
FRTN15 Predictive Control—Exercise Session 6

Solutions to FRTN15 Predictive Control—Exercise 6

1. The error between iteration is obtained as:

ek+1(t) = r(t) − yk+1(t) = r(t) − G(q)uk+1(t)

=r(t) − G(q)uk(t) − G(q)L(q)ek(t) = (1− G(q)L(q))ek(t)

The condition for the error not to grow is:

p1− G(eiω )L(eiω )p < 1, ∀ω ∈ [−π , π ]

From the Nyquist-plot results that this is not the case for L(q) = 1.

2.

a. A transfer function G(s) is said to be Positive Real (PR) if:

Re G(s) ≥ 0 for Re s ≥ 0

The transfer function is said to be Strictly Positive Real (SPR) if G(s − ǫ)
is positive real for some ǫ > 0. In terms of the Nyquist diagram, an SPR
system must have a Nyquist curve which lies strictly in the right half-plane.

For the case with

G(s) =
1

(s+ 1)

we note that Re G(s − ǫ) ≥ 0 for Re s ≥ 0 for any ǫ ≤ 1, which proves that
the system is SPR.

To show that the storage function (Lyapunov function) given by:

V (x) =
1

2
xT x

fullfills the passivity property, we begin by finding the time derivative:

V̇(x(t)) =
1

2
(ẋT x + xT ẋ)

=
1

2
((−x + u)T x + xT(−x + u))

= −xT x + xTu

Since y(t) = x(t) we may write:

V̇(x(t)) = −xT x + yTu

At a specific time T the storage function is given by:

V (x(T)) = V (x(0)) +

∫ T

0

V̇ (x(t))dt

= V (x(0)) +

∫ T

0

(−xT x + yTu)dt
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Thus we obtain the passivity property:

V (x(T)) = V (x(0)) +

∫ T

0

yTudt−

∫ T

0

xT xdt

as required. The term V (x(0)) represents the initial stored energy at time

t = 0. The term
∫ T

0
yTudt represents the energy supplied to the system

between time t = 0 and t = T . To see this more clearly, it may be helpful
to think of an electrical system where the input u is a voltage and the

output y is a current. Power is given by P = V I and the energy supplied

to the system is thus the integral of this. The last term
∫ T

0
xT x represents

the energy dissipated by the system. Returning to the electrical system

example, we know that dissipated power is given by I2/R, so the dissipated
energy is therefore the integral of this.

In summary, a system is passive if the change in stored energy is equal to

the energy supplied minus the energy dissipated.

b. By looking at the Nyquist plot of the system we see that Re G(s) takes
negative values for certain ω when Re s = 0. The system is therefore not
positive real.

3.

a. When using the backstepping method, we aim to stabilize one first-order

subsystem at a time, through the use of ’virtual controls’. Here, we begin

by looking at the x1 subsystem:

ẋ1 = −x2 + θ x21

and regarding the state x2 as a virtual control. In effect, we regard the

system as if x2 were the control signal and design a control law which sta-

bilizes the system. In the problem, the state x2 is the integral of the actual

control signal. This means that in order to find the actual control signal,

we must ’step back’ through the integrator. Hence the name ’backstepping’.

We begin by defining error states, here denoted by z. The first component

is given by z1 = x1. We have:

dz1

dt
= −x2 + θ z21

In order to introduce stable dynamics we may add and subtract the term

z1 to the right hand side:

dz1

dt
= −z1 + z1 − x2 + θ z21

We see that if we choose the virtual control x2 to be:

x2 = z1 + θ z21

then the error dynamics become:

dz1

dt
= −z1
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We may now introduce the second error coordinate:

z2 = z1 + θ z21 − x2

i.e., the difference between the virtual control and its desired value. Thus

we obtain:

dz1

dt
= −z1 + z2

We now find the dynamics of the second error coordinate:

dz2

dt
=
dz1

dt
−
dx2

dt
+ 2θ z1

dz1

dt

As before, we may add and subtract the term z2 to the right hand side, and

replace dx2
dt
with the control signal u

dz2

dt
= −z2 + z2 +

dz1

dt
− u+ 2θ z1

dz1

dt

Therefore if we choose:

u = z2 +
dz1

dt
+ 2θ z1

dz1

dt

we obtain:

dz2

dt
= −z2

Thus the closed loop system of error coordinates becomes:

[

ż1

ż2

]

=

[

−1 1

0 −1

] [

z1

z2

]

which is a stable system.

b. In this case the parameter θ is no longer known, and may be time–varying.

