u3 ∈ [0, 1], u4 ∈ [0, 1] is the fraction of full time employment. Start-
ing from x3(0) = 0, this means that the extra sawing capacity with one
additional full-time employee becomes

x3(1) = 30 on day t = 0

x3(3) = (1+ 0.7+ 0.7
2)30 = 65.7 on day t = 3

lim
t→∞
x3(t) = (1+ 0.7+ 0.7

2 + . . .)30 =
30

1− 0.7
= 100 asymptotically

This gives the following capacity increase for the production facility:

7x1(t) + 10x2(t) ≤ 100+ x3(t) (Sawing with extra personnel)

16x1(t) + 12x2(t) ≤ 135+ x4(t) (Assembling with extra personnel)

Suppose that the weekly cost of hiring personnel is p3 = 100 for sawing
and p4 = 100 for assembly. Then maximization of the total profit over one
year gives rise to the following variations in production allocations:
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Figure 5.4 The plots indicate that extra personnel for assembly is generally more

profitable than for sawing, but only in the summer. This is due to a combination

of two facts, the high number 40.5 in the learning dynamics for assembly and the

access capacity of sawing that was previously left unused in the summer, but which

can now be exploited to build more garden furniture.
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Model Predictive Control

The plots have been computed by solving the following linear program:

max
∑51
t=0 [p1(t)x1(t) + p2(t)x2(t) − p3u3(t) − p4u4(t)]

subject to 7x1(t) + 10x2(t) ≤ 100+ x3(t)

16x1(t) + 12x2(t) ≤ 135+ x4(t)

x3(t+ 1) = 0.7x3(t) + 30u3(t)

x4(t+ 1) = 0.7x4(t) + 40.5u4(t) t = 0, ..., 52

0 ≤ u3(t) ≤ 1

0 ≤ u4(t) ≤ 1

x3(0) = x
0
3 , x4(0) = x

0
4

2

The example above is a special case of the following more general linear

program:

Maximize
∑N
t=1

[

p(t)T x(t) − q(t)Tu(t)
]

subject to x(t+ 1) = Ax(t) + Bu(t), x(0) = x0

Cx(t) 5 d

0 5 u 5 1

It should be noted that x can be eliminated from the equations using the

relationship

x(t) = Atx0 +
t−1
∑

t=0

At−s−1Bu(s)

Then we get a linear program in the variables u(0), . . . ,u(t− 1) only.

Model Predictive Control

The discussion in the previous section was based on the idealized assump-

tion that prices as well as learning models are known in advance. Such

planning can be very useful, but it is often highly desirable to update the

plans when new data becomes available. Model Predictive Control (MPC)

is a technique developed for this purpose. The main idea will be described

for optimal control problems of the following form:

Minimize

N
∑

t=0

{(x(t),u(t))

subject to x(t+ 1) = f (x(t),u(t)) , x(0) = x0

x(t) ∈ X , u(t) ∈ U

for t = 0, . . . ,N

Comparing to our previous example, the state constraint x(t) ∈ X would
correspond to constraints on sawing and assembly capacity. The functions

{ and f may in general be nonlinear, but this could make the optimization
more difficult.
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Lecture 5. Linear Programming and Model Predictive Control

The Model Predictive Control scheme is defined by as follows:

1. At time t, collect current values of all state variables x(t).

2. Based on the collected measurements and the given model for dynam-

ics, solve the optimization problem to determine the decision variables

u(t, t),u(t, t+1), . . . ,u(t, t+N) for the N+1 upcoming time instances
t, t+ 1, . . . , t+ N.

3. Implement u(t, t).

4. Wait one time step before updating t and returning to 1.

Notice that u(t, t+1), . . . ,u(t, t+N) are predictions of future inputs based on
information available at time t. Only u(t, t) is implemented. The remaining
predictions are discarded when new measurements are collected at time

t+ 1.

Example 4 For the same example as before, the MPC iteration looks as

follows:

1. In week t, get data for extra employment capacity (x3(t), x4(t)) and
price predictions (p1, p2) for the coming weeks

2. Solve the linear programming problem in the end of Example 3 based

on the collected data to get u3(t, t), . . . ,u4(t, t+ N).

3. Hire extra personnel for the following week according to the obtained

solution (u3(t, t),u4(t, t)).

4. In the end of next week repeat the procedure, i.e. go to 1.

We will now apply this procedure for the case that the learning dynamics

have the form

x3(t+ 1) = 0.75x3(t) + 30u3(t) + v3(t)

x4(t+ 1) = 0.65x4(t) + 40.5u4(t) + v4(t)

where v3(t) and v4(t) are uniformly distributed random numbers in the
intervals [−0.3x3(t), 0] and [−0.3x4(t), 0] respectively. The product prices
p1(t) and p2(t) are additively affected by uniformly distributed random
noise in [−1, 1]. See Figure 5.5 below.
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Figure 5.5 The MPC scheme (left) for this example gives 8.6% better yield than
dynamic production planning based on the nominal model (right)!
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Model Predictive Control

As illustrated in the example, the use of Model Predictive Control can

lead to significant improvements. Some of the benefits are

• Good constraint handling

• Good support for intuition

• Complex systems and large data sets can be handled

However, there are also difficulties:

• Calculation times may be large

• System model needed

• State measurements needed. (Estimates can be used, but the effects
of poor estimates are hard to analyze.)

In spite of the difficulties, the MPC technique is continuously spreading

into new application domains.
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