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1. Introduction

The goal of this laboratory exercise is to study Model Predictive Control
(MPC) by applying it to the quadruple-tank process. In the configuration
used in this exercise the process has nonminimum-phase behaviour and
there are also some constraints which need to be taken into account. We
are going to study a few aspects of designing MPC controllers, such as the
choice of weight functions, prediction parameters and constraint handling.
The controllers will be evaluated both in simulation and in experiments on
a real process.

For an introduction to MPC and information about MPCtools, the toolbox
used in this exercise, see Åkesson [2006]. A good text book on MPC is
Maciejowski [2001].

1.1 Login

Log onto the lab machines with user your LTH student account.

1.2 Preparations

Read this manual carefully and perform the preparatory exercises.

1.3 Model Predictive Control

MPC differs from most other control strategies in the way the control ac-
tion is calculated. A finite horizon optimal control problem is solved at each
sampling instant. The first step in the calculated control sequence is ap-
plied to the plant, while the resulting steps are discarded. The calculations
are then repeated at the next sampling instant. This principle is known
as receding horizon control. A great advantage with solving the optimal
control problem on-line is that it makes it possible to handle MIMO plants
and constraints explicitly. Two obstacles that need to be considered are the
computation time required to solve the optimal control problem at each
sampling instant, and that a model of the plant is required.

Traditionally, MPC has been applied to plants with rather slow dynamics
so that the computation time is negligible compared to the sampling inter-
vals used. One typical application is process control. The ability to handle
constraints explicitly and the MIMO-capabilities of MPC make it a suitable
choice for this type of applications. However, MPC has also been applied
to plants with much faster dynamics such as air planes and combustion
engines.
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1.4 MPCtools

MPCtools is a freely available MATLAB/Simulink-based toolbox for simula-
tion of MPC controllers. It is developed by Johan Åkesson at the Depart-
ment of Automatic Control, Lund University. In combination with MATLAB,
MPCtools allows the user to create and simulate MPC controllers. The con-
trollers may also be applied to physical plants and nonlinear models via
Simulink.

1.5 Files needed

The following files are available through the course homepage, and needed

mpc_controller.m

mpc_tank_simulated.mdl

mpc_tank_real.mdl

Also, you need to download MPCtools, which is freely available at

http://www.control.lth.se/user/johan.akesson/mpctools/index.html

Once MATLAB is started, the directory where MPCtools is located needs to
be added with the following code

>>addpath(’/path/to/MPCtools-1.0’)

2. Modeling

The quadruple-tank process is depicted in Figure 1. The goal is to control
the water levels in the lower tanks by applying voltage to the two pumps.
The flow through pump 1 is divided between tanks 1 and 4 and the flow
through pump 2 is divided between tanks 2 and 3. The tubes connected to
the lower tanks are narrower than those connected to the upper tanks so
that only 30% of the flows from the pumps enter the lower tanks. Because
of this, the system has nonminimum-phase behaviour (zeros in the right
half plane). Additionally, the pumps have limited capacity and you should
avoid flooding the tanks. In summary, the quadruple tank process is a
nonminimum-phase MIMO system with constraints on the control signals
as well as on the states.

2.1 Nonlinear Model

For tank i, the cross-section is denoted Ai [cm2], the cross-section of the
outlet is denoted ai [cm2] and the water level is denoted hi [cm]. The con-
trol signals, u1 [V] and u2 [V], control the flow through the corresponding
pumps. The flow through pump i is given by qi = kiui [cm3s−1] where
ki [cm3s−1v−1] is a constant. The flow is then divided by γ 1 [1] and γ 2 [1] so
that γ 1k1u1 enters Tank 1 and (1− γ 1)k1u1 enters Tank 4. The flows into
Tank 2 and 3 are given by similar expressions with γ 2, k2, and u2 instead.
Process specific constants are shown in Table 1

The water levels in the tanks are described by the following nonlinear
equations1.

1These equations are readily derived using a mass balance and Bernoulli’s law for each
tank.
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Figure 1 The quadruple-tank process.
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2.2 Linear Model

The measured heights are converted into voltages by a factor kc [V cm−1].
After a linearization around a stationary operating point (h01,h
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the following state-space representation is obtained, where ∆x = x − x0,
∆y = y − y0 and ∆u = u − u0. The state vector x contains the heights

h1 . . .h4 and we have u =


u1 u2





T

.

