
Institutionen för

REGLERTEKNIK

FRTN15 Predictive Control

Final Exam October 19, 2010, 1419

General Instructions

This is an open book exam. You may use any book you want. However, no previous

exam sheets or solution manuals are allowed. The exam consists of 6 problems to

be solved. Your solutions and answers to the problems should be well motivated.

The credit for each problem is indicated in the problem. The total number of

credits is 25 points. Preliminary grade limits are:

Grade 3: 12 points

Grade 4: 17 points

Grade 5: 22 points

Results

The results of the exam will be posted at the latest October 28 on the notice

board on the first floor of the M-building and they will also be available on the

course home page.

Do you accept publication of your grading result on our local web

page? (Godkänner du publicering av resultatet på vår lokala hemsida?)
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1.

a. What is the basic principle of Model Reference Control? What design choices

have to be made? (2 p)

b. Consider the process G(z) given by:

G(z) =
b0z

z2 + a1z+ a2

Design a Model Reference Controller for the process G(z), which includes
integral action, so that the closed-loop system is given by the reference

model:

Gm(z) =
bm0z+ bm1

z2 + am1z+ am2

(2 p)

c. What can be done if the structure of the process G(z) is known, but not its
parameters? (1 p)

Solution

a. For a process of the form:

A(z) ⋅ yk = B(z) ⋅ uk + C(z) ⋅ vk

a controller

R(z) ⋅ uk = T(z) ⋅ uck − S(z) ⋅ yk

should be designed, so that the closed-loop response

Y(z) =
B(z) ⋅ T(z)

A(z) ⋅ R(z) + B(z) ⋅ S(z)
⋅ U c(z)

matches the desired reference model

Ym(z) =
Bm(z)

Am(z)
⋅ U c(z).

The design choices that have to be made are:

• choosing a reference model Gm(z).

• deciding whether or not to cancel process zeros

• the degree of the observer polynomial

b. Since the zero is stable, it can be canceled:

B+ = z and B− = b0.

Because of the integral action to be included into the controller, we have to

include a model of the load-disturbance into the controller:

R = (z− 1) ⋅ R1 ⋅ B+ = (z− 1) ⋅ R1 ⋅ z.
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The closed-loop polynomial is:

Ac = A0 ⋅ Am ⋅ B+ = A0 ⋅ Am ⋅ z.

The B− polynomial, here just a gain, is extracted for the numerator of the

reference system:

Bm = B
− ⋅ B1m.

Therefore it is:

B1m =
bm0

b0
z+
bm1

b0
.

With this, the Diophantine Equation to determine the polynomials R(z) and
S(z) is:

A ⋅ (z− 1) ⋅ R1 + B
− ⋅ S = A0 ⋅ Am.

The degree conditions are as follows:

de�(R) = de�(z− 1) + de�(z) + de�(R1) = de�(R1) + 2,

when choosing de�(R1) = 0, then it follows that de�(R) = 2. Because of
causality we have:

de�(S) = de�(R) = 2 and de�(T) = de�(R) = 2.

The Diophantine Equation now is:

(z2 + a1z+ a2)(z− 1)r0 + b0(s0z
2 + s1z+ s2) = (z+ a

1
0)(z

2 + am1z+ am2).

Sorting by orders gives:

r0 = 1

r0a1 − r0 + b0s0 = am1 + a
1
0

r0a2 − r0a1 + b0s1 = am2 + a
1
0am1

b0s2 − r0a2 = a10am2,

which leads to the solution:

r0 = 1

s0 =
1

b0
(am1 + a

1
0 − a1 + 1)

s1 =
1

b0
(am2 + a

1
0am1 − a2 + a1)

s2 =
1

b0
(a10am2 + a2).

The polynomials R and S are then:

S(z) = s0z
2 + s1z+ s2

R(z) = (z− 1)z

The polynomials T follows from model following:

BT

AR + BS
=
BT

Ac
=
B−T

A0Am
=
Bm

Am
,
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so that

T(z) =
Bm

B−
A0 = B1mA0 =

1

b0
(bm0z+ bm1)(z+ a

1
0).

The controller is then given by:

R(z)uk = Tzu
c
k − S(z)yk.

c. The parameters of the process can be estimated using (recursive) least
squares estimation.

2. Consider the a process described by:

A(z−1)yk = B(z
−1)uk + ek

where ek is Gaussian white noise with variance σ 2 and

A(z−1) = 1+ a1z
−1 + a2z

−2

B(z−1) = b0z
−1 + b1z

−2

a. Determine the regressor and parameter vector for least-squares identifica-

tion of the unknown parameters b0, b1, a1 and a2. Also, derive the normal

equations to calculate these parameters. (2 p)

b. How does the algorithm from a) need to be changed to provide new para-
meter estimates continuously in a real-time setting?

