
Institutionen för

REGLERTEKNIK

FRTN15 Predictive Control

Final Exam October 25, 2013, 08  13

General Instructions

This is an open book exam. You may use any book you want, but no notes,

exercises, exams, or solution manuals are allowed. Solutions and answers to the

problems should be well motivated. The exam consists of 7 problems. The credit

for each problem is indicated in the problem. The total number of credits is 25

points. Preliminary grade limits:

Grade 3: 12 – 16 points

Grade 4: 17 – 21 points

Grade 5: 22 – 25 points

Results

The results of the exam will be posted at the latest November 8 on the notice

board on the first floor of the M-building.
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1. You have been tasked with the estimation of a certain system described by

y(t) + ay(t− 1) = b1u(t− 1)y(t− 2) + b2u(t− 2)
2 + d(t)

where d(t) is a disturbance that is measurable, and a, b1 and b2 are unk-
nown parameters.

a. Derive a linear-in-parameters regression model suitable for estimating the

unknown parameters. (2 p)

b. For various reasons you have decided to do online estimation. Furthermo-

re, you know that the parameters are slowly time-varying. Describe your

preferred method of estimation for this problem and discuss your methods

advantages and drawbacks. (2 p)

Solution

a. By rearranging the terms, collecting measurements of output and distur-

bance on the left hand side we get

ỹ(t) = y(t) − d(t) = −ay(t− 1) + b1u(t− 1)y(t− 2) + b2u(t− 2)
2 = φT(t)θ

with

φ(t) = (−y(t− 1) u(t− 1)y(t− 2) u(t− 2)2 )T

θ = ( a b1 b2 )
T

where θ is the parameter vector and φ(t) the regressors.

b. In order to estimate the parameters online we can use for example the

Recursive Least Squares (RLS) algorithm, which updates the parameter
estimates in a recursive manner as soon as new measurements are avai-

lable. The main advantage over the ordinary Least Squares is the fact that

we don’t need to solve the full set of normal equations for each new mea-

surement. A possible drawback of the RLS is its need of initial guesses on

parameter estimates and covariance, which usually are not known a priori.

In case the parameters are time-varying, the RLS algorithm can perform

poorly since it puts equal weight on all data points. Instead the use of the

Kalman filter is recommended, cf. Johansson (4.36)-(4.39). Another possi-
bility is to use RLS combined with a forgetting factor, 0 < λ ≤ 1, which
governs the importance of new data over old data. λ = 1 produces the ordi-
nary RLS solution, while λ < 1 gives a solution where new data is deemed
more important than old. A smaller λ will give an estimator that is bet-
ter at following quick parameter changes, at the cost of introducing higher

variability in the estimates. There is also the possibility of windup of the

estimated covariance matrix P due to too small values of λ that needs to
be taken into account.

2. Consider the following system:

x(k+ 1) = 0.2x(k) + u(k) + v(k) (1)

y(k) = x(k) + e(k)

v(k) ∈ N(0, 1)

e(k) ∈ N(0, 5)

x(0) ∈ N(0, P0)
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where N(0, P) is a Gaussian variable with mean 0 and variance P.

a. Determine a deadbeat observer for the above system in (1) (i.e., determine
the observer gain K such that the observer poles are placed in the origin),
for an observer of the following form:

x̂(k+ 1) = Ax̂(k) + Bu(k) + K (y(k) − Cx̂(k))

(1 p)

b. Describe the optimal time-varying Kalman Filter for the system in equation

(1). (1 p)

c. Determine the Kalman gain K for the stationary case. (1 p)

d. Which of the two described observers will have the smallest estimation

variance E(x̃2)? (1 p)

Solution

a. The closed-loop polynomial is:

det(z− A+ KC) = z− 0.2+ K

In order to place all poles in the origin, this polynomial should be equal to

z. Hence, the observer gain is K = 0.2.

b. The optimal time-varying Kalman filter is

x̂(k+ 1) = 0.2x̂(k) + u(k) + Kk(y(k)ŷ(k))

ŷ(k) = x̂(k)

Kk =
0.2Pkpk−1

5+ Pkpk−1

Pk+1pk = 0.2
2Pkpk−1 + 1−

0.22P2
kpk−1

5+ Pkpk−1

c. Stationarity means that Pkpk−1 = Pk+1pk = P. With this, we have

P = 0.22P + 1−
0.22P2

5+ P

\P2 + 3.8P − 5 = 0

The positive solution of this quadratic equation is P = 1.0343. With K =
(0.2P)/(5 + P), we have K = 0.0343.

