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General Instructions

This is an open book exam. You may use any book you want. However, no previous

exam sheets or solution manuals are allowed. The exam consists of 6 problems to

be solved. Your solutions and answers to the problems should be well motivated.

The credit for each problem is indicated in the problem. The total number of

credits is 25 points. Preliminary grade limits are:

Grade 3: 12 points

Grade 4: 17 points

Grade 5: 22 points

Results

The results of the exam will be posted at the latest October 26 on the notice

board on the first floor of the M-building and they will also be available on the

course home page.

Do you accept publication of your grading result on our local web

page? (Godkänner du publicering av resultatet på vår lokala hem-
sida?)
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Solutions to Predictive Control exam, October 16, 2007

Consider the gain adaptation problem of Fig. 1 for k > 0

u = θuc

Introduce the gain parameter

θ =
km

k

and the output error

e = y− ym = G(s)kθuc − kmG(s)u
c, G(s) =

1

s+ 1

with uc as command signal, ym the reference model output, y system output,

θ the gain parameter.

dθ

dt
= −γ uce

Show that the gain adaptation is stable in the sense of Lyapunov for γ > 0.
(2 p)

Solution

Assume that the transfer function G(s) has a state-space realization

ẋ = Ax + Bu

y = Cx, Y(s) = G(s)U(s)

and

ẋm = Axm + B(kmu
c)

ym = Cxm, Ym(s) = G(s)kmU
c(s)

The error model

xe = x − xm

e = y− ym, E(s) = G(s)(kθ − km)U
c(s)

1



with the error dynamics

ẋe = Axe + B(kθ − km)u
c = Axe + B ku

c
︸︷︷︸

φ

θ̃

e = Cxe

Introduce the Lyapunov function candidate

V (xe, θ̃ ) =
1

2
xTe Pxe +

µ

2
θ̃Tθ̃ , P = PT > 0, µ > 0

with the derivative

dV (xe, θ̃ )

dt
=
1

2
xTe (PA+ A

TP)xe + x
T
e PB(kθ − km)u

c + µθ̃T
dθ̃

dt

=
1

2
xTe (PA+ A

TP)xe + θ̃T(BTPxkuc + µ
dθ̃

dt
)

Under the conditions of the Kalman-Yakubovich-Popov (KYP) Lemma, we
have for an SPR transfer function G(s)

PA+ ATP = −Q, Q = QT > 0, P = PT > 0

C = BTP

then the adaptation law

dθ̂

dt
= −γ BTPxe︸ ︷︷ ︸

e

kuc︸︷︷︸
φ

= −γ φ e, γ = µk

will render the Lyapunov function negative definite with respect to xe, that

is

dV (xe, θ̃ )

dt
=
1

2
xTe (PA+ A

TP)xe

= −
1

2
xTe Qxe < 0, qxeq ,= 0

dθ̃

dt
=
dθ̂

dt
= −γ φ e

Whereas it is possible to claim asymptotic stability of the error dynamics

with respect to the error dynamics of xe, only stability (in the sense of

Lyapunov) can be established for the adaptation error dynamics of θ̃

2. A process is modeled by

y(k) = b0u(k) + b1u(k− 1) + e(k),

where e(k) is a normally distributed white noise process.

a. Derive a least-squares estimator for the process. (2 p)

b. Derive expressions for the estimation error and estimation error covariance.

(2 p)
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c. Present an input sequence u(k) resulting in a consistent estimator. Prove
your claim. (1 p)

Solution

a. The standard LS-estimator is given by

θ̂ = (ΦTNΦN)
−1ΦTNYN

Here N indicates that data has ben aquired at times 1, . . . ,N . We write the

process on the form

y(k) = ϕT (k− 1)θ + e(t),

where ϕT = [u(k) u(k− 1)] and θT = [b0 b1]. The set of regressor vectors
for N measurements are collected in the matrix

ΦN =




u(1) u(0)
...

