
Department of

AUTOMATIC CONTROL

FRTN15 Predictive Control

Exam 2016-05-11, 14.00–19.00

General Instructions
This is an open book exam. You may use any book you want, including the slides
from the lecture, but no exercises, exams, or solution manuals are allowed. Solutions
and answers to the problems should be well motivated. The exam consists of 6
problems. The credit for each problem is indicated in the problem. The total number
of credits is 25 points. Preliminary grade limits:

• Grade 3: 12-16 points

• Grade 4: 17-21 points

• Grade 5: 22-25 points

Results
The results of the exam will be presented in LADOK, at the latest May 25.
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1.

a. Give an intuitive explanation for what a Lyapunov function is. Why can it be
used to determine the stability of an arbitrary system? (1 p)

b. Show that a damped pendulum with length l, mass m and damping coefficient
k,

ẋ1 = x2

ẋ2 = −g
l

sin(x1)− k

m
x2,

is stable at the origin using the Lyapunov canditate

V (x) = g

l
(1− cos(x1)) + 1

2x
2
2.

Also, give a simple explanation for what the Lyapunov function describes.
(2 p)

Solution

a. A Lyapunov function V (x) describes a quantity in the system that is decreasing
with time. We can think of it as an energy function, where the energy is a
quantity present in the system that, if it decreases with time, ensures the
stability of the system. If V (x, u) contains a controlled variable (control input)
u, we can construct a control law that modifies V (x, u) such that it fulfills the
requirements of a Lyapunov function. The formal requirements on a Lyapunov
function are

• It increases radially with the state vector, i.e. when the state vector is
large, the Lyapunov function is large.
• The time derivative V̇ is non-positive, i.e. the function does not grow over

time.
• It is zero at the origin.

b. The Lyapunov-function time derivative is given by

V̇ = g

l
ẋ1 sin(x1) + x2ẋ2 = g

l
x2 sin(x1) + x2(−g

l
sin(x1)− k

m
x2

2) = − k
m
x2

2

which is decreasing for all points except along the x1 axis, however, for these
points where x1 6= 0 (the pendulum end positions), the pendulum will gain ve-
locity which again decreases V until V = 0 at the origin. The chosen Lyapunov
function V is a weighted sum of the potential and the kinetic energy of the
system.

2. Consider the system
y(k) = ay(k − 1) + u(k − 1)

where u is an unknown zero-mean white-noise Gaussian process with variance
σ2

u and a is a constant unknown parameter.
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a. Find the recursive least-squares algorithm for estimation of the constant pa-
rameter a. Compute the steady-state variance of the parameter-estimate error.

(2 p)

b. Now assume that a is time-varying according to

a(k + 1) = a(k) + v(k)

where v(k) is a zero-mean, white-noise Gaussian process with variance σ2
v .

Find the Kalman-filter update equations for the estimation of a. Compute the
steady-state variance of the parameter-estimate error. (2 p)

c. State two differences between the RLS and the Kalman-filter approach. (1 p)

Solution

a. The RLS update equations are given by

â(k) = â(k − 1) + P (k − 1)φ(k − 1)e(k − 1)
e(k) = y(k)− φT (k)â(k − 1)

P (k) = P (k − 1)− P (k − 1)φ(k)φ(k)TP (k − 1)
1 + φTP (k − 1)φ(k)

where φ(k) = y(k − 1).

After N samples, the parameter-estimate error â−a is given by the expression

â(k)− a = (ΦT
N ΦN )−1ΦT

Nu(k)

where the regressor matrix ΦN is given by

ΦT
N = ( y(1) · · · y(N) )T .

The parameter-estimate error variance is given by

E{(â− a(k))2} = E{((ΦT
N ΦN )−1u(k))2} = E{ u(k)2∑N

k=1 y(k)2
},

and with a first order approximation

E{ u(k)2∑N
k=1 y(k)2

} ≈ E{u(k)2}
E{
∑N

k=1 y(k)2}
= σ2

u

NE{y(k)2}
,

furthermore, the variance of y, E{y(k)2} is computed to

E{y(k)2} = σ2
u

1− a2

from the expression
y(k) = ay(k − 1) + u(k − 1),

which finally gives the error variance

E{(â− a)2} = 1− a2

N
.
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b. For the Kalman filter, the update equations are given by

â(k) = â(k − 1) +K(k)e(k)

K(k) = P (k − 1)φ(k)
σ2

u + φ(k)TP (k − 1)φ(k)
e(k) = y(k)− φT (k)â(k − 1)

P (k) = P (k − 1)− P (k − 1)φ(k)φ(k)TP (k − 1)
σ2

u + φTP (k − 1)φ(k) + σ2
v

and once again, φ(k) = y(k − 1).