Name Value Unit

Ai 4.9 cm2

ai 0.03 cm2

ki 1.6 cm3 V−1 s−1

γ i 0.3 1

kc 0.5 V cm−1

Table 1 Process specific constants.
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The choice of γ 1 and γ 2 will affect the zeros of the system. Throughout this
laboratory exercise we will have γ i = 0.3 which yields a nonminimum-phase
system.

Since the tanks have limited heights (16 cm) and the pumps have limited
capacity (10 V) the constraints in Table 2 will be used in this laboratory
exercise.

Signal Min Max Unit

ui 0 10 V

hi 0 15 cm

Table 2 Constraints on the control signals and water levels.
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3. Controller Design

Start MATLAB and open the file

mpc_controller.m

The goal of this section is to understand what this file does and to make
some initial parameter choices. We will do this by going over the different
parts of the file.

3.1 Model

The first part of the file defines the linear process model with γ i = 0.3,
h01 = h

0
2 = 10 cm. A linearized state-space model is then discretized with

sample time Ts [s]. It is worth noting that three C-matrices and two D-
matrices are defined; Cyd, Czd, Ccd, Dzd, and Dcd.

% Discretize model

[Ad, Bd, Cyd, Dzd]=ssdata(c2d(ss(A,B,C,D),Ts));

Czd = Cyd;

Ccd = kc*eye(4);

Dcd = zeros(4,2);

In this case Czd = Cyd which means that the controlled outputs are the
same as the measured outputs. Since all states are constrained, Ccd is set
to the identity matrix times the conversion factor kc; Dcd is set to zero since
there is no direct term from the control signals to the constrained outputs.

Exercise 1 (Preparatory Exercise) Consider the linearized model and
the stationary point. The controller measures the deviations from this
point. What measurement does the controller receive when the tanks are
empty? What measurement does the controller receive when the tanks are
full? Which output from the controller generates the maximum (minimum)
allowed voltage (10 V and 0 V respectively) to the pumps? The measure-
ment constant is kc = 0.5 Vcm−1. Use the constraints of Table 2, rather
than the real tank heights in this exercise.

3.2 Constraints

The second part of the file defines the parameters needed for the MPC-
controller. First, the constraints are defined.

% Constraints

% limit delta u

du_max = []’;

du_min = []’;

% limit absolute value of u

u_max = []’;

u_min = []’;

% limit controlled outputs

z_max = []’;

z_min = []’;
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Exercise 2 (Preparatory Exercise) First make sure that you under-
stand what the different constraints mean. Then enter values so that the
constraints in Table 2 are satisfied. Note that the constraints should be
entered in terms of deviations from the linearization point. Will there be
any limitations on dumax/dumin?

3.3 Prediction Parameters

Next, the prediction parameters need to be defined.

Exercise 3 (Preparatory Exercise) As a starting point, enter the fol-
lowing values. Make sure that you understand what the parameters mean.
Draw a figure with time on the x-axis which shows Hp and Hu.

% Prediction parameters

Hp=30; % Prediction horizon

Hu=10; % Horizon for varying input signal

Hw=1; % First penalty sample

zblk=2; % blocking factor

ublk=2; % blocking factor

3.4 Weighting Matrices

Exercise 4 (Preparatory Exercise) Enter the following values for the
weighting matrices; Q and R for the controlled outputs and the control
signals, and W and V for the Kalman filter design2. Also, explain what
this choice of matrices means in the optimization problem.

% Weights

Q=diag([1 1]);

R=diag([1 1]);

W=diag([1 1 1 1]);

V=0.1*diag([1 1]);

Finally, a controller is created using the following command

md = MPCInit(Ad,Bd,Cyd,Czd,Dzd,Ccd,Dcd,Hp,Hw,zblk,Hu,ublk, ...

du_max,du_min,u_max,u_min,z_max, ...

z_min,Q,R,W,V,Ts,2,’qp_as’);

The second last argument is set to 2, which means that the controller in-
cludes a Kalman filter in order to estimate the unmeasured states. The last
argument specifies which solver to use for the optimization problem. MPC-
tools includes an active set solver, qp_as, an interior point solver, qp_ip, and
also supports use of of the function quadprog in the Optimization Toolbox.
For further reading, see Åkesson [2006] and the references therein.