...

u(N) u(N − 1)




and the measured output signal is collected in

YN =




y(1)
...

y(N)


 .

b. The estimate, given a seqence of length N − 1 is given by

θ̂ = (ΦTNΦN)
−1ΦTNYN = (Φ

T
NΦN)

−1ΦTN(ΦNθ + e).

Hence, the corresponding estimation error is

θ̂ − θ = (ΦTNΦN)
−1ΦTN e

and the error covariance becomes

E{(θ̂ − θ )(θ̂ − θ )T} = E{((ΦTNΦN)
−1ΦTN e)e

TΦN(Φ
T
NΦN)

−1}

= (ΦTNΦN)
−1ΦTNE{ee

T}ΦN(Φ
T
NΦN)

−1

= σ 2e ⋅ (ΦTNΦN)
−1.

c. Supported by the theory, we choose an input signal or persisten excitation

order ≥ 2. E.g., evaluation of the covariance matrix for u(k) = (−1)k yields

(
ΦTNΦN

)−1
=

[ ∑N
k=1 u

2(k)
∑N
k=1 u(k)u(k− 1)∑N

k=1 u(k)u(k− 1)
∑N
k=1 u

2(k− 1)

]−1

=

[
N −N

−N N

]−1
=
1

2N
=

[
1 1

1 1

]
.

I.e.,

lim
N→∞

(
ΦTNΦN

)−1
= 0.
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3. This problem deals with MRAC design of an STR, similar to that of home-

work assignment 2. The sampled process and reference models are given

by

G =
B

A
, Gm =

Bm

Am
,

where deg A = deg Am = 2 and deg B = deg Bm = 1. Also, A, Am are chosen
monic. The controller structure is given by the ARMAX controller

Ru = −Sy+ Tuc,

where uc, u and y are reference, control signal and system output, respec-

tively.

a. Assume that the zero of B is poorly damped. Mention a negative conse-

quency of canceling it by a controller pole. Show why it is not possible to

avoid this cancellation for an arbitrary choice of Bm. (2 p)

b. Let B = Bm and show that it is generally impossible to find a controller
without zero cancellation where deg R = 0. (2 p)

c. Describe how the controller structure can be modified in order to introduce

integral action and how this affects the minimal degree solution. (2 p)

d. What is the difference between direct and indirect MRAC? (1 p)

Solution

a. Cancellation of a poorly damped process zero introduces a poorly damed

controller pole resulting in a ringing control signal.

In order to avoid zero cancellation we must choose B+ = 1, B− = B when
factoring B = B−B+ and include B− as a factor in Bm. Hence

Bm = B
−B1m = BB

1
m,

for some polynomial B1m. Inserting B and Bm into the above equation yields

bm1 z+ bm2 = (b1z+ b2)B
1
m,

which only has polynomial solution B1m if

bm1
bm2

=
b1

b2
.

Hence it is generally not possible to meet the model mathcing specification

without zero cancellation.

b. If there exists a solution with deg R = 0, causality of the controller implies
deg S = 0. From the controller structure it evident that R can always be
chosen monic. I.e., we want to solve the DAB

(z2 + a1z+ a2)︸ ︷︷ ︸
A

1︸︷︷︸
R

+(b1z+ b2)︸ ︷︷ ︸
B

s0︸︷︷︸
S

= Ao (z
2 + am1 z+ am2)︸ ︷︷ ︸

Am

1︸︷︷︸
B+

.
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Degree matching yields deg Ao = 0 and we introduce Ao(z) = ao. Since the
left hand side polynomial is monic we have to choose ao = 1. Matching equal
powers of z yields 




z2 : 1 = 1

z1 : a1 + b1s0 = am1

z0 : a2 + b2s0 = am2 ,

which clearly lacks solution if e.g., b1 = 0, a1 ,= am1

c. Integral action is introduced by letting Ri = (z − 1) be a factor of R. We
hence need to solve the DAB

ARiR1 + B
−S = AoAm.

cf. Johansson (9.7), (9.8). Generally, introduction of z − 1 as factor in R
increases the minimal degree solution.

d. In in-direct MRAC STR design, process parameters are explicitly estimated

and controllers are iteratively computed from these estimates. In direct

MRAC STR design, the regression model is changed, so that the regressors

express the controller parameters directly.