What problem can arise when the parameters are time-variant? How can

the algorithm be modified to improve the performance in case of time-

varying parameters? (2 p)

Solution

a. The process can be written as:

yk = −a1yk−1 − a2yk−2 + b0uk−1 + b1uk−2,

which can be expressed as:

yk = φTk ⋅ θ

with

φ k = ( −yk−1 −yk−2 uk−1 uk−2 )
T

and

θ = ( a1 a2 b0 b1 )
T ,

where θ is the parameter vector and φ k the regressor.

Now assume that N data points have been measured. Then the data can

be collected as follows:

YN =









y2

y3
...

yN
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ΦN =









φ2

φ3
...

φN









=









−y1 −y0 u1 u0

−y2 −y1 u2 u1
...

−yN−1 −yN−2 uN−1 uN−2









With this, the process can be described by:

YN = ΦN ⋅ θ .

Multiplying both sides of the last equation from the left with ΦTN leads to
the normal equation that can be used to calculate the unknown parameters:

ΦTN ⋅ YN =
(

ΦTNΦN

)

θ

[ θ̂ =
(

ΦTNΦN

)−1
⋅ ΦTN ⋅ YN .

Also, the Least-Squares Estimation aims to minimize teh sum of squared

errors between the model output and the observations:

V (θ̂ ) =
1

2
ǫ
T
ǫ =
1

2
(YN − ΦNθ̂ )T(YN − ΦNθ̂).

The minimum can be found for the estimate

θ̂ =
(

ΦTNΦN

)−1
⋅ ΦTN ⋅ YN .

This can be seen by taking the first derivative of V (θ̂) and setting it to zero
(this is the normal equation):

�V (θ̂ )

�θ̂
= −YTNΦN + θ̂

(

ΦTNΦN

)

= 0

which solved for θ̂ gives the optimal estimate:

θ̂ =
(

ΦTNΦN

)−1
⋅ ΦTN ⋅ YN .

b. In order to continuously provide updated parameters, the least-squares al-

gorithm can be formulated in a recursive way (=Recursive Least-Squares).
When estimating the unknown parameters at a specific time point, older

information that is no longer relevant (e.g., before the parameters changed)
could influence the parameter estimation and thus lead to poor estimation

performance in case of time-varying parameters. The performance can be

improved by neglecting older information. This can be done by including

the “forgetting factor” λ into the Recursive Least-Squares algorithm, which
provides an exponentially decreasing weight on old data.

Another possibility to improve the performance for time-varying parameters

is to interpret the least-squares estimation as a Kalman filter by assuming

a time-varying mathematical model for the parameters (see for example
p. 59 in the textbook). The parameters now do not converge exponentially
anymore, but in a linear way.

If it is known that the parameters are constant over a long period of ti-

me and change abruptly only occasionally, it is more suitable to reset the

covariance matrix of the estimator when the change of parameters occurs

(=covariance resetting) or periodically.
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3. Consider the 1-step-ahead prediction of a process given as:

yk+1 = −0.5yk + 2.5yk−1 + uk + 0.8uk−1 +wk+1 + 0.1wk

where wk is white noise with E{wkw
T
j } = σ 2w ⋅ δ kj .

a. Calculate the 1-step-ahead predictor, its prediction error covariance and the

1-step-ahead minimum-variance controller for this process. (3 p)

b. Show that the controller calculated in a) minimizes the variance of the 1-
step-ahead output. (2 p)

Solution

a. The process can be written as:

Y(z)(1+ 0.5z−1 − 2.5z−2) = z−1(1+ 0.8z−1)U(z) + (1+ 0.1z−1)W(z)

[ Y(Z) =
z−1 ⋅ (1+ 0.8z−1)

1+ 0.5z−1 − 2.5z−2
︸ ︷︷ ︸

=
B(z−1)

A(z−1)

U(z) +
1+ 0.1z−1

1+ 0.5z−1 − 2.5z−2
︸ ︷︷ ︸

=
C(z−1)

A(z−1)

W(z)

The Diophantine Equation to determine the polynomials F(z−1) and G(z−1)
needed for the 1-step-ahead predictor and the minimum-variance controller

is:

C(z−1) = A(z−1)F(z−1) + z−1G(z−1).

The orders of these polynomials have to be de�(F) = 0 and de�(G) = 1.
Hence, the Diophantine Equation is:

(1+ 0.1z−1) = (1+ 0.5z−1 − 2.5z−2) f0 + z
−1(�0 + �1z

−1).