d. For the deadbeat observer we have:

x̃2 = 0.2x(k) + u(k) + v(k) − 0.2x̂(k) − 0.2(x(k) + e(k) − x̂(k))

= 0.22e(k) + v(k),

so that E(x̃2) = 0.22 ⋅ 5+ 1 = 1.2.
For the Kalman Filter we have E(x̃2) = P = 1.0343, which is smaller than
for the deadbeat observer.
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3. The following system is to be controlled using Model Predictive Control

x(k+ 1) = 0.5x(k) + u(k) (2)

y(k) = x(k)

a. Explain the principle of receding horizon as used in Model Predictive Con-

trol. Make a sketch where you explain what prediction horizon and control

horizon are. (1 p)

b. The prediction of the future output trajectory of the system in (2) can be
expressed as:

YHp = Sxx(k) + Su−1u(k− 1) + S∆u∆UHp .

Calculate the matrices Sx, Su−1 and S∆u for Hp = Hu = 3. What are the
interpreations of these matrices? (2 p)

c. The output of the system (2) should be constrained according to:

−1 ≤ y(k) ≤ 5.

Show that this can be expressed as a constraint on ∆u(k), where ∆u =
u(k) − u(k− 1), according to:

−3.5 ≤ ∆u(k) ≤ 2.5.

You can assume that the current state is x(k) = 3 and the previous control
signal was u(k− 1) = 1. (1 p)

Solution

a. t

reference r

N

M

predicted output ŷ

control input u

past output y

t -1 t+1 ... t+N ... t+M

Figur 1 Illustration of the MPC principle.

Receding horizon: The receding horizon principal involves finding an open-

loop control sequence that minimizes a certain cost function over a finite

horizon. This procedure is performed each time new measurements are avai-

lable. The first step in the computed control sequence is used as the control

signal. Although the computed control sequences are open-loop sequences,

the calculation of a new sequence at each sample can be thought of as pro-

viding feedback. (gives 0.5 Points)
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Prediction horizon and control horizon: See Figure 1. The finite horizon over

which the cost function is evaluated is the prediction horizon. The cost fun-

ction depends on the predicted values of the output given the initial state

and future control changes, and thus the predictions have to be determined

for the prediction horizon. The number of control changes determined each

time a new measurement is available is the control horizon. The control

horizon can be smaller than the prediction horizon. (gives 0.5 points)

b. Iterating the state equation gives, with ∆u(k) = u(k) − u(k− 1):

x(k+ 1) = 0.5x(k) + u(k)

= 0.5x(k) + u(k− 1)∆u(k)

x(k+ 2) = 0.52x(k) + 1.5u(k− 1) + 1.5∆u(k) + ∆u(k+ 1)

x(k+ 3) = 0.53x(k) + 1.75u(k− 1) + 1.75∆u(k) + 1.5∆u(k+ 1) + ∆u(k+ 2)

With y(k) = x(k) we have:





y(k+ 1)

y(k+ 2)

y(k+ 3)



 =





0.5

0.52

0.53



+





1

1.5

1.75



u(k− 1) +





1 0 0

1.5 1 0

1.75 1.5 1









∆u(k)

∆u(k+ 1)

∆u(k+ 2)



 ,

so that

YHp = Sxx(k) + Su−1u(k− 1) + S∆u∆UHp .

with

Sx =





0.5

0.52

0.53



 , Su−1 =





1

1.5

1.75





S∆u =





1 0 0

1.5 1 0

1.75 1.5 1





(gives 1 point)

Sx: It has the structure of an observability matrix and represents the com-

ponent of the predicted future outputs which are obtained from the

current state.

Su−1: It represents the propagation of the previous samples control signal

u(k1) through the prediction horizon. If the control changes over the
horizon are zero, then the predicted outputs are given byYHp = Sxx(k)+
Su−1u(k− 1).

S∆u: This matrix is a lower triangular Toeplitz matrix which describes the

effects of the sequence of control changes on the predicted outputs.