4. The dynamics of a plant are described by

{
xk+1 = Φxk + Γuk + dk

yk = Cxk,

with Φ = 1
2
, Γ = 1 and C = 2. The disturbance dk is constant dk = 3.

a. Extend the state to include the disturbance state dk = d and give the
extended dynamics. (2 p)

b. Explain (briefly) why a state observer is needed to use this model for control
synthesis, assuming d is unknown and not directly measurable. (1 p)

c. Give the questions for a one-step-ahead linear state estimator, which placed

all poles of the error dynamics at −1
2
. (2 p)

Solution

a. Introducing the extended state

xek =

[
xk

dk

]
,

results in the dynamics

{
xek+1 = Φ exek + Γ euk

yk = Cexek,

where

Φ e =

[
Φ 1

0 1

]
=

[
1
2
1

0 1

]
, Γ e =

[
Γ

0

]
=

[
1

0

]
,Ce =

[
C 0

]
=

[
2 0

]
.
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b. The state d is not directly measurable, but relevant when syntesizing a

controller. However, it is observable, since the observability matrix

[
Ce

CeΦ e

]
=

[
2 0

1 2

]

has full rank.

c. Introducing estimator dynamic

x̂ek+1pk = Φ e x̂ekpk−1 + Γ euk + K (yk − C
e x̂kpk−1),

we obtain error dynamics

xk+1 − x̂
e
k+1pk = (Φ

exk + Γ euk) −
(

Φ e x̂ekpk−1 + Γ euk + K (yk − C
e x̂kpk−1)

)
.

Denoting the estimation error x̃ek = x
e
k − x̂

e
kpk−1, the error dynamics can be

rewritten

x̃ek+1 = (Φ − KC)x̃ek,

where

Φ − KC =

[
1
2
1

0 1

]
−

[
k1

k2

] [
2 0

]
=

[
1
2
− 2k1 1

−2k2 1

]
,

with

det(zI − (Φ − KC)) = z2 + (2k1 −
3
2
)z+ (2k2 − 2k1 +

1
2
) = (z− 1

2
)2 = z2 + z+ 1

4

according to design specifications. Equating equal powers of z results in





z2 : 1 = 1

z1 : 2k1 −
2
3
= 1

z0 : 2k2 − 2k1 +
1
2
= 1

4

\

{
k1 = 5

4

k2 = 9
8

.

5. Model Predictive Control (MPC) is based on the receding horizon principle,
illustrated in Fig. 1. The aim is to decide a number of future input values

given a prediction of a finite number of future outputs. The first input

value is implemented, and the procedure is repeated at the next sampling

instance.

The controller is obtained by minimizing a cost function:

V (Ut,Yt) = Y
T
t QyYt + U

T
t QuUt (1)

where Ut and Yt are sequences of future control signals and outputs up to

horizons N and M respectively:

Ut =




u(t+ N − 1)

...

u(t)


 , Yt =




ŷ(t+ M pt)

...

ŷ(t+ 1pt)
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t

reference r

N

M

predicted output ŷ

control input u

past output y

t -1 t +1 ... t +N ... t +M

Figure 1 Illustration of the receding horizon principle used in Model Predictive Control

When the system is known, the predicted future outputs are given by the

predictor:




ŷ(t+ M pt)

...

ŷ(t+ 1pt)


 =



CAM

...

CA


 x̂(tpt) +



CB CAB CA2B . . .

0 CB CAB . . .
...

. . .
. . .