2If all states were available for measurement, the W and V matrices would not be
needed.
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4. Simulation Experiments

Open the file

mpc_tank_simulated.mdl

The block named MPCControlleruses the object mdwhich we created in the
previous section. Every time you make changes to the controller parame-
ters, you need to rerun the file mpc_controller.m. We will now simulate
various MPC controllers to see the effects of different parameter choices.

Figure 2 The reference trajectory is specified in these blocks.

Exercise 5 The reference trajectory is specified in the blocks depicted in
Figure 2 with final values set to h1ref1=h1+1, h2ref1=h2+3, h1ref2=3, and
h2ref2=1. Run the simulation. The water levels should remain in [0, 15] cm
and the control signals in [0, 10] V. If there are constraint violation, try to
explain them.

Exercise 6 Now change z_max so that the maximum allowed water level
in Tank 2 is 14 cm (instead of 15 cm) and run the simulation. How does
this affect the results?

Exercise 7 Restore the constraints on the water level and change u_max
so that the maximum allowed value of u2 is u2 = 5 V instead of u2 = 10 V.
Does the controller still manage to follow the reference trajectory?

Exercise 8 Restore the constraints on the control signal. The MPC is
based on a linearized model, wheareas the real proecss is de fact non-linear.
Deviations from the linearization point introduce a model error, which can
be viewed as a disturbance. The controller you have designed will not be
able to suppress the effects of this, since it lacks integral action. One way
of achieving integral action is to use a disturbance observer. To do this,
the second last input argument to MPCinit needs to be set to 4 instead of
2. Also, the weighting matrix W must contain weights for the disturbance
states as well. A suitable starting point is
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W=diag([1 1 1 1 1 1]);

md = MPCInit(Ad,Bd,Cyd,Czd,Dzd,Ccd,Dcd,Hp,Hw,zblk,Hu,ublk, ...

du_max,du_min,u_max,u_min,z_max, ...

z_min,Q,R,W,V,Ts,4,’qp_as’);

Exercise 9 Try varying the Q- and R-matrices. Are the results consistent
with your expectations for the following configurations?

Q=diag([4 1]); R=diag([1 1]);

Q=diag([4 1]); R=100*diag([1 1]);

Q=diag([1 40]); R=diag([1 1]);

Q=daig([1 40]); R=diag([1 100]);

Choose a configuration that you find yields good results.

Exercise 10 The choice of Hp is very important in order to preserve
performance and even stability. The blocking factor zblk may be used in
order to reduce the complexity of the optimization problem. To see the
effects of Hp, try (at least) the following configurations and comment on
the results. Note that the computation times may be quite extensive for
some configurations.

Hp=30; zblk=2;

Hp=90; zblk=6;

Hp=10; zblk=1;

Exercise 11 The sample time Ts affects the choice of Hp. To see this,
change the sample time to Ts = 0.1 s and repeat the experiments in the
previous exercise.

5. Experiments

Restore the sample time to Ts = 0.5 s and open the file mpc_tank_real.mdl.
Make sure a serial cable connects the process and PC and that the process
is connected to the grid. Also verify that water is filled to the mark. Valves
AV3, AV4, BV3, BV4, V5 should be pressed down, valves AV1, BV2, BV1 should
be pulled out and valve AV2 should be pressed in.

Exercise 12 Once you have found parameters that yield good results in
simulation, try your controller on the real process. Are the results similar
to those obtained in simulation? Are the constraints violated at any point?
Try to explain any dissimilarities.

The controller is sensitive to process variations. The real processes have
indiviual variations in γ 1,γ 2 as well as a1, a2, a3, a4.
(Parameters A1, A2, A3, A4, kc are not subject to significant variation be-
tween process instances. Sensitivity towards variations in k1, k2 is low due
to a flow control loop embedded in the quadruple tank model.)
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Exercise 13 Conduct a parameter identification experiment using the
simulink model ’tank_manual.mdl’. This model is equipped with ’slider gain’
blocks, with which you can control pump flows during ongoing simulations
and scopes for monitoring water levels in tanks 1-4. Device experiments
using ’tank_manual.mdl’ and any of the A and B valves on the process to
identify the parameters and enter them into mpc_controller.m. Verify that
previously used controller parameters still yield satisfactory results in sim-
ulation and then try it on the real process.
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