Sorting for degrees of z−1 gives:

0 = �1 − 2.5 f0

0.1 = �0 + 0.5 f0

1 = f0,

which gives

F(z−1) = 1 and G(z−1) = −0.4+ 2.5z−1

Hence, the 1-step-ahead predictor is:

ŷk+1pk =
G(z−1)

C(z−1)
yk +

B(z−1)F(z−1)

C(z−1)
uk =

−0.4+ 2.5z−1

1+ 0.1z−1
yk +

1+ 0.8z−1

1+ 0.1z−1
.

The prediction error covariance for this predicted output is:

E{(yk+1 − ŷk+1)
2}

= E{(F(z−1)wk+1 +
G(z−1)

C(z−1)
yk +

B(z−1)F(z−1)

C(z−1)
uk −

G(z−1)

C(z−1)
yk −

B(z−1)F(z−1)

C(z−1)
uk)

2}
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= E{1 ⋅w2k+1} = σ 2w

The minimum-variance controller is here:

U(z) −
G(z−1)

B(z−1)F(z−1)
Y(z) = −

(−0.4+ 2.5z−1)

1+ 0.8z−1
Y(z)

b. The 1-step-ahead output of the process is as in a):

yk+1 =
B(z−1)

A(z−1)
uk +

C(z−1)

A(z−1)
wk+1.

Inserting the Diophantine Equation C(z−1) = A(z−1)F(z−1) + z−1G(z−1) into the

last equation and expressing the unknown noise as wk =
A(z−1)
C(z−1)

yk−z
−1 B(z

−1)
C(z−1)

uk leads

to:

yk+1 = F(z
−1)wk+1 +

G(z−1)

C(z−1)
yk + [

B(z−1)

A(z−1)
− z−1

B(z−1)

C(z−1)

G(z−1)

A(z−1)
]uk.

The polynominal in the third sum on the right hand side of the last equation

can be exchanged by G(z−1) = zC(z−1) − zA(z−1)F(z−1). This leads to the 1-step-
ahead output of the output where future noise and past input-/output values are
decoupled:

yk+1 = F(z
−1)wk+1 +

G(z−1)

C(z−1)
yk +

B(z−1)F(z−1)

C(z−1)
uk.

The variance of the 1-step-ahead output is:

E{y2k+1pk} = E{(F(z−1)wk +
G(z−1)

C(z−1)
yk +

B(z−1)F(z−1)

C(z−1)
uk)

2}

= E{(F(z−1)wk)
2} + E{(

G(z−1)

C(z−1)
yk +

B(z−1)F(z−1)

C(z−1)
uk)

2}

= σ 2w + E{(
0.4+ 2.5z−1

1+ 0.1z−1
yk +

1+ 0.8z−1

1+ 0.1z−1
uk)

}.

This variance has its minimum if:

−0.4+ 2.5z−1

1+ 0.1z−1
yk +

1+ 0.8z−1

1+ 0.1z−1
uk = 0

\ uk = −
−0.4+ 2.5z−1

1+ 0.8z−1
yk,

which is the minimum-variance controller from a).

4. The following system is to be controlled using Model Predictive Control

xk+1 = xk + uk

yk = 2xk

There are constraints on the output and the rate of change of the control

signal, ∆uk = uk − uk−1 according to

ymin ≤yk ≤ y
max

∆umin ≤∆uk ≤ ∆umax

where ymin = −5, ymax = 5, ∆umin = −2, ∆umax = 2.
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a. Determine what values of uk that are feasible when xk = 1, and uk−1 = 2.
(2 p)

b. Assume a measurement yk = 10 is received when uk−1 = 0. Show that there
are no feasible control moves ∆uk. (1 p)

c. Suggest a change in how the controller is implemented to avoid the situation

in b. (1 p)

d. Show how the model can be modified to achieve integral action through

the use of a disturbance observer, i.e. by assuming a constant disturbance

acting on the input. (1 p)

Solution

a. The output at cycle k+1 is

yk+1 = 2xk+1 = 2(xk + uk) = 2+ 2uk

so the constraint on yk+1 becomes

−5 ≤ 2+ 2uk ≤ 5

which can be rearranged to

−1.5 =
−5− 2

2
≤ uk ≤

5− 2

2
= 1.5

Using ∆uk = uk − uk−1, the constraint on ∆uk can be rewritten as

0 = −2+ 2 ≤ uk ≤ 2+ 2 = 4

This yields the effective constraints

0 ≤ uk ≤ 1.5

b. When yk = 10 we have xk = 5. The constraint on yk+1 becomes

−5 ≤ 10+ 2(0+ ∆uk) ≤ 5

This imposes the following constraint on ∆uk

−7.5 =
−5− 10

2
≤ ∆uk ≤

5− 10

2
= −2.5

which is outside the constraints on ∆uk.

c. By introducing slack variables that penalize constraint violations (soft
constraints) and removing the hard constraint on yk, a feasible solution
could still be found.
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d. With a constant input disturbance dk, the model takes the form

xk+1 = xk + uk + dk

yk = 2xk

By introducing an extended state vector



 xk dk




T

we can write this as




xk+1

dk+1



 =




1 1

0 1








xk

dk



+




1

0



uk

yk =


 2 0








xk

dk





Basing the observer and controller on this model will achieve integral action

in the closed loop system.