(gives 1 point)
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c. Using equation (2), the output of the system at time k+1 can be expressed
as:

y(k+ 1) = 0.5x(k) + u(k− 1) + ∆u(k)

= 2.5+ ∆u(k)

A constraint on y(k) at time k is also valid at time k+ 1. Therefore:

−1 ≤ y(k) ≤ 5

−1 ≤ y(k+ 1) ≤ 5

−1 ≤ 2.5+ ∆u(k) ≤ 5

−3.5 ≤ ∆u(k) ≤ 2.5

4. In this problem we consider the system

yk+1 − 1.2yk + 0.7yk−1 = uk − 0.7uk−1 + ek+1 + 0.5ek

where ek is a Gaussian white noise process with variance σ 2.

a. Derive the controller that minimizes the cost function E{(yk+1pk)
2}. Also,

state clearly the value attained for the cost function. (2 p)

b. Derive the controller that minimizes the cost function E{(yk+2pk)
2}. Also,

state clearly the value attained for the cost function. (2 p)

c. Assume now that the zero polynomial of the system is changed to z − 2.
Give an explanation why the previously designed controllers will not work.

(1 p)

Solution

This is a minimum variance control problem. First we identify that the

system can be written on the form

yk+1 =
B∗(z−1)

A∗(z−1)
uk +

C∗(z−1)

A∗(z−1)
ek+1 (3)

with

A∗(z−1) = 1− 1.2z−1 + 0.7z−2

B∗(z−1) = 1− 0.7z−1

C∗(z−1) = 1+ 0.5z−1

Solving the Diophantine equation

C = AF + z−1G (4)

with deg F = d − 1 = 0 (where d is the input-output delay) and degG =
n− 1 = 1 (where n is the system order) yields

F(z−1) = 1

G(z−1) = 1.7− 0.7z−1
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Substituting (4) into (3) gives after some calculations

yk+1 = Fek+1 +
G

C
yk +

BF

C
uk

where we then can choose the minimum variance controller as uk = −G/(BF)yk
to get yk+1 = Fek+1. The cost function, which is the variance, is given by

E{(yk+1)
2} =E{(Fek+1)

2} = σ 2

a. For the two-step ahead minimum variance controller we solve the Diophan-

tine equation

C = AF + z−2G

with orders deg F = 1 and degG = 1. Calculations give

F(z−1) = 1+ 1.7z−1

G(z−1) = 1.34− 1.19z−1

The minimum variance controller is again given by uk = −G/(BF)yk and
the variance of the output becomes

E{(yk+1)
2} = E{(Fek+1)

2} = 3.89σ 2

b. The system is now non-minimum phase (the zero is located outside the unit
circle). A minimum variance controller cancels the process zeroes, which
implies that they end up as poles in the controller. An unstable zero, as in

this case, would end up as an unstable pole in the controller, thus making

the system unstable.

5. In this problem we consider adaptive control of the system

H(z) =
b0z+ b1

z2 + a1z+ a2

with the reference model

Hm(z) =
b0z+ b1

z2 + am1z+ am2

Design a minimum degree indirect adaptive controller. You may use the

observer polynomial Ao(z) = z
n for some n. Outline how you estimate the

parameters of the system (2 p)

Solution

We seek a minimum order ARMAX controller on the form

R(z)uk = −S(z)yk + T(z)u
c
k
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We start by introducing the polynomials

A(z) = z2 + a1z+ a2

B(z) = b0z+ b1 = B
−B+

Am(z) = z
2 + am1z+ am2

Bm(z) = b0z+ b1 = B
−B1m

Following the textbook, we see immediately from this that there is no zero

cancellation to occur, i.e. B+ = 1, B− = B. Compatibility conditions give
that deg Ao = deg A − deg B

+ − 1 = 1, i.e. Ao(z) = z. The Diophantine
equation to solve is

AR′ + B−S = AoAm

where deg R′ = deg R = deg S = 1. This yields the following set of equations
for deciding the coefficients of R and S:





1 b0 0

a1 b1 b0

a2 0 b1









r1

s0

s1



 =





am1 − a1

am2 − a2

0



 (5)

T is then chosen as T = AoB
1
m = q. Since the parameters of the true system

are not known a priori, we can use the RLS algorithm to estimate them,

and use the estimates to iteratively update our controller parameters given

by the solution to (5).