In steady state, the stationary-error variance is found by assuming Pk = Pk−1
in the final Kalman-filter update equation. This gives that

P∞ = σ2
v/2 +

√
(σ2

v/2)2 + σ2
v(1− a2)

when inserting the expectation of the regressor squared

E{φ(k)2} = E{y(k − 1)2} = σ2
u

1− a2 .

c. Two differences between the RLS and the Kalman-filter approach besides that
a is assumed to be time-varying in the Kalman filter are that the dynamics of
P changes from an exponential to a linear growth rate in the case where φk = 0
and that the parameter-error variance does not approach zero as k →∞.

3. A robot joint with dynamic model

Gc(q) = k(q + 1)
(q − 1)2

should be controlled to follow a repetitive reference signal yd(t).

a. Find a stable heuristic ILC design L(q) with input-update equation

uk+1(t) = uk(t) + L(q)ek(t).

(2 p)

b. In order to improve robustness it is common to introduce a low-pass filter Q(q)
so that

uk+1(t) = Q(q)(uk(t) + L(q)ek(t))

what is the theoretical drawback with this approach? (1 p)

Solution

a. The system is stable for

L(q) = kL
(q − 1)2

(q + 1)
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if
|1−Gc(eiωh)L(eiωh)| < 1, ω ∈

[
− π, π

]
, ⇒

|1− kkL| < 1

which holds if
kLk > 0.

and
2
k
> kL

b. For Q(q) 6= 1 the error does not approach zero asymptotically, see page 218 in
the lecture notes.

4.

a. Briefly explain the principle of Model Predictive Control. Use a sketch or a
diagram to illustrate the terms prediction horizon and control horizon. (1 p)

b. Present a simple "rule-of-thumb" for how many samples the prediction and
control horizons should be chosen, why can’t they always be chosen arbitrarily
long? (1 p)

c. A model predictive controller is designed for control of the double integrator

G(s) = 1/s2.

In Fig. 1 we see four different closed-loop set-point responses. Match the re-
sponses, A-D, in Fig. 1 with the four different MPC configurations I-IV below,
where Q is the tracking-error cost, R is the input-rate cost, u is the system
input and Hp and Hc are the prediction and control horizons in number of
samples (h = 0.1s). Motivate you answers. (3 p)

I II III IV
Q = 1 Q = 1 Q = 1 Q = 1
R = 0.1 R = 1 R = 0.1 R = 0.1
|u| ≤ 1 |u| ≤ 1 |u| ≤ 1.5 |u| ≤ 1
Hp = 1 Hp = 10 Hp = 10 Hp = 10
Hc = 1 Hc = 3 Hc = 3 Hc = 3

Solution

a. The receding horizon principle is illustrated in Fig. 2. Given the current state
measurement (or estimate), a sequence of future control inputs are determined
by minimizing a cost function penalizing predicted inputs and outputs of the
system. The first input is implemented, and the optimization is repeated at the
next sample.

5



time [s]

0 1 2 3 4 5
-2

-1

0

1

2
A Output

Input

Set Point

time [s]

0 1 2 3 4 5
-2

-1

0

1

2
B

time [s]

0 1 2 3 4 5
-2

-1

0

1

2
C

time [s]

0 1 2 3 4 5
-2

-1

0

1

2
D

Figure 1 MPC set-point step responses.
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Figure 2 Illustration of the receding horizon principle used in Model Predictive Control.

b. One would like the MPC to overlook the slowest closed-loop dynamics of the
system, so if the desired rise-time of the closed-loop is Tc, and the sampling
interval h is set according to a common rule of thumb h = Tc/10, the prediction
horizon should be at least 10 samples.

In MPC, stability can usually be ensured by making the prediction horizon
long enough, or even infinite, assuming that the model is correct, the cost
matrices are well tuned and input constraints are not too restrictive. However,
when making the prediction horizon longer for a given sampling period, the
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number of unknowns in optimization problem to be solved each sample also
grows, which means that computational times might become an issue so that
the controller does not have time to solve the optimization problem between
samples.

c. We can directly see that response C is the only case where |u| ≥ 1 which
makes it belong to setting III, then, we have two cases with similar settings
apart from different input-variation penalty R, increasing R from 0.1 to 1
should give smoother control action with slower step response, this gives that
A matches IV and B matches II. Finally, the seemingly unstable behaviour in
D comes from setting I with too short prediction and control horizon.