5. Iterative Learning control for a system described by

yk(t) = G(q)uk(t)

can be implemented as

ek(t) = rk(t) − yk(t)

uk+1(t) = uk(t) + L(q)ek(t)

a. Give an interpretation of the controller equations. What is the role of L(q)?
(1 p)

b. For what type of control problems is ILC a suitable strategy? What types

of disturbances can be handled? (1 p)

c. What condition on L(q) must hold for the control error to converge? Give a
graphical interpretation of this in terms of the Nyquist plot of L(q)G(q).

(1 p)

Solution

a. The control signal in the next iteration is given by that of the previous

iteration modified by the control signal filtered by L(q). The filter L(q)
determines how big the impact of the last run is on the control signal in

the next iteration.

b. The control problem should be of a repetitive nature where the same task

has to be repeated over and over. Examples of this include manufacturing

using robots where the same part is constructed many times.

Any repeating disturbances can be handled since the control signal will

adapt to them. More stochastic disturbances are harder to handle since the

error sequence of the last iteration doesn’t include any information about

the disturbance.
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c. The condition is

sup
wh∈[−π ,π ]

ppI − G(z)L(z)pppz=eiωh < 1

This can be expressed graphically as requiring that the Nyquist plot L(z)G(z)
is contained in unit circle centered at z = 1.

6. A stochastic problem is generated as

xk+1 = 0.9xk + vk

yk = 0.1xk + ek

with uncorrelated white-noise processes ek and vk. The covariances of these

noise processes are E{vkv
T
j } = σ 2v ⋅δ kj and E{eke

T
j } = σ 2e ⋅δ kj . Furthermore,

x0 is normally distributed with zero mean and variance σ 20 .

a. Determine the Kalman Filter for the process. (1 p)

b. Determine the estimation covariance P and the filter gain K in case of a

stationary Kalman Filter.

Hint: You do not need to calculate the estimation covariance exactly. It is

sufficient to give an equation that the estimation covariance can be calculated

from including conditions for an admissible solution. (1 p)

c. What are the estimation covariance P and the filter gain K in steady-state

when σ 2e >> σ 2v is true for the noise-processes? Also, interpret the result.
(1 p)

Solution

a. The Kalman Filter is given in Table 7.1 in the Textbook:

x̂k+1pk = 0.9x̂kpk−1 + Kk(yk − ŷkpk−1)

ŷkpk−1 = 0.2x̂kpk−1

Kk =
0.9Pkpk−10.2

σ 2e + 0.2Pkpk−10.2
=

0.18Pkpk−1

σ 2e + 0.04Pkpk−1

Pk+1pk = 0.9Pkpk−10.9+σ 2v − 0.9Pkpk−10.2R
−1
k 0.2Pkpk−10.9

Rk = σ 2e + 0.2Pkpk−10.2

[ Pk+1pk = 0.81Pkpk−1 +σ 2v −
0.0324P2

kpk−1

σ 2e + 0.04Pkpk−1

b. In case of stationarity, the estimation covariance is:

P = lim
k→∞

Pkpk−1 = lim
k→∞

Pk+1pk.

Therefore it is:

P = 0.81P +σ 2v −
0.0324P2

σ 2e + 0.04P
. (1)

The estimation covariance is then the solution to the equation:

P2 + (4.75Q −σ 2v)P + 25Qσ 2v .
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The filter gain is:

K =
0.18P

σ 2e + 0.04P
.

c. To analyze the behavior of the Kalman filter for σ 2e >> σ 2v , we consider the
extreme case where σ 2e →∞. For this case, the equation (1) gets:

P = 0.81P +σ 2v

P =
1

1− 0.81
σ 2v = 0.19σ

2
v .

The filter gain for this case gets K = 0.
Therefore, the poles of the Kalman filter are at det(A−KC) = (0.9−0⋅0.2) =
0.9. The state estimation is given with:

x̂k+1pk = 0.9x̂kpk−1

ŷkpk−1 = 0.2x̂kpk−1.

The state and output of the process estimated by the Kalman filter depends

only on the states estimated at the previous time-point when σ 2e >> σ 2v . The
filter thus assumes there is significantly more measurement noise present

as process noise, so that it is better to rely on the estimated states and not

on the measured process output.
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