6. The system

G(q) =
q+ 3

q(q+ 0.6)

is to be controlled using iterative learning control (ILC) according to the
block diagram in Figure 2. The control signal for the ILC controller is given

by

uk+1(t) = uk(t) + L(q)ek(t)

a. The magnitude of the Bode plot for 1 − L(q)G(q) is given in Figure 3 for
L(q) = 0.05 and L(q) = 0.08q2. For which of the two L(q) is the ILC
algorithm convergent? Motivate your answer. (1 p)

b. Show that the tracking error fulfills the recursive equation

ek(t) = [(1 − Q(q))(1 − Tc(q))]yd(t) + [Q(q)(1 − L(q)Tc(q))]ek−1(t).

What happens if Q = 1? What happens if Q ,= 1?. (2 p)

Solution
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G(q)

ILC r(t)

yk(t)
uk(t)

uk+1(t) ek(t)

Figur 2 AN ILC feedback system.
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Bode Diagram: Magnitude of G(q) L(q)

Frequency (rad/sec)  (rad/s)

L(q) = 0.05

L(q) = 0.08*q
2

Figur 3 Bode Magnitude Plot for 1− L(q)G(q) with L(q) = 0.05 and L(q) = 0.08q2.

a. The error between iteration is obtained as:

ek+1(t) = r(t) − yk+1(t) = r(t) − G(q)uk+1(t)

= r(t) − G(q)uk(t) − G(q)L(q)ek(t) = (1− G(q)L(q))ek(t)

The condition for the error not to grow is:

p1− G(eiω )L(eiω )p < 1, ∀ω ∈ [−π , π ]

From the Bode magnitude plot we see that this is the case for L(q) = 0.08q2.
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b.

yk(t) = Tc(q)yd(t) + Tc(q)uk(t)

ek(t) = yd(t) − yk(t)

uk(t) = Q(q)[uk−1(t) + L(q)ek−1(t)]

=[ ek(t) = (1− Tc(q))yd(t) − Tc(q)uk(t)

= (1− Tc(q))yd(t) − Tc(q)Q(q)[uk−1(t) + L(q)ek−1(t)]

= (1− Tc(q))yd(t) − Q(q()Tc(q)uk−1(t) − Q(q)Tc(q)L(q)ek−1(t)

= (1− Tc(q))yd(t) − Q(q()Tc(q)uk−1(t)

−Q(q)Tc(q)L(q)ek−1(t) − Q(q)yd(t) + Q(q)yd(t)

= (1− Q(q))(1 − Tc(q))yd + Q(q)yd − Q(q)yk−1 − Q(q)Tc(q)L(q)ek−1

= (1− Q(q))(1 − Tc(q))yd + Q(q)(1 − Tc(q)L(q))ek−1

For Q = 1 there will be no residual error, for any Q ,= 1 there will be a
residual error assuming that Tc(q) ,= 1. If Tc(q) = 1 ILC would be pointless
since the closed-loop system would be easily inverted and a perfect u could

be found without iterating.

7. In this problem you are to design a two degrees-of-freedom controller on

the form

u(t) = −k1(t)y(t) + k2(t)uc(t)

for the system

ẏ(t) = ku(t)

so that the response follows the model system

ẏm(t) = −aym(t) + buc(t) , a > 0

However, it turns out that the gain parameter k is unknown. Your colleague

has come up with a parameter update law that produces good result in

simulation, but needs your help to give a theoretical justification for it.

Verify that your colleagues parameter update law given by

k̇1 = e(t)y(t)

k̇2 = −e(t)uc(t)

indeed guarantees that the error e(t) = y(t) − ym(t) goes to zero. You may
use the following Lyapunov candidate (or any other of your choice):

V (x) = V (e, k1, k2) =
1

2

(

e(t)2 +
1

k
(kk1(t) − a)

2 +
1

k
(kk2(t) − b)

2

)

(3 p)
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Solution

First we validate that the candidate indeed is a Lyapunov function: V (0) =
0, V (x) > 0, ∀x ,= 0. We then calculate the time derivative:

V̇ = eė+ (kk1 − a)k̇1 + (kk2 − b)k̇2

= e(−kk1y+ kk2uc + aym − buc) + (kk1 − a)ey− (kk2 − b)euc

= eaym − eay = −ae
2 < 0 , ∀e ,= 0

This guarantees that the error e converges to zero.
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