...







u(t+M − 1)

...

u(t+ N − 1)

...

u(t)




Yt = Dx x̂(tpt) + DuUt

a. Show that the cost function (1) can be written as:

V (Ut) = x̂(tpt)
TQx̂(tpt) + UTt RUt + 2x̂(tpt)

TSUt

and that the minimum is attained for:

Ut = −R
−1Sx̂(tpt)

(2 p)

b. The MPC formulation described here assumes that a process model is avail-

able. Can you suggest a way of modifying the algorithm to create an adaptive

MPC controller? (Hint: Consider the sequence of predicted outputs Yt, as
well as the way in which process parameters are identified in the least-

squares algorithm ) (1 p)

Solution

a. Substitution of the predicted future outputs Yt = Dx x̂(tpt) + DuUt into the
cost function (1) gives:

V (Ut) = (Dx x̂(tpt) + DuUt)
TQy(Dx x̂(tpt) + DuUt) + U

T
t QuUt

= x̂(tpt)T DTx QyDx︸ ︷︷ ︸
Q

x̂(tpt) + 2x̂(tpt)T DTx QyDu︸ ︷︷ ︸
S

Ut + U
T
t (Qu + D

T
u QyDu)︸ ︷︷ ︸
R

Ut,
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assuming Qy symmetric. To find the minimum of the cost function, take the

derivative with respect to Ut and set this to zero:
�V(Ut)
�Ut

= 0. This gives:

Ut = −R
−1Sx̂(tpt),

assuming symmetric R,S (which follows from symmetric Qu,Qy).

b. In the MPC formulation presented in the question, a state space model

of the system is used to build a predictor. In adaptive control, a model

is not available, and must typically be estimated. In the case of MPC, it

is sufficient to obtain a prediction of future outputs from measured data.

Least squares methods involve minimizing the error between a predicted

output ŷ(t) and the measured output y(t). This could be extended to the
estimation of prediction matrices Dx and Du, giving Yt = D̂x x̂(tpt) + D̂uUt,
producing an MPC controller for an unknown system.

6. One possible strategy for Iterative Learning Control (ILC) is given by the
equations:

yk(t) = Gc(q)uk(t)

ek(t) = r(t) − yk(t)

uk(t) = Q(q)[uk−1(t) + L(q)ek−1(t)]

where Gc(q) is the closed-loop transfer function of the system and q is the
forward time shift operator.

G  (q)
C

ILC

u (t) y (t)

r(t)
e (t)

k k

k

{u      (t)}
k+1

t
0
f +

Figure 2 ILC set-up in Problem 6

a. Explain the principle of operation of Iterative Learning Control. (1 p)

b. Assume that Q(q) = 1 and that

GC(q) =
1

(q− 0.7)(q− 0.9)
, L(q) = k(q− 0.5)(q− 0.7)(q− 0.9)

where k is a positive constant. Does there exist k > 0 for which the ILC
scheme converges? Motivate your answer. (2 p)

Solution
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a. ILC can be used to improve tracking performance for systems in which

the same reference trajectory is used repetitively. The strategy is based on

collection of a data set and filtering operations upon the data. Non-causal

filtering may be used since the filtering is performed offline. A typical ex-

ample of an ILC application is trajectory following for a robotic manipulator,

where modelling inaccuracies typically give rise to tracking errors.

b. We obtain the following recursive expression for the tracking error

ek(t) = (1− LGC)ek−1(t)

and convergence will be achieved if

sup
ωh∈[−π ,π ]

p 1− L(eiωh)GC(e
iωh) p< 1\ sup

ωh∈[−π ,π ]

p 1− k(eiωh − 0.5) p< 1.

Introducing x = ωh we have

p 1− k(cos(x) + i sin(x) − 0.5) p

= p 1− k cos(x) − 0.5k+ ik sin(x) p

=

√
1+ k2 cos2(x) + k2 sin2(x) − k(k+ 2) cos(x) + k+ 0.25k2.

Using the trigonometric identity we obtain

√
1+ k2 − k(k+ 2) cos(x) + k+ 0.25k2

and the supremum is achieved when cos(x) = −1, yielding

√
1+ k2 + k(k+ 2) + k+ 0.25k2 =

√
1+ 2.25k2 + 2k,

which is clearly larger than 1 for all positive k. Hence, convergense is not

achieved for any positive k.
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