5.

a. Consider the discrete-time model

G0(z) = b1z + b2
z2 + a1z + a2

.

Design a minimum-degree model-reference controller (MRC) with zero cancel-
lation, and the reference model

Gm(z) = bm
1 z + bm

2
z2 + am

1 z + am
2
.

(2 p)

b. Now, lets assume that b1 = 1 and b2 = −2, why will this cause problems with
the approach in a)? How can this problem be solved? (1 p)

c. Describe how the MRC framework could be augmented for the case when the
model parameters of G0 are slowly time varying. (1 p)

Solution

a. This solution follows the procedure found in chapter 9 in the lecture notes,
pages 147-152.
We seek a minimum order ARMAX controller on the form

R(z)uk = −S(z)yk + T (z)uc
k,

we start by introducing the polynomials

A(z) = z2 + a1z + a2

B(z) = b0z + b1 = B−B+,

where we choose B− = b1 and B+ = z + b2/b1. Furthermore

Am(z) = z2 + am
1 z + am

2

Bm(z) = bm
0 z + bm

1 = B−Bm
1 , ⇒ Bm

1 = bm
0 z + bm

1
b0

.
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Compatibility conditions give that deg(Ao) = deg(A)− deg(B)− 1 = 0, which
gives that Ao = 1. The Diophantine equation to solve is thus given by

(z2 + a1z + a2)× 1 + b1(s0 + s1) = z2 + am
1 z + am

2

where we see that R1 = 1. This yields the following solution for S

s0 = am
1 − a1
b1

s1 = am
2 − a2
b1

T is then chosen as T = AoB
1
m = (bm

0 z + bm
1 )/(b0), and finally, R is given by

R = R1B
+ = B+ = z + b2/b1.

b. With b1 = 1 and b2 = −2 the system G0 is non-minimum phase which means
that zero cancellation gives an unstable controller, a remedy to this problem
is to adjust so that B− = z + b2/b1 and B+ = b1 in order to avoid zero
cancellation.

c. The time-varying parameters of G0 could be estimated using the RLS algo-
rithm with a forgetting factor, which makes the RLS pay less attention to old
data. The estimated parameters can then be used to compute the controller
parameters, the controller would now be of MRAC type.

6.

a. With the system

y(k + 1) = ay(k) + ω(k + 1) + cω(k),

the one-step-ahead predictor

ŷ(k + 1|k) = ay(k)

is suggested, compute the prediction error variance. Describe briefly why min-
imum variance is not obtained by the predictor. (2 p)

b. Design a one-step-ahead minimum variance predictor and compute the corre-
sponding prediction-error variance. (1 p)

c. For the system

y(k + 1) = ay(k) + bu(k) + ω(k + 1) + cω(k).

a controller was found by means of pole placement at the origin

u(k) = −a
b
y(k)

yielding the closed-loop output variance

E{y(k)2} = (1 + c2)σ2
ω,

find a causal controller that achieves a lower output variance. (1 p)
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Solution

a. With the suggested predictor,

E{(y(k + 1)− ŷ(k + 1|k))2} = E{(ω(k + 1) + cω(k))2} = (1 + c2)σ2
ω.

The next step output y(k+ 1) is also depending on old noise input ω(k) which
correlates with the known measurement y(k), this is not taken into account for
when using the suggested predictor.

b. The system could be written as

y(k + 1) = F ∗(z−1)ω(k + 1) + G∗(z−1)
C∗(z−1)y(k)

where G and F are computed from the Diophantine equation

(1 + cz−1) = (1− az−1)f0 + z−1g0.

This gives f0 = 1, g0 = a+ c and the minimum-variance predictor

ŷ(k + 1) = −bŷ(k) + (a+ c)y(k)

that achieves the error variance

E{(f0ω(k + 1))2} = σ2
ω.

c. A minimum-variance controller can be found by solving the Diophantine equa-
tion

C∗(z−1) = A∗(z−1)F ∗(z−1) + z−1G∗(z−1)

just as in the previous problem, the minimum-variance controller is then given
by

u(k) = − G∗(z−1)
B∗(z−1)F ∗(z−1)y(k) = −a+ c

b
y(k)

which gives the closed-loop output variance

E{y(k)2} = σ2
ω.
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