A parameter update law will therefore be required, along with a control law.

As in the standard backstepping problem, we define the first error coordi-

nate by z1 = x1. We will also define the parameter estimation error:

θ̃ = θ − θ̂

Adding and subtracting the term z1 as in the first problem, and rewriting

θ in terms of θ̃ and θ̂ , we obtain:

dz1

dt
= −z1 + z1 − x2 + θ̂ z21 + θ̃ z21

Using x2 as a virtual control, with:

x2 = z1 + θ̂ z21
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we can define the next error coordinate z2:

z2 = x2 − z1 − θ̂ z21

We therefore obtain:

dz1

dt
= −z1 − z2 + θ̃ z21

Notice that the term containing θ̃ could not be included in the virtual control

since it is not known. We see here that we require that θ̃ tends to zero in

order to obtain stable error dynamics.

Taking the derivative of z2:

dz2

dt
= −z2 + z2 +

dx2

dt
−
dz1

dt
− 2z1θ̂

dz1

dt
− z21

dθ̂

dt

Replacing dx2
dt
with the control signal u and substituting for dz1

dt
:

dz2

dt
= −z2 + z2 + u− (−z1 − z2 + θ̃ z21) − 2z1θ̂ (−z1 − z2 + θ̃ z21) − z

2
1

dθ̂

dt

Here we cannot simply choose a control signal to remove all the unwanted

terms since the signal θ̃ is unknown. We must therefore use Lyapunov

theory to derive a stabilizing controller and a stable parameter update law.

Consider the Lyapunov function:

V (z, θ̃) =
1

2
(z21 + z

2
2 + θ̃

2)

This may be regarded as a Lyapunov function for the system consisting of

the error coordinates z and the paramter error θ̃ . If we can find a con-

troller and a parameter update law which make the time derivative of this

Lyapunov function negative, then we have solved the design problem.

The time derivative is given by:

dV (z, θ̃)

dt
= z1

dz1

dt
+ z2

dz2

dt
+ θ̃
dθ̃

dt

Substituting for the state derivatives, we obtain:

dV (z, θ̃)

dt
=z1(−z1 − z2 + θ̃ z21) + z2(−z2 + z2 + u− (−z1 − z2 + θ̃ z21)

− 2z1θ̂ (−z1 − z2 + θ̃ z21) − z
2
1

dθ̂

dt
) − θ̃

dθ̂

dt

Expanding:

dV (z, θ̃)

dt
=− z21 − z2z1 + θ̃ z31 + z2(−z2 + z2 + u+ z1 + z2 − θ̃ z21 + 2z

2
1θ̂

− 2z2z1θ̂ + 2z
3
1θ̂θ̃ − z21

dθ̂

dt
) − θ̃

dθ̂

dt
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Figur 1 Simulation results showing states (top), parameter value (middle) and control
signal (bottom)

Rewriting:

dV (z, θ̃)

dt
=− z21 − z

2
2 + θ̃ (z31 − z2z

2
1 − 2z

3
1z2θ̂ −

dθ̂

dt
) + z2(2z2 + u+ 2z

2
1θ̂

+ 2z2z1θ̂ − z
2
1

dθ̂

dt
)

If we now choose u and dθ̂

dt
such that the brackets containing them vanish,

the Lyapunov function time derivative will be negative as desired. Thus we

have:

dθ̂

dt
= z31 − z

2
1z2(1+ 2z1θ̂ )

u = −2z2 − 2z1θ̂ (z1 + z2) + z
2
1

dθ̂

dt

Figure shows the results of simulating the system. We see that both the

states and the parameter estimate converge, as